1
|
Xiong S, Jin J, Zhao X, Zhao Y, He Z, Guo H, Gong C, Yu J, Guo L, Liang T. Cell Cycle-Based Molecular Features via Synthetic Lethality and Non-Coding RNA Interactions in Cancer. Genes (Basel) 2025; 16:310. [PMID: 40149461 PMCID: PMC11941865 DOI: 10.3390/genes16030310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/21/2025] [Accepted: 03/03/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND The cell cycle, a critical and intricate biological process, comprises various phases, and its dysregulation plays a pivotal role in tumorigenesis and metastasis. The exploration of cell cycle-based molecular subtypes across pan-cancers, along with the application of synthetic lethality concepts, holds promise for advancing cancer therapies. METHODS A pan-cancer analysis was conducted to assess the cell cycle serves as a reliable signature for classifying molecular subtypes and to understand the potential clinical application of genes as potential drug targets based on synthetic lethality. RESULTS Molecular subtypes derived from cell cycle features in certain cancers, particularly kidney-related malignancies, exhibited distinct immune characteristics. Synthetic lethal interactions within the cell cycle pathway were common, with significant genetic interactions further identifying potential drug targets through the exploitation of genetic relationships with key driver genes. Additionally, miRNAs and lncRNAs may influence the cell cycle through miRNA:mRNA interactions and ceRNA networks, thereby enriching the genetic interaction landscape. CONCLUSIONS These findings suggest that the cell cycle pathway could serve as a promising molecular subtype signature to enhance cancer prognostication and offer potential targets for anticancer drug development through synthetic lethality.
Collapse
Affiliation(s)
- Shizheng Xiong
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (S.X.); (J.J.); (X.Z.); (Y.Z.); (Z.H.); (C.G.)
| | - Jiaming Jin
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (S.X.); (J.J.); (X.Z.); (Y.Z.); (Z.H.); (C.G.)
| | - Xinmiao Zhao
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (S.X.); (J.J.); (X.Z.); (Y.Z.); (Z.H.); (C.G.)
| | - Yang Zhao
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (S.X.); (J.J.); (X.Z.); (Y.Z.); (Z.H.); (C.G.)
| | - Zhiheng He
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (S.X.); (J.J.); (X.Z.); (Y.Z.); (Z.H.); (C.G.)
| | - Haochuan Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China;
| | - Chengjun Gong
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (S.X.); (J.J.); (X.Z.); (Y.Z.); (Z.H.); (C.G.)
| | - Jiafeng Yu
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China;
| | - Li Guo
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (S.X.); (J.J.); (X.Z.); (Y.Z.); (Z.H.); (C.G.)
| | - Tingming Liang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China;
| |
Collapse
|
2
|
Morgan RA, Hazard ES, Savage SJ, Halbert CH, Gattoni-Celli S, Hardiman G. Unveiling Racial Disparities in Localized Prostate Cancer: A Systems-Level Exploration of the lncRNA Landscape. Genes (Basel) 2025; 16:229. [PMID: 40004558 PMCID: PMC11855151 DOI: 10.3390/genes16020229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/17/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Prostate cancer (PC) is the most common non-cutaneous cancer in men globally, and one which displays significant racial disparities. Men of African descent (AF) are more likely to develop PC and face higher mortality compared to men of European descent (EU). The biological mechanisms underlying these differences remain unclear. Long non-coding RNAs (lncRNAs), recognized as key regulators of gene expression and immune processes, have emerged as potential contributors to these disparities. This study aimed to investigate the regulatory role of lncRNAs in localized PC in AF men relative to those of EU and assess their involvement in immune response and inflammation. METHODS A systems biology approach was employed to analyze differentially expressed (DE) lncRNAs and their roles in prostate cancer (PC). Immune-related pathways were investigated through over-representation analysis of lncRNA-mRNA networks. The study also examined the effects of vitamin D supplementation on lncRNA expression in African descent (AF) PC patients, highlighting their potential regulatory roles in immune response and inflammation. RESULTS Key lncRNAs specific to AF men were identified, with several being implicated for immune response and inflammatory processes. Notably, 10 out of the top 11 ranked lncRNAs demonstrated strong interactions with immune-related genes. Pathway analysis revealed their regulatory influence on antigen processing and presentation, chemokine signaling, and ribosome pathways, suggesting their critical roles in immune regulation. CONCLUSIONS These findings highlight the pivotal role of lncRNAs in PC racial disparities, particularly through immune modulation. The identified lncRNAs may serve as potential biomarkers or therapeutic targets to address racial disparities in PC outcomes.
Collapse
Affiliation(s)
- Rebecca A. Morgan
- Faculty of Medicine, Health and Life Sciences, School of Biological Sciences, Institute for Global Food Security (IGFS), Queen’s University Belfast (QUB), Belfast BT9 5DL, UK;
| | - E. Starr Hazard
- Academic Affairs Faculty, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA;
| | - Stephen J. Savage
- Department of Urology, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA;
- Ralph H. Johnson VA Health Care System (VAHCS) Medical Center, Charleston, SC 29425, USA;
| | - Chanita Hughes Halbert
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA 90033, USA;
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Sebastiano Gattoni-Celli
- Ralph H. Johnson VA Health Care System (VAHCS) Medical Center, Charleston, SC 29425, USA;
- Department of Radiation Oncology, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA
| | - Gary Hardiman
- Faculty of Medicine, Health and Life Sciences, School of Biological Sciences, Institute for Global Food Security (IGFS), Queen’s University Belfast (QUB), Belfast BT9 5DL, UK;
- Department of Medicine, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA
| |
Collapse
|
3
|
Wu L, Katsube T, Li X, Wang B, Xie Y. Unveiling the impact of CD133 on cell cycle regulation in radio- and chemo-resistance of cancer stem cells. Front Public Health 2025; 13:1509675. [PMID: 39980929 PMCID: PMC11839412 DOI: 10.3389/fpubh.2025.1509675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/13/2025] [Indexed: 02/22/2025] Open
Abstract
The adaptation of malignancy to therapy presents a significant challenge in cancer treatment. The cell cycle plays a crucial role in regulating the evolution of radio- and chemo-resistance in tumor cells. Cancer stem cells (CSCs) are the primary source of therapy resistance, with CD133 being one of the most recognized and valuable cell surface markers of CSCs. Evidence increasingly suggests that CD133 is associated with cancer resistance. The current understanding of the molecular biological function of CD133 is limited, leading to ongoing debates about its role in cancer biology. In this review, we explore recent research and emerging trends related to CD133 through extensive literature and content analysis. It was summarized that new insights into the relationships of CD133 and cell cycle signaling pathways in resistant CSCs. The aim of this review is to provide a foundational understanding of how these signaling pathways and their interactions impact cancer prognosis and inform treatment strategies.
Collapse
Affiliation(s)
- Luyao Wu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Graduate School of the Chinese Academy of Sciences, Beijing, China
| | - Takanori Katsube
- Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Xiaofei Li
- Gansu Nuclear and Radiation Safety Center, Lanzhou, China
| | - Bing Wang
- Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yi Xie
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| |
Collapse
|
4
|
Ranganathan R, Li S, Sapozhnikov G, Wang S, Song YQ. Lower expression of BIN1's neuronal isoform in vulnerable excitatory neurons increases risk in Alzheimer's disease. J Alzheimers Dis Rep 2025; 9:25424823241296018. [PMID: 40034505 PMCID: PMC11864243 DOI: 10.1177/25424823241296018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/06/2024] [Indexed: 03/05/2025] Open
Abstract
Background Neurons in Alzheimer's disease (AD) experience elevated DNA damage, with DNA repair sites enriched at enhancer regions of genes essential for neuronal survival. Excitatory neurons in the cortical superficial layers expressing CUX2 and RORB (Cux2+/Rorb+), are selectively vulnerable in AD, but their relationship to single nucleotide polymorphisms (SNPs) in AD genome-wide association studies (GWAS) is unclear. Objective This study aimed to identify and characterize functional AD-GWAS SNPs using single-nucleus RNA sequencing data, focusing on selectively vulnerable neurons and DNA repair hotspots. Methods Filters were applied to identify candidate SNPs based on overlap with repair hotspots, RNA expression, transcription factor binding, AD association, and epigenetic significance. In vitro assays and analyses of large datasets from bulk RNA-seq (n = 1894), proteomics (n = 400), and single-nucleus RNA-seq (n = 424, 1.6 M cells) were conducted. Results BIN1 SNP, rs78710909, met multiple criteria - located in an AD-GWAS locus, repair hotspot, and promoter region. rs78710909C exhibits 1.52× higher AD risk and 5.4× differential transcription factor binding. In vitro, rs78710909C shows greater enhancer activity and weaker p53 but stronger E2F1 binding. BIN1's neuronal isoform is neuroprotective, but its AD expression is lower (p < 0.01). Moreover, only in AD and Cux2+/Rorb + neurons, rs78710909C is associated with a lower average BIN1 neuronal isoform ratio (p < 0.01). The genes upregulated in neurons with lower neuronal isoform ratio were associated with the hallmarks of AD pathology. Conclusions In a disease-relevant mechanism, the BIN1 SNP rs78710909C is associated with a lower ratio of BIN1's neuronal isoform which increases the vulnerability of specific excitatory neurons in AD patients.
Collapse
Affiliation(s)
- Rajesh Ranganathan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Siwen Li
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Georgy Sapozhnikov
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Shoutang Wang
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - You-Qiang Song
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
5
|
Aziz HA, El-Saghier AM, Badr M, Elsadek BEM, Abuo-Rahma GEDA, Shoman ME. Design, synthesis and mechanistic study of N-4-Piperazinyl Butyryl Thiazolidinedione derivatives of ciprofloxacin with Anticancer Activity via Topoisomerase I/II inhibition. Sci Rep 2024; 14:24101. [PMID: 39406816 PMCID: PMC11480511 DOI: 10.1038/s41598-024-73793-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
A new group of thiazolidine-2,4-dione derivatives of ciprofloxacin having butyryl linker 3a-l was synthesized via an alkylation of thiazolidine-2,4-diones with butyryl ciprofloxacin with yield range 48-77% andfully characterized by various spectroscopic and analytical tools. Anti-cancer screening outcomes indicated that 3a and 3i possess antiproliferative activities against human melanoma LOX IMVI cancer cell line with IC50 values of 26.7 ± 1.50 and 25.4 ± 1.43 µM, respectively, using doxorubicin and cisplatin as positive controls with an IC50 of 7.03 ± 0.40 and 5.07 ± 0.29 µM, respectively. Additionally, compound 3j showed promising anticancer activity against human renal cancer A498 cell line with IC50 value of 33.9 ± 1.91 µM while doxorubicin and cisplatin showed IC50 values of 3.59 ± 0.20 and 7.92 ± 0.45, respectively. On the other hand, compound 3i did not show considerable anti-bacterial activity against S. aureus, E. coli and P. aeruginosa, and only moderate activity against K. pneumoniae with only a tenth of the activity of ciprofloxacin, confirming the cytotoxicity observed. Mechanistically, compound 3i inhibited both topoisomerase I and II with IC50 of 4.77 ± 0.26 and 15 ± 0.81 µM. Furthermore, it induced cell cycle arrest at S phase in melanoma LOX IMVI cells. Moreover, 3i provoked substantial levels of early, late apoptosis and necrosis in melanoma LOX IMVI cell line comparable to that induced by doxorubicin. Furthermore, compound 3i increased the expression level of active caspase-3 by 49 folds higher in LOX IMVI cell, increased protein expression level of Bax more than the control by 3 folds and inhibited PARP-1by 33% in LOX IMVI. All results were supported by theoretical docking studies on both tested enzymes confirming potential cytotoxicity for the synthesized hybrids.
Collapse
Affiliation(s)
- Hossameldin A Aziz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, New Valley University, New Valley, 72511, Egypt
- Department of Medicinal Chemistry, Minia University, Minia, 61519, Egypt
| | - Ahmed M El-Saghier
- Department of Chemistry, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| | - Mohamed Badr
- Department of Biochemistry, Faculty of Pharmacy, Menoufia University, Menoufia, Egypt
| | - Bakheet E M Elsadek
- Department of Biochemistry and Molecular Biology, Faculty of pharmacy, Assiut Branch, Al-Azhar University, Assiut, 71524, Egypt
| | - Gamal El-Din A Abuo-Rahma
- Department of Medicinal Chemistry, Minia University, Minia, 61519, Egypt.
- Department of Pharmaceutical Chemistry, Deraya University, New Minya, 61768, Minia, Egypt.
- Department of pharmaceutical chemistry, Deraya University, New Minia, 61768, Egypt.
| | - Mai E Shoman
- Department of Medicinal Chemistry, Minia University, Minia, 61519, Egypt.
| |
Collapse
|
6
|
Zhang N, Zang L. MiR-22-3p Inhibits 5-Fluorouracil Resistance in Cholangiocarcinoma Cells Through PTEN/PI3K/AKT Axis. Assay Drug Dev Technol 2024; 22:217-228. [PMID: 38967602 DOI: 10.1089/adt.2024.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024] Open
Abstract
Cholangiocarcinoma (CCA) is a prevalent and highly lethal form of cancer globally. Although microRNAs (miRNAs) have been implicated in the advancement of CCA, their potential influence on 5-fluorouracil (5-Fu) resistance in CCA remains to be fully elucidated. Here, in this study, we investigated the impact of miR-22-3p on CCA resistance. Our investigation involved bioinformatics analysis, which revealed an association between miR-22-3p and the progression, diagnosis, and patient survival of CCA. Furthermore, we validated a notable downregulation of miR-22-3p expression in CCA cell lines. Elevated levels of miR-22-3p inhibit the activity and proliferation of 5-Fu-resistant CCA cell lines. In addition, we confirmed that phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a target gene of miR-22-3p, and its expression correlates with the survival of CCA patients. Reduced PTEN expression enhances apoptosis in 5-Fu-resistant CCA cells. Meanwhile, we verified the existence of the miR-22-3p/PTEN/phosphatidylinositol-3 kinase (PI3K)/Protein kinase B (AKT) regulatory networks in CCA, influencing the sensitivity of CCA cells to 5-Fu. In conclusion, our findings suggest that miR-22-3p acts as a tumor suppressor. Its overexpression inhibits the PTEN/PI3K/AKT axis, promoting cell apoptosis and enhancing CCA sensitivity to 5-Fu.
Collapse
Affiliation(s)
- Ningrong Zhang
- Department of Pharmacy, Ningbo Haishu People's Hospital, Ningbo, Republic of China
| | - Li Zang
- Department of Pharmacy, Ningbo Haishu People's Hospital, Ningbo, Republic of China
| |
Collapse
|
7
|
Jiang MJ, Lin CJ, Liu FR, Mei Z, Gu DN, Tian L. Pancreatic cancer cells hijack tumor suppressive microRNA-26a to promote radioresistance and potentiate tumor repopulation. Heliyon 2024; 10:e31346. [PMID: 38807872 PMCID: PMC11130661 DOI: 10.1016/j.heliyon.2024.e31346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/30/2024] Open
Abstract
Pancreatic cancer is one of the most lethal cancers with significant radioresistance and tumor repopulation after radiotherapy. As a type of short non-coding RNA that regulate various biological and pathological processes, miRNAs might play vital role in radioresistance. We found by miRNA sequencing that microRNA-26a (miR-26a) was upregulated in pancreatic cancer cells after radiation, and returned to normal state after a certain time. miR-26a was defined as a tumor suppressive miRNA by conventional tumor biology experiments. However, transient upregulation of miR-26a after radiation significantly promoted radioresistance, while stable overexpression inhibited radioresistance, highlighting the importance of molecular dynamic changes after treatment. Mechanically, transient upregulation of miR-26a promoted cell cycle arrest and DNA damage repair to promote radioresistance. Further experiments confirmed HMGA2 as the direct functional target, which is an oncogene but enhances radiosensitivity. Moreover, PTGS2 was also the target of miR-26a, which might potentiate tumor repopulation via delaying the synthesis of PGE2. Overall, this study revealed that transient upregulation of miR-26a after radiation promoted radioresistance and potentiated tumor repopulation, highlighting the importance of dynamic changes of molecules upon radiotherapy.
Collapse
Affiliation(s)
- Ming-jie Jiang
- Department of Head and Neck Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Chen-jing Lin
- Department of Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Fu-rao Liu
- Department of Oncology, Zhongshan Hospital, Fudan University School of Medicine, Shanghai 200032, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Zhu Mei
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Dian-na Gu
- Department of Chemotherapy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Ling Tian
- Department of Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| |
Collapse
|
8
|
He Y, Huang X, Ma Y, Yang G, Cui Y, Lv X, Zhao R, Jin H, Tong Y, Zhang X, Li J, Peng M. A novel aging-associated lncRNA signature for predicting prognosis in osteosarcoma. Sci Rep 2024; 14:1386. [PMID: 38228673 PMCID: PMC10791644 DOI: 10.1038/s41598-024-51732-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 01/09/2024] [Indexed: 01/18/2024] Open
Abstract
Osteosarcoma (OS) is one of the most prevalent bone tumors in adolescents, and the correlation between aging and OS remains unclear. Currently, few accurate and reliable biomarkers have been determined for OS prognosis. To address this issue, we carried out a detailed bioinformatics analysis based on OS with data from the Cancer Genome Atlas data portal and Human Aging Genomic Resources database, as well as in vitro experiments. A total of 88 OS samples with gene expression profiles and corresponding clinical characteristics were obtained. Through univariate Cox regression analysis and survival analysis, 10 aging-associated survival lncRNAs (AASRs) were identified to be associated with the overall survival of OS patients. Based on the expression levels of the 10 AASRs, the OS patients were classified into two clusters (Cluster A and Cluster B). Cluster A had a worse prognosis, while Cluster B had a better prognosis. Then, 5 AASRs were ultimately included in the signature through least absolute shrinkage and selection operator-Cox regression analysis. Kaplan‒Meier survival analysis verified that the high-risk group exhibited a worse prognosis than the low-risk group. Furthermore, univariate and multivariate Cox regression analyses confirmed that the riskScore was an independent prognostic factor for OS patients. Subsequently, we discovered that the risk signature was correlated with the properties of the tumor microenvironment and immune cell infiltration. Specifically, there was a positive association between the risk model and naïve B cells, resting dendritic cells and gamma delta T cells, while it was negatively related to CD8+ T cells. Finally, in vitro experiments, we found that UNC5B-AS1 inhibited OS cells from undergoing cellular senescence and apoptosis, thereby promoting OS cells proliferation. In conclusion, we constructed and verified a 5 AASR-based signature, that exhibited excellent performance in evaluating the overall survival of OS patients. In addition, we found that UNC5B-AS1 might inhibit the senescence process, thus leading to the development and progression of OS. Our findings may provide novel insights into the treatment of OS patients.
Collapse
Affiliation(s)
- Yi He
- Department of Mini-Invasive Spinal Surgery, The Third People's Hospital of Henan Province, Zhengzhou, 450006, Henan, China
| | - Xiao Huang
- Department of Clinical Laboratory, Luohe Central Hospital, Luohe, 462300, Henan, China
| | - Yajie Ma
- Department of Medical Affair, The Third People's Hospital of Henan Province, Zhengzhou, 450006, Henan, China
| | - Guohui Yang
- Department of Emergency Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yuqing Cui
- General ICU, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xuefeng Lv
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Rongling Zhao
- Department of Clinical Laboratory, The Third People's Hospital of Henan Province, Zhengzhou, 450006, Henan, China
| | - Huifang Jin
- Department of Blood Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yalin Tong
- Department of Digestion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xinyu Zhang
- Department of Medical Affair, The Third People's Hospital of Henan Province, Zhengzhou, 450006, Henan, China
| | - Jitian Li
- Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Henan Provincial Orthopedic Institute, Henan University of Chinese Medicine, 100 Yongping Road, Zhengzhou, 450000, Henan, China.
| | - Mengle Peng
- Department of Clinical Laboratory, The Third People's Hospital of Henan Province, Zhengzhou, 450006, Henan, China.
| |
Collapse
|
9
|
Pagoni M, Cava C, Sideris DC, Avgeris M, Zoumpourlis V, Michalopoulos I, Drakoulis N. miRNA-Based Technologies in Cancer Therapy. J Pers Med 2023; 13:1586. [PMID: 38003902 PMCID: PMC10672431 DOI: 10.3390/jpm13111586] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/02/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
The discovery of therapeutic miRNAs is one of the most exciting challenges for pharmaceutical companies. Since the first miRNA was discovered in 1993, our knowledge of miRNA biology has grown considerably. Many studies have demonstrated that miRNA expression is dysregulated in many diseases, making them appealing tools for novel therapeutic approaches. This review aims to discuss miRNA biogenesis and function, as well as highlight strategies for delivering miRNA agents, presenting viral, non-viral, and exosomic delivery as therapeutic approaches for different cancer types. We also consider the therapeutic role of microRNA-mediated drug repurposing in cancer therapy.
Collapse
Affiliation(s)
- Maria Pagoni
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Claudia Cava
- Department of Science, Technology and Society, University School for Advanced Studies IUSS Pavia, 27100 Pavia, Italy;
| | - Diamantis C. Sideris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece;
| | - Margaritis Avgeris
- Laboratory of Clinical Biochemistry—Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, “P. & A. Kyriakou” Children’s Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Vassilios Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece;
| | - Ioannis Michalopoulos
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece;
| | - Nikolaos Drakoulis
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15701 Athens, Greece
| |
Collapse
|
10
|
Li L, He Z, Shi Y, Sun H, Yuan B, Cai J, Chen J, Long M. Role of epigenetics in mycotoxin toxicity: a review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 100:104154. [PMID: 37209890 DOI: 10.1016/j.etap.2023.104154] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/25/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
Mycotoxins can induce cell cycle disorders, cell proliferation, oxidative stress, and apoptosis through pathways such as those associated with MAPK, JAK2/STAT3, and Bcl-w/caspase-3, and cause reproductive toxicity, immunotoxicity, and genotoxicity. Previous studies have explored the toxicity mechanism of mycotoxins from the levels of DNA, RNA, and proteins, and proved that mycotoxins have epigenetic toxicity. To explore the toxic effects and mechanisms of these changes in mycotoxins, this paper summarizes the changes in DNA methylation, non-coding RNA, RNA and histone modification induced by several common mycotoxins (zearalenone, aflatoxin B1, ochratoxin A, deoxynivalenol, T-2 toxin, etc.) based on epigenetic studies. In addition, the roles of mycotoxin-induced epigenetic toxicity in germ cell maturation, embryonic development, and carcinogenesis are highlighted. In summary, this review provides theoretical support for a better understanding of the regulatory mechanism of mycotoxin epigenotoxicity and the diagnosis and treatment of diseases.
Collapse
Affiliation(s)
- Liuliu Li
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China; Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, P.R. China.
| | - Ziqi He
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China; Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, P.R. China.
| | - Yang Shi
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China; Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, P.R. China.
| | - Huiying Sun
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China; Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, P.R. China.
| | - Bowei Yuan
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China; Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, P.R. China.
| | - Jing Cai
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China; Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, P.R. China.
| | - Jia Chen
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China; Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, P.R. China.
| | - Miao Long
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China; Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, P.R. China.
| |
Collapse
|
11
|
Fan S, Xing J, Jiang Z, Zhang Z, Zhang H, Wang D, Tang D. Effects of Long Non-Coding RNAs Induced by the Gut Microbiome on Regulating the Development of Colorectal Cancer. Cancers (Basel) 2022; 14:cancers14235813. [PMID: 36497293 PMCID: PMC9735521 DOI: 10.3390/cancers14235813] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 11/29/2022] Open
Abstract
Although an imbalanced gut microbiome is closely associated with colorectal cancer (CRC), how the gut microbiome affects CRC is not known. Long non-coding RNAs (lncRNAs) can affect important cellular functions such as cell division, proliferation, and apoptosis. The abnormal expression of lncRNAs can promote CRC cell growth, proliferation, and metastasis, mediating the effects of the gut microbiome on CRC. Generally, the gut microbiome regulates the lncRNAs expression, which subsequently impacts the host transcriptome to change the expression of downstream target molecules, ultimately resulting in the development and progression of CRC. We focused on the important role of the microbiome in CRC and their effects on CRC-related lncRNAs. We also reviewed the impact of the two main pathogenic bacteria, Fusobacterium nucleatum and enterotoxigenic Bacteroides fragilis, and metabolites of the gut microbiome, butyrate, and lipopolysaccharide, on lncRNAs. Finally, available therapies that target the gut microbiome and lncRNAs to prevent and treat CRC were proposed.
Collapse
Affiliation(s)
- Shiying Fan
- Clinical Medical College, Yangzhou University, Yangzhou 225000, China
| | - Juan Xing
- Clinical Medical College, Yangzhou University, Yangzhou 225000, China
| | - Zhengting Jiang
- Clinical Medical College, Yangzhou University, Yangzhou 225000, China
| | - Zhilin Zhang
- Clinical Medical College, Yangzhou University, Yangzhou 225000, China
| | - Huan Zhang
- Clinical Medical College, Yangzhou University, Yangzhou 225000, China
| | - Daorong Wang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Northern Jiangsu People’s Hospital, Yangzhou University, Yangzhou 225000, China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Northern Jiangsu People’s Hospital, Yangzhou University, Yangzhou 225000, China
- Correspondence: ; Tel.: +86-18952783556
| |
Collapse
|
12
|
Tang L, Bai X, Xie X, Chen G, Jia X, Lei M, Li C, Lai S. Negative effects of heat stress on ovarian tissue in female rabbit. Front Vet Sci 2022; 9:1009182. [PMID: 36452142 PMCID: PMC9704112 DOI: 10.3389/fvets.2022.1009182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/27/2022] [Indexed: 07/30/2023] Open
Abstract
Numerous studies have highlighted the role of miRNA in the deformation and necrosis of cells of ovarian tissue caused by heat stress (HS), which ultimately affects ovarian function. Although the role of small RNAs has been investigated in alterations in ovarian tissue functioning in response to HS, the expression profile of ovarian miRNA has been explored to a lesser extent. In this study, female rabbits were subject to HS treatment by using electrical heater. The current work demonstrated that HS could significantly change physiological performance of female rabbits including body weight, rectal temperature and relative ovary weight, and significantly reduce serum IL-2, IL-8, CAT, and GSH-Px concentrations by enzyme-linked immunosorbent assay (ELISA) technique. As a result, an increase in apoptosis in ovarian cells, as well as unhealthy follicles, were observed by Hematoxylin-eosin (HE) and TUNEL staining. Additionally, small RNA-seq revealed changes in the miRNA expression profile of rabbit ovaries under HS. Five hundred fourteen miRNAs were obtained including known miRNAs 442 and novel miRNAs 72. Among these miRNAs, 23 miRNAs were significantly expressed under HS. Eleven differentially expressed miRNAs (DE miRNAs) and 9 their predicted targets were confirmed by qPCR, which were expected miRNA-mRNA negative regulation pattern. Among the DE miRNAs and targets, miR-141-39 may target COQ6, miR-449a-5p and miR-34c-5p may control RFC5 and RTN2 together, miR-449a-5p may target ACADVL, miR-34c-5p potentially targets Bcl-2 and miR-196b-5p potentially regulates CASK and HOXB6. Thus, the current work suggested the negative effects of HS on the ovarian tissue of female rabbits, and in conclusion these changes could be caused by decreased serum IL-2, IL-8, CAT and GSH-Px levels, increased ovarian apoptosis, and changed the expression of miRNAs.
Collapse
Affiliation(s)
- Lipeng Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xue Bai
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xiaohong Xie
- Sichuan Provincial Key Laboratory of Animal Genetics and Breeding, Sichuan Academy of Animal Science, Chengdu, China
| | - Guanhe Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xianbo Jia
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Ming Lei
- Sichuan Provincial Key Laboratory of Animal Genetics and Breeding, Sichuan Academy of Animal Science, Chengdu, China
| | - Congyan Li
- Sichuan Provincial Key Laboratory of Animal Genetics and Breeding, Sichuan Academy of Animal Science, Chengdu, China
| | - Songjia Lai
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
13
|
Lack of ZNF365 Drives Senescence and Exacerbates Experimental Lung Fibrosis. Cells 2022; 11:cells11182848. [PMID: 36139424 PMCID: PMC9497065 DOI: 10.3390/cells11182848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by aberrant activation of the alveolar epithelium, the expansion of the fibroblast population, and the accumulation of extracellular matrix. Global gene expression of human lung fibroblasts stimulated with TGFβ-1, a strong fibrotic mediator revealed the overexpression of ZNF365, a zinc finger protein implicated in cell cycle control and telomere stabilization. We evaluated the expression and localization of ZNF365 in IPF lungs and in the fibrotic response induced by bleomycin in WT and deficient mice of the orthologous gene Zfp365. In IPF, ZNF365 was overexpressed and localized in fibroblasts/myofibroblasts and alveolar epithelium. Bleomycin-induced lung fibrosis showed an upregulation of Zfp365 localized in lung epithelium and stromal cell populations. Zfp365 KO mice developed a significantly higher fibrotic response compared with WT mice by morphology and hydroxyproline content. Silencing ZNF365 in human lung fibroblasts and alveolar epithelial cells induced a significant reduction of growth rate and increased senescence markers, including Senescence Associated β Galactosidase activity, p53, p21, and the histone variant γH2AX. Our findings demonstrate that ZNF365 is upregulated in IPF and experimental lung fibrosis and suggest a protective role since its absence increases experimental lung fibrosis mechanistically associated with the induction of cell senescence.
Collapse
|
14
|
Kong M, Yu X, Zheng Q, Zhang S, Guo W. Oncogenic roles of LINC01234 in various forms of human cancer. Biomed Pharmacother 2022; 154:113570. [PMID: 36030582 DOI: 10.1016/j.biopha.2022.113570] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/28/2022] Open
Abstract
Abnormal expression of long non-coding RNAs (lncRNAs) plays an essential role in various malignant neoplasia. As a newly identified lncRNA, LINC01234 is abnormally expressed in several types of cancers and promotes the development of cancers. Accumulating evidence indicates that overexpression of LINC01234 is associated with poor clinical outcomes. Moreover, LINC01234 modulates many cellular events as a putative proto-oncogene, including proliferation, migration, invasion, apoptosis, cell cycle progression, and EMT. In terms of molecular mechanism, LINC01234 regulates gene expression by acting as ceRNA, participating in signaling pathways, interacting with proteins and other molecules, and encoding polypeptide. It reveals that LINC01234 may serve as a potential biomarker for cancer diagnosis, treatment, and prognosis. This review summarizes the expression pattern, biological function, and molecular mechanism of LINC01234 in human cancer and discusses its potential clinical utility.
Collapse
Affiliation(s)
- Minyu Kong
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Liver Transplantation Centre, China; Henan Organ Transplantation Quality Control Centre, China; Open and Key Laboratory for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, China; Henan Innovative Research Group for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Liver Transplantation Centre, China; Henan Organ Transplantation Quality Control Centre, China; Open and Key Laboratory for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, China; Henan Innovative Research Group for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation, China
| | - Qingyuan Zheng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Liver Transplantation Centre, China; Henan Organ Transplantation Quality Control Centre, China; Open and Key Laboratory for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, China; Henan Innovative Research Group for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Liver Transplantation Centre, China; Henan Organ Transplantation Quality Control Centre, China; Open and Key Laboratory for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, China; Henan Innovative Research Group for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Liver Transplantation Centre, China; Henan Organ Transplantation Quality Control Centre, China; Open and Key Laboratory for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, China; Henan Innovative Research Group for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation, China.
| |
Collapse
|