1
|
Shamloo-Dashtpagerdi R, Shahriari AG, Tahmasebi A, Vetukuri RR. Potential role of the regulatory miR1119- MYC2 module in wheat ( Triticum aestivum L.) drought tolerance. FRONTIERS IN PLANT SCIENCE 2023; 14:1161245. [PMID: 37324698 PMCID: PMC10266357 DOI: 10.3389/fpls.2023.1161245] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/26/2023] [Indexed: 06/17/2023]
Abstract
MicroRNA (miRNA)-target gene modules are essential components of plants' abiotic stress signalling pathways Little is known about the drought-responsive miRNA-target modules in wheat, but systems biology approaches have enabled the prediction of these regulatory modules and systematic study of their roles in responses to abiotic stresses. Using such an approach, we sought miRNA-target module(s) that may be differentially expressed under drought and non-stressed conditions by mining Expressed Sequence Tag (EST) libraries of wheat roots and identified a strong candidate (miR1119-MYC2). We then assessed molecular and physiochemical differences between two wheat genotypes with contrasting drought tolerance in a controlled drought experiment and assessed possible relationships between their tolerance and evaluated traits. We found that the miR1119-MYC2 module significantly responds to drought stress in wheat roots. It is differentially expressed between the contrasting wheat genotypes and under drought versus non-stressed conditions. We also found significant associations between the module's expression profiles and ABA hormone content, water relations, photosynthetic activities, H2O2 levels, plasma membrane damage, and antioxidant enzyme activities in wheat. Collectively, our results suggest that a regulatory module consisting of miR1119 and MYC2 may play an important role in wheat's drought tolerance.
Collapse
Affiliation(s)
| | - Amir Ghaffar Shahriari
- Department of Agriculture and Natural Resources, Higher Education Center of Eghlid, Eghlid, Iran
| | - Aminallah Tahmasebi
- Department of Agriculture, Minab Higher Education Center, University of Hormozgan, Bandar Abbas, Iran
| | - Ramesh R. Vetukuri
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| |
Collapse
|
2
|
Jiang WJ, Wang MT, Du ZY, Li JH, Shi Y, Wang X, Wu LY, Chen J, Zhong M, Yang J, Hu BH, Huang J. Bioinformatic and functional analysis of OsDHN2 under cadmium stress. Funct Integr Genomics 2023; 23:170. [PMID: 37209314 DOI: 10.1007/s10142-023-01101-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023]
Abstract
As a toxic heavy metal, cadmium (Cd) is one of the principal pollutants influencing rice productivity and food security. Despite several studies, the underlying mechanism of Cd response in plants remains largely unclear. Dehydrins are part of the late embryogenesis abundant (LEA) family which protect plants against abiotic stresses. In this study, a Cd-responsive LEA gene, OsDHN2, was functionally characterized. The chromosome localization results indicated that OsDHN2 was located on chromosome 2 of rice. Meanwhile, cis-acting elements, such as MBS (MYB binding site involved in drought-inducibility), ARE (anaerobic induction), and ABRE (abscisic acid), were present in the OsDHN2 promoter region. Expression pattern analysis also showed that OsDHN2 expression was induced in both roots and shoots under Cd stress. Overexpression of OsDHN2 improved Cd tolerance and reduced Cd concentration in yeast. Moreover, increased expression levels of SOD1, CTA1, GSH1, or CTT1 were found in transgenic yeast under Cd stress, suggesting the increased antioxidant enzymatic activities. These results suggested that OsDHN2 is a Cd-responsive gene that has the potential to improve resistance to Cd in rice.
Collapse
Affiliation(s)
- Wen-Jun Jiang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, Sichuan, China
| | - Meng-Ting Wang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, Sichuan, China
| | - Zhi-Ye Du
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, Sichuan, China
| | - Jia-Hao Li
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, Sichuan, China
| | - Yang Shi
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, Sichuan, China
| | - Xin Wang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, Sichuan, China
| | - Long-Ying Wu
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, Sichuan, China
| | - Ji Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Min Zhong
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, Sichuan, China
| | - Ju Yang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, Sichuan, China
| | - Bin-Hua Hu
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China
| | - Jin Huang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, Sichuan, China.
| |
Collapse
|
3
|
Zhang X, Jiang J, Ma Z, Yang Y, Meng L, Xie F, Cui G, Yin X. Cloning of TaeRF1 gene from Caucasian clover and its functional analysis responding to low-temperature stress. FRONTIERS IN PLANT SCIENCE 2022; 13:968965. [PMID: 36605954 PMCID: PMC9809470 DOI: 10.3389/fpls.2022.968965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Low temperature (LT) is an important threat to the normal growth of plants. In this study, based on the full-length transcriptome sequencing results, the cold resistance genes were cloned from Caucasian clover with strong cold resistance. We cloned the CDS of TaeRF1, which is 1311 bp in length and encodes 436 amino acids. The molecular weight of the protein is 48.97 kDa, which had no transmembrane structure, and its isoelectric point (pI) was 5.42. We predicted the structure of TaeRF1 and found 29 phosphorylation sites. Subcellular localization showed that TaeRF1 was localized and expressed in cell membrane and chloroplasts. The TaeRF1 gene was induced by stress due to cold, salt, alkali and drought and its expression level was higher in roots and it was more sensitive to LT. Analysis of transgenic A. thaliana plants before and after LT treatment showed that the TaeRF1 gene enhanced the removal of excess H2O2, and increased the activity of antioxidant enzymes, thus improving the plant's ability to resist stress. Additionally, the OE lines showed increased cold tolerance by upregulating the transcription level of cold-responsive genes (CBF1, CBF2, COR15B, COR47, ICE1, and RD29A). This study demonstrates that TaeRF1 is actively involved in the responses of plants to LT stress. We also provide a theoretical basis for breeding and a potential mechanism underlying the responses of Caucasian clover to abiotic stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Guowen Cui
- *Correspondence: Guowen Cui, ; Xiujie Yin,
| | - Xiujie Yin
- *Correspondence: Guowen Cui, ; Xiujie Yin,
| |
Collapse
|
4
|
Zhang H, Hu Y, Gu B, Cui X, Zhang J. VaMYB44 transcription factor from Chinese wild Vitis amurensis negatively regulates cold tolerance in transgenic Arabidopsis thaliana and V. vinifera. PLANT CELL REPORTS 2022; 41:1673-1691. [PMID: 35666271 DOI: 10.1007/s00299-022-02883-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Heterologous expression of VaMYB44 gene in Arabidopsis and V. vinifera cv. 'Thompson Seedless' increases cold sensitivity, which is mediated by the interaction of VaMYC2 and VaTIFY5A with VaMYB44 MYB transcription factors play critical roles in plant stress response. However, the function of MYB44 under low temperature stress is largely unknown in grapes. Here, we isolated a VaMYB44 gene from Chinese wild Vitis amurensis acc. 'Shuangyou' (cold-resistant). The VaMYB44 is expressed in various organs and has lower expression levels in stems and young leaves. Exposure of the cold-sensitive V. vinifera cv. 'Thompson Seedless' and cold-resistant 'Shuangyou' grapevines to cold stress (-1 °C) resulted in differential expression of MYB44 in leaves with the former reaching 14 folds of the latter after 3 h of cold stress. Moreover, the expression of VaMYB44 was induced by exogenous ethylene, abscisic acid, and methyl jasmonate in the leaves of 'Shuangyou'. Notably, the subcellular localization assay identified VaMYB44 in the nucleus. Interestingly, heterologous expression of VaMYB44 in Arabidopsis and 'Thompson Seedless' grape increased freezing-induced damage compared to their wild-type counterparts. Accordingly, the transgenic lines had higher malondialdehyde content and electrolyte permeability, and lower activities of superoxide dismutase, peroxidase, and catalase. Moreover, the expression levels of some cold resistance-related genes decreased in transgenic lines. Protein interaction assays identified VaMYC2 and VaTIFY5A as VaMYB44 interacting proteins, and VaMYC2 could bind to the VaMYB44 promoter and promote its transcription. In conclusion, the study reveals VaMYB44 as the negative regulator of cold tolerance in transgenic Arabidopsis and transgenic grapes, and VaMYC2 and VaTIFY5A are involved in the cold sensitivity of plants by interacting with VaMYB44.
Collapse
Affiliation(s)
- Hongjuan Zhang
- College of Horticulture, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Xianyang, 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Yafan Hu
- College of Horticulture, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Xianyang, 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Bao Gu
- College of Horticulture, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Xianyang, 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Xiaoyue Cui
- College of Horticulture, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Xianyang, 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Jianxia Zhang
- College of Horticulture, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Xianyang, 712100, Shaanxi, China.
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China.
| |
Collapse
|