1
|
Lee H, Moon D, Khang R, Seo GH, Yoon CK, Park UC, Park KH, Lee EK. A Korean Patient With Leber Congenital Amaurosis and a Homozygous RPE65 Variant Originating From a Paternal Uniparental Isodisomy. Mol Genet Genomic Med 2025; 13:e70060. [PMID: 39835736 PMCID: PMC11748124 DOI: 10.1002/mgg3.70060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/03/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Leber congenital amaurosis (LCA), the most severe form of inherited retinal dystrophy, is a rare, heterogeneous, genetic eye disease associated with severe congenital visual impairment. RPE65, one of the causative genes for LCA, encodes retinoid isomerohydrolase, an enzyme that plays a critical role in regenerating visual pigment in photoreceptor cells. METHODS Exome sequencing (ES) was performed on a patient with suspected LCA. RESULTS Here, we report a 33-year-old male patient diagnosed with RPE65-related LCA caused by uniparental isodisomy (UPiD) who received gene therapy as treatment, fourth patient to receive it in Korea. His fundus examinations showed salt-and-pepper retinal dystrophy, with diffuse extinguished signal on fundus autofluorescence and attenuated amplitude on electroretinogram. A homozygous frameshift variant NM_000329.3:c.1067del (p.Asn356MetfsTer17) in RPE65 was identified by ES with the entire chromosome 1 proving to be paternal UPiD. Within 5 months after the molecular diagnosis, the patient was treated with subretinal voretigene neparvovec (VN) therapy and is being followed up for prognosis. CONCLUSIONS To our knowledge, this patient is the first UPiD case to receive VN treatment. Performing ES as a first-tier test was favourable because it allowed to identify UPiD that needed to be detected in addition to the disease-causing variant.
Collapse
Affiliation(s)
- Hane Lee
- Division of Medical Genetics3billion IncSeoulKorea
| | | | - Rin Khang
- Division of Medical Genetics3billion IncSeoulKorea
| | - Go Hun Seo
- Division of Medical Genetics3billion IncSeoulKorea
| | - Chang Ki Yoon
- Department of OphthalmologySeoul National University College of Medicine, Seoul National University HospitalSeoulKorea
| | - Un Chul Park
- Department of OphthalmologySeoul National University College of Medicine, Seoul National University HospitalSeoulKorea
| | - Kyu Hyung Park
- Department of OphthalmologySeoul National University College of Medicine, Seoul National University HospitalSeoulKorea
| | - Eun Kyoung Lee
- Department of OphthalmologySeoul National University College of Medicine, Seoul National University HospitalSeoulKorea
| |
Collapse
|
2
|
Hotta Y, Torii K, Takayama M. Ocular genetics in the Japanese population. Jpn J Ophthalmol 2024; 68:401-418. [PMID: 39271608 PMCID: PMC11420330 DOI: 10.1007/s10384-024-01109-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/03/2024] [Indexed: 09/15/2024]
Abstract
In today's globalized society, ophthalmologists can examine people of different ethnicities regardless of where they live. The frequency of disease-causing genes varies according to a patient's ethnic background. We explain genetic findings for Japanese patients with inherited eye diseases. Ocular genetics has made great advances over the past 30 years. For example, detecting mutations at nucleotide position 11778 in mitochondrial DNA was useful in the genetic diagnosis of Leber's hereditary optic neuropathy (LHON). I evaluated the genotype-phenotype relationship in cases of corneal dystrophy and inherited retinal dystrophy (IRD). I identified the entire exon sequence of the eyes shut homolog (EYS) gene in patients with autosomal recessive retinitis pigmentosa (RP). EYS gene mutations are the most frequent cause of autosomal recessive RP. RPGRIP1 may be a common causative gene with early-onset severe retinal dystrophy, including Leber congenital amaurosis. However, some genes have complex structures that are difficult to analyze, including the OPN1LW/OPN1MW gene cluster in blue cone monochromacy and the IKBKG/NEMO genes in incontinentia pigmenti. This review will also present two cases with uniparental disomy, a case of IRD with double mutations, and a case with RP complicated with LHON-like neuropathy. Precise understanding of the effects of genetic variants may reveal differences in the clinical characteristics of patients with the same variant. When starting genome medicine, accurately diagnosing the patient, making accurate prediction, determining the genetic pattern, and providing genetic counseling are important. Above all, that both the doctors and patients understand genetic diseases correctly is important.
Collapse
Affiliation(s)
- Yoshihiro Hotta
- Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu city, Shizuoka, 431-3192, Japan.
| | - Kaoruko Torii
- Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu city, Shizuoka, 431-3192, Japan
| | - Masakazu Takayama
- Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu city, Shizuoka, 431-3192, Japan
| |
Collapse
|
3
|
Yan L, Ding S, He Y, Fu B, Chen C, Li H. Whole paternal uniparental disomy of chromosome 4 with a novel homozygous IDUA splicing variant, c.159-9T>A, in a Chinese patient with mucopolysaccharidosis type I. Mol Genet Genomic Med 2024; 12:e2507. [PMID: 39132856 PMCID: PMC11318027 DOI: 10.1002/mgg3.2507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024] Open
Abstract
BACKGROUND Mucopolysaccharidosis type I (MPS-I) is a rare autosomal recessive genetic lysosomal storage disorder that is caused by pathogenic variants of the α-L-iduronidase (IDUA) gene. This study aimed to identify the genetic causes of MPS-I in a Chinese patient and construct a minigene of IDUA to analyze its variants upon splicing. METHODS Whole-exome sequencing (WES) and Sanger sequencing were used to confirm the potential causative variants. Single-nucleotide polymorphism (SNP) array was subsequently performed to confirm uniparental disomy (UPD). Minigene assay was performed to analyze the effect on splicing of mRNA. We meanwhile explored the conservative analysis and protein homology simulation. RESULTS A novel homozygous splicing mutation of IDUA, c.159-9T>A, was identified in an individual presenting with overlapping features of MPS-I. Interestingly, only the father and sisters, but not the mother, carried the variant in a heterozygous state. WES and SNP array analyses validated paternal UPD on chromosome 4. Minigene splicing revealed two aberrant splicing events: exon 2 skipping and intron 1 retention. Moreover, the specific structure of the mutant protein obviously changed according to the results of the homologous model. CONCLUSIONS This study describes a rare autosomal recessive disorder with paternal UPD of chromosome 4 leading to the homozygosity of the IDUA splicing variant in patients with MPS-I for the first time. This study expands the variant spectrum of IDUA and provides insights into the splicing system, facilitating its enhanced diagnosis and treatment.
Collapse
Affiliation(s)
- Lulu Yan
- The Central Laboratory of Birth Defects Prevention and ControlThe Affiliated Women and Children's Hospital of Ningbo UniversityNingboZhejiangChina
| | - Shuxia Ding
- Department of PediatricsThe Affiliated Women and Children's Hospital of Ningbo UniversityNingboZhejiangChina
| | - Yan He
- Department of PediatricsThe Affiliated Women and Children's Hospital of Ningbo UniversityNingboZhejiangChina
| | - Bin Fu
- Health Science CenterNingbo UniversityNingboZhejiangChina
| | - Changshui Chen
- Ningbo Key Laboratory for the Prevention and Treatment of Embryogenic DiseasesThe Affiliated Women and Children's Hospital of Ningbo UniversityNingboZhejiangChina
| | - Haibo Li
- The Central Laboratory of Birth Defects Prevention and ControlThe Affiliated Women and Children's Hospital of Ningbo UniversityNingboZhejiangChina
| |
Collapse
|
4
|
Torii K, Nishina S, Morikawa H, Mizobuchi K, Takayama M, Tachibana N, Kurata K, Hikoya A, Sato M, Nakano T, Fukami M, Azuma N, Hayashi T, Saitsu H, Hotta Y. The Structural Abnormalities Are Deeply Involved in the Cause of RPGRIP1-Related Retinal Dystrophy in Japanese Patients. Int J Mol Sci 2023; 24:13678. [PMID: 37761981 PMCID: PMC10531429 DOI: 10.3390/ijms241813678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Leber congenital amaurosis (LCA) is the most severe form of inherited retinal dystrophy. RPGRIP1-related LCA accounts for 5-6% of LCA. We performed whole-exome sequencing and whole-genome sequencing (WGS) on 29 patients with clinically suspected LCA and examined ophthalmic findings in patients with biallelic pathogenic variants of RPGRIP1. In addition to five previously reported cases, we identified five cases from four families with compound heterozygous RPGRIP1 variants using WGS. Five patients had null variants comprising frameshift variants, an Alu insertion, and microdeletions. A previously reported 1339 bp deletion involving exon 18 was found in four cases, and the deletion was relatively prevalent in the Japanese population (allele frequency: 0.002). Microdeletions involving exon 1 were detected in four cases. In patients with RPGRIP1 variants, visual acuity remained low, ranging from light perception to 0.2, and showed no correlation with age. In optical coherence tomography images, the ellipsoid zone (EZ) length decreased with age in all but one case of unimpaired EZ. The retinal structure was relatively preserved in all cases; however, there were cases with great differences in visual function compared to their siblings and a 56-year-old patient who still had a faint EZ line. Structural abnormalities may be important genetic causes of RPGRIP1-related retinal dystrophy in Japanese patients, and WGS was useful for detecting them.
Collapse
Affiliation(s)
- Kaoruko Torii
- Department of Ophthalmology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Sachiko Nishina
- Division of Ophthalmology, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Hazuki Morikawa
- Division of Ophthalmology, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Kei Mizobuchi
- Department of Ophthalmology, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Masakazu Takayama
- Department of Ophthalmology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Nobutaka Tachibana
- Department of Ophthalmology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Kentaro Kurata
- Department of Ophthalmology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Akiko Hikoya
- Department of Ophthalmology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Miho Sato
- Department of Ophthalmology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Tadashi Nakano
- Department of Ophthalmology, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Noriyuki Azuma
- Division of Ophthalmology, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Takaaki Hayashi
- Department of Ophthalmology, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Yoshihiro Hotta
- Department of Ophthalmology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| |
Collapse
|
5
|
Nabavizadeh SH, Noeiaghdam R, Johari L, Hosseini SA, Esmaeilzadeh H, Alyasin SS. A rare case of SRD5A3-CDG in a patient with ataxia and telangiectasia: A case report. Clin Case Rep 2022; 10:e6564. [PMID: 36439385 PMCID: PMC9684675 DOI: 10.1002/ccr3.6564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/27/2022] [Accepted: 10/19/2022] [Indexed: 11/26/2022] Open
Abstract
Steroid 5α-reductase type 3 congenital disorder of glycosylation (SRD5A3-CDG) is an extremely rare congenital disease. Common manifestations are developmental delay, intellectual disability, ophthalmological abnormalities, cerebellar abnormalities, ataxia, and hypotonia. Here, we discuss a seven-year-old boy with SRD5A3-CDG (homozygous variant c.57G>A [p.Trp19Ter]), featuring the unprecedented finding of telangiectasia.
Collapse
Affiliation(s)
- Sayyed Hesamedin Nabavizadeh
- Allergy Research Center, Department of Pediatrics, School of MedicineShiraz University of Medical SciencesShirazIran
| | - Rafat Noeiaghdam
- Allergy Research Center, Department of Pediatrics, School of MedicineShiraz University of Medical SciencesShirazIran
| | - Leila Johari
- Allergy Research Center, Department of Pediatrics, School of MedicineShiraz University of Medical SciencesShirazIran
| | | | - Hossein Esmaeilzadeh
- Allergy Research Center, Department of Pediatrics, School of MedicineShiraz University of Medical SciencesShirazIran
| | - Soheila Sadat Alyasin
- Allergy Research Center, Department of Pediatrics, School of MedicineShiraz University of Medical SciencesShirazIran
| |
Collapse
|
6
|
Zhao S, Che F, Yang L, Zheng Y, Wang D, Yang Y, Wang Y. First report of paternal uniparental disomy of chromosome 8 with SLC52A2 mutation in Brown-vialetto-van laere syndrome type 2 and an analysis of genotype-phenotype correlations. Front Genet 2022; 13:977914. [PMID: 36186484 PMCID: PMC9520306 DOI: 10.3389/fgene.2022.977914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Purpose: This study reports the clinical and genetic features of Brown-Vialetto-Van Laere syndrome (BVVL) type 2 in a case of uniparental disomy of chromosome 8 in mainland China and analyzes the genotype-phenotype correlation through a review of the literature of BVVL type 2 cases. Methods: The clinical characteristics, treatment, and follow-up data of the patient were summarized, and the etiology was identified by whole-exome sequencing and gene chip analysis. Correlations between the genotype and phenotype were analyzed by collecting clinical and genetic data of published cases and our patient. Results: We identified a homozygous mutation in SLC52A2 (NM_001253815.2 c.1255G>A) by trio-WES. Sanger sequencing confirmed that his father was heterozygous and his mother was wild type. Subsequently, paternal uniparental disomy of chromosome 8 [UPD (8)pat] was confirmed by chromosomal microarray analysis.The patient received long-term oral riboflavin treatment (7 mg/kg.d) and was followed up for 40 months by which time the child’s bulbar palsy, ataxia, and motor function had improved. A review of the literature and statistical analysis found that the symptoms of BVVL type 2 appear at the earliest shortly after birth and at the latest at 10 years of age. The median age of onset was 2.5 years, but the overall delay in diagnosis was a median of 5.6 years. The most common symptoms were hearing loss (83.9%), followed by muscle weakness (80.6%), visual impairment (64.5%), and ataxia (61.3%). To date, a total of 32 mutations in the SLC52A2 gene have been reported, with the most common being a missense mutation. Mutations occur throughout the length of the gene apart from at the N-terminus. In patients with missense mutations, homozygous pattern was more likely to present with ataxia as the first symptom (p < 0.05), while compound heterozygous pattern was more likely to develop respiratory insufficiency during the course of disease (p < 0.001). Moreover, patients with one missense mutation located in inside the transmembrane domain were more likely to have respiratory insufficiency than those with mutations both inside and outside the domain (p < 0.05). Riboflavin supplementation was an important factor in determining prognosis (p < 0.001). Conclusion: We report the first UPD(8)pat with SLC52A2 homozygous pathogenic mutation case in BVVL type 2, which expand the mutation spectrum of gene.
Collapse
Affiliation(s)
- Siyu Zhao
- Department of Pediatric neurology, Xi’an Children’s hospital, Xi’an, China
| | - Fengyu Che
- Shaanxi Institute of Pediatric Diseases, Xi’an Children’s Hospital, Xi’an, China
| | - Le Yang
- Department of Pediatric neurology, Xi’an Children’s hospital, Xi’an, China
| | - Yanyan Zheng
- Department of Pediatric neurology, Xi’an Children’s hospital, Xi’an, China
| | - Dong Wang
- Department of Pediatric neurology, Xi’an Children’s hospital, Xi’an, China
| | - Ying Yang
- Shaanxi Institute of Pediatric Diseases, Xi’an Children’s Hospital, Xi’an, China
- *Correspondence: Ying Yang, Yan Wang,
| | - Yan Wang
- Department of Pediatric neurology, Xi’an Children’s hospital, Xi’an, China
- *Correspondence: Ying Yang, Yan Wang,
| |
Collapse
|