1
|
Yang Q, Wijaya F, Kapoor R, Chandrasekaran H, Jagtiani S, Moran I, Hime GR. Unusual modes of cell and nuclear divisions characterise Drosophila development. Biochem Soc Trans 2024; 52:2281-2295. [PMID: 39508395 DOI: 10.1042/bst20231341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 11/15/2024]
Abstract
The growth and development of metazoan organisms is dependent upon a co-ordinated programme of cellular proliferation and differentiation, from the initial formation of the zygote through to maintenance of mature organs in adult organisms. Early studies of proliferation of ex vivo cultures and unicellular eukaryotes described a cyclic nature of cell division characterised by periods of DNA synthesis (S-phase) and segregation of newly synthesized chromosomes (M-phase) interspersed by seeming inactivity, the gap phases, G1 and G2. We now know that G1 and G2 play critical roles in regulating the cell cycle, including monitoring of favourable environmental conditions to facilitate cell division, and ensuring genomic integrity prior to DNA replication and nuclear division. M-phase is usually followed by the physical separation of nascent daughters, termed cytokinesis. These phases where G1 leads to S phase, followed by G2 prior to M phase and the subsequent cytokinesis to produce two daughters, both identical in genomic composition and cellular morphology are what might be termed an archetypal cell division. Studies of development of many different organs in different species have demonstrated that this stereotypical cell cycle is often subverted to produce specific developmental outcomes, and examples from over 100 years of analysis of the development of Drosophila melanogaster have uncovered many different modes of cell division within this one species.
Collapse
Affiliation(s)
- Qiaolin Yang
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Fernando Wijaya
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Ridam Kapoor
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Harshaa Chandrasekaran
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Siddhant Jagtiani
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Izaac Moran
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Gary R Hime
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
2
|
Gomez A, Gonzalez S, Oke A, Luo J, Duong JB, Esquerra RM, Zimmerman T, Capponi S, Fung JC, Nystul TG. A High-Throughput Method for Quantifying Drosophila Fecundity. TOXICS 2024; 12:658. [PMID: 39330586 PMCID: PMC11436201 DOI: 10.3390/toxics12090658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024]
Abstract
The fruit fly, Drosophila melanogaster, is an experimentally tractable model system that has recently emerged as a powerful "new approach methodology" (NAM) for chemical safety testing. As oogenesis is well conserved at the molecular and cellular level, measurements of Drosophila fecundity can be useful for identifying chemicals that affect reproductive health across species. However, standard Drosophila fecundity assays have been difficult to perform in a high-throughput manner because experimental factors such as the physiological state of the flies and environmental cues must be carefully controlled to achieve consistent results. In addition, exposing flies to a large number of different experimental conditions (such as chemical additives in the diet) and manually counting the number of eggs laid to determine the impact on fecundity is time-consuming. We have overcome these challenges by combining a new multiwell fly culture strategy with a novel 3D-printed fly transfer device to rapidly and accurately transfer flies from one plate to another, the RoboCam, a low-cost, custom-built robotic camera to capture images of the wells automatically, and an image segmentation pipeline to automatically identify and quantify eggs. We show that this method is compatible with robust and consistent egg laying throughout the assay period and demonstrate that the automated pipeline for quantifying fecundity is very accurate (r2 = 0.98 for the correlation between the automated egg counts and the ground truth). In addition, we show that this method can be used to efficiently detect the effects on fecundity induced by dietary exposure to chemicals. Taken together, this strategy substantially increases the efficiency and reproducibility of high-throughput egg-laying assays that require exposing flies to multiple different media conditions.
Collapse
Affiliation(s)
- Andreana Gomez
- Department of Anatomy, University of California, San Francisco, CA 94143, USA
| | - Sergio Gonzalez
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
- Center for Cellular Construction, San Francisco, CA 94158, USA
| | - Ashwini Oke
- OB/GYN Department, University of California, San Francisco, CA 94143, USA
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Jiayu Luo
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
- Center for Cellular Construction, San Francisco, CA 94158, USA
| | - Johnny B. Duong
- Center for Cellular Construction, San Francisco, CA 94158, USA
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, CA 94132, USA
| | - Raymond M. Esquerra
- Center for Cellular Construction, San Francisco, CA 94158, USA
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, CA 94132, USA
| | - Thomas Zimmerman
- Center for Cellular Construction, San Francisco, CA 94158, USA
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, CA 94132, USA
- IBM Almaden Research Center, San Jose, CA 95120, USA
| | - Sara Capponi
- Center for Cellular Construction, San Francisco, CA 94158, USA
- IBM Almaden Research Center, San Jose, CA 95120, USA
| | - Jennifer C. Fung
- OB/GYN Department, University of California, San Francisco, CA 94143, USA
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- San Francisco EaRTH Center, University of California, San Francisco, CA 94143, USA
| | - Todd G. Nystul
- Department of Anatomy, University of California, San Francisco, CA 94143, USA
- OB/GYN Department, University of California, San Francisco, CA 94143, USA
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- San Francisco EaRTH Center, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
3
|
Jones G, Kleckner N, Zickler D. Meiosis through three centuries. Chromosoma 2024; 133:93-115. [PMID: 38730132 PMCID: PMC11180163 DOI: 10.1007/s00412-024-00822-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Meiosis is the specialized cellular program that underlies gamete formation for sexual reproduction. It is therefore not only interesting but also a fundamentally important subject for investigation. An especially attractive feature of this program is that many of the processes of special interest involve organized chromosomes, thus providing the possibility to see chromosomes "in action". Analysis of meiosis has also proven to be useful in discovering and understanding processes that are universal to all chromosomal programs. Here we provide an overview of the different historical moments when the gap between observation and understanding of mechanisms and/or roles for the new discovered molecules was bridged. This review reflects also the synergy of thinking and discussion among our three laboratories during the past several decades.
Collapse
Affiliation(s)
- Gareth Jones
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Nancy Kleckner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA.
| | - Denise Zickler
- Institute for Integrative Biology of the Cell (I2BC), Centre National de La Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, 91198, Gif-Sur-Yvette, France
| |
Collapse
|
4
|
Gomez A, Gonzalez S, Oke A, Luo J, Duong JB, Esquerra RM, Zimmerman T, Capponi S, Fung JC, Nystul TG. A high-throughput method for quantifying Drosophila fecundity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.27.587093. [PMID: 38585877 PMCID: PMC10996622 DOI: 10.1101/2024.03.27.587093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Measurements of Drosophila fecundity are used in a wide variety of studies, such as investigations of stem cell biology, nutrition, behavior, and toxicology. In addition, because fecundity assays are performed on live flies, they are suitable for longitudinal studies such as investigations of aging or prolonged chemical exposure. However, standard Drosophila fecundity assays have been difficult to perform in a high-throughput manner because experimental factors such as the physiological state of the flies and environmental cues must be carefully controlled to achieve consistent results. In addition, exposing flies to a large number of different experimental conditions (such as chemical additives in the diet) and manually counting the number of eggs laid to determine the impact on fecundity is time-consuming. We have overcome these challenges by combining a new multiwell fly culture strategy with a novel 3D-printed fly transfer device to rapidly and accurately transfer flies from one plate to another; the RoboCam, a low-cost, custom built robotic camera to capture images of the wells automatically; and an image segmentation pipeline to automatically identify and quantify eggs. We show that this method is compatible with robust and consistent egg laying throughout the assay period; and demonstrate that the automated pipeline for quantifying fecundity is very accurate (r2 = 0.98 for the correlation between the automated egg counts and the ground truth) In addition, we show that this method can be used to efficiently detect the effects on fecundity induced by dietary exposure to chemicals. Taken together, this strategy substantially increases the efficiency and reproducibility of high throughput egg laying assays that require exposing flies to multiple different media conditions.
Collapse
Affiliation(s)
- Andreana Gomez
- University of California, San Francisco, Department of Anatomy
| | - Sergio Gonzalez
- San Francisco State University, Department of Biology
- Center for Cellular Construction, San Francisco, CA
| | - Ashwini Oke
- San Francisco State University, Department of Chemistry and Biochemistry; University of California, San Francisco, OB/GYN Department
- IBM Almaden Research Center, San Jose, CA; University of California, San Francisco, Center for Reproductive Sciences
| | - Jiayu Luo
- San Francisco State University, Department of Biology
- Center for Cellular Construction, San Francisco, CA
| | - Johnny B Duong
- Center for Cellular Construction, San Francisco, CA
- San Francisco State University, Department of Chemistry and Biochemistry; University of California, San Francisco, OB/GYN Department
| | - Raymond M Esquerra
- Center for Cellular Construction, San Francisco, CA
- San Francisco State University, Department of Chemistry and Biochemistry; University of California, San Francisco, OB/GYN Department
| | - Thomas Zimmerman
- Center for Cellular Construction, San Francisco, CA
- IBM Almaden Research Center, San Jose, CA; University of California, San Francisco, Center for Reproductive Sciences
| | - Sara Capponi
- Center for Cellular Construction, San Francisco, CA
- IBM Almaden Research Center, San Jose, CA; University of California, San Francisco, Center for Reproductive Sciences
| | - Jennifer C Fung
- San Francisco State University, Department of Chemistry and Biochemistry; University of California, San Francisco, OB/GYN Department
- IBM Almaden Research Center, San Jose, CA; University of California, San Francisco, Center for Reproductive Sciences
- University of California, San Francisco EaRTH Center
| | - Todd G Nystul
- University of California, San Francisco, Department of Anatomy
- San Francisco State University, Department of Chemistry and Biochemistry; University of California, San Francisco, OB/GYN Department
- IBM Almaden Research Center, San Jose, CA; University of California, San Francisco, Center for Reproductive Sciences
- University of California, San Francisco EaRTH Center
| |
Collapse
|
5
|
Abstract
The raison d'être of meiosis is shuffling of genetic information via Mendelian segregation and, within individual chromosomes, by DNA crossing-over. These outcomes are enabled by a complex cellular program in which interactions between homologous chromosomes play a central role. We first provide a background regarding the basic principles of this program. We then summarize the current understanding of the DNA events of recombination and of three processes that involve whole chromosomes: homolog pairing, crossover interference, and chiasma maturation. All of these processes are implemented by direct physical interaction of recombination complexes with underlying chromosome structures. Finally, we present convergent lines of evidence that the meiotic program may have evolved by coupling of this interaction to late-stage mitotic chromosome morphogenesis.
Collapse
Affiliation(s)
- Denise Zickler
- Institute for Integrative Biology of the Cell (I2BC), Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Nancy Kleckner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA;
| |
Collapse
|