1
|
Lautert-Dutra W, Melo CM, Chaves LP, Sousa FC, Crozier C, Dion D, Avante FS, Saggioro FP, dos Reis RB, Archangelo LF, Bayani J, Squire JA. Investigating the Role of SNAI1 and ZEB1 Expression in Prostate Cancer Progression and Immune Modulation of the Tumor Microenvironment. Cancers (Basel) 2024; 16:1480. [PMID: 38672562 PMCID: PMC11048607 DOI: 10.3390/cancers16081480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Prostate cancer (PCa) is an immunologically cold tumor and the molecular processes that underlie this behavior are poorly understood. In this study, we investigated a primary cohort of intermediate-risk PCa (n = 51) using two NanoString profiling panels designed to study cancer progression and immune response. We identified differentially expressed genes (DEGs) and pathways associated with biochemical recurrence (BCR) and clinical risk. Confirmatory analysis was performed using the TCGA-PRAD cohort. Noteworthy DEGs included collagens such as COL1A1, COL1A2, and COL3A1. Changes in the distribution of collagens may influence the immune activity in the tumor microenvironment (TME). In addition, immune-related DEGs such as THY1, IRF5, and HLA-DRA were also identified. Enrichment analysis highlighted pathways such as those associated with angiogenesis, TGF-beta, UV response, and EMT. Among the 39 significant DEGs, 11 (28%) were identified as EMT target genes for ZEB1 using the Harmonizome database. Elevated ZEB1 expression correlated with reduced BCR risk. Immune landscape analysis revealed that ZEB1 was associated with increased immunosuppressive cell types in the TME, such as naïve B cells and M2 macrophages. Increased expression of both ZEB1 and SNAI1 was associated with elevated immune checkpoint expression. In the future, modulation of EMT could be beneficial for overcoming immunotherapy resistance in a cold tumor, such as PCa.
Collapse
Affiliation(s)
- William Lautert-Dutra
- Department of Genetics, Faculty of Medicine at Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil; (W.L.-D.); (C.M.M.); (L.P.C.)
| | - Camila Morais Melo
- Department of Genetics, Faculty of Medicine at Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil; (W.L.-D.); (C.M.M.); (L.P.C.)
| | - Luiz Paulo Chaves
- Department of Genetics, Faculty of Medicine at Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil; (W.L.-D.); (C.M.M.); (L.P.C.)
| | - Francisco Cesar Sousa
- Division of Urology, Department of Surgery and Anatomy, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil; (F.C.S.); (F.S.A.); (R.B.d.R.)
| | - Cheryl Crozier
- Diagnostic Development, Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada; (C.C.); (D.D.); (J.B.)
| | - Dan Dion
- Diagnostic Development, Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada; (C.C.); (D.D.); (J.B.)
| | - Filipe S. Avante
- Division of Urology, Department of Surgery and Anatomy, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil; (F.C.S.); (F.S.A.); (R.B.d.R.)
| | - Fabiano Pinto Saggioro
- Department of Pathology, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil;
| | - Rodolfo Borges dos Reis
- Division of Urology, Department of Surgery and Anatomy, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil; (F.C.S.); (F.S.A.); (R.B.d.R.)
| | - Leticia Fröhlich Archangelo
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil;
| | - Jane Bayani
- Diagnostic Development, Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada; (C.C.); (D.D.); (J.B.)
- Laboratory Medicine and Pathology, University of Toronto, Toronto, ON M5G 1E2, Canada
| | - Jeremy A. Squire
- Department of Genetics, Faculty of Medicine at Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil; (W.L.-D.); (C.M.M.); (L.P.C.)
- Division of Urology, Department of Surgery and Anatomy, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil; (F.C.S.); (F.S.A.); (R.B.d.R.)
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON K7L3N6, Canada
| |
Collapse
|
2
|
Cui Z, Zhai Z, Xie D, Wang L, Cheng F, Lou S, Zou F, Pan R, Chang S, Yao H, She J, Zhang Y, Yang X. From genomic spectrum of NTRK genes to adverse effects of its inhibitors, a comprehensive genome-based and real-world pharmacovigilance analysis. Front Pharmacol 2024; 15:1329409. [PMID: 38357305 PMCID: PMC10864613 DOI: 10.3389/fphar.2024.1329409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/15/2024] [Indexed: 02/16/2024] Open
Abstract
Introduction: The discovery of neurotrophic tyrosine receptor kinase (NTRK) gene fusions has facilitated the development of precision oncology. Two first-generation NTRK inhibitors (larotrectinib and entrectinib) are currently approved for the treatment of patients with solid tumors harboring NTRK gene fusions. Nevertheless, comprehensive NTRK profiling at the pan-cancer genomic level and real-world studies pertaining to the adverse events of NTRK inhibitors are lacking. Methods: We characterize the genome of NTRK at the pan-cancer level through multi-omics databases such as The Cancer Genome Atlas (TCGA). Through the FDA Adverse Event Reporting System (FAERS) database, we collect reports of entrectinib and larotrectinib-induced adverse events and perform a pharmacovigilance analysis using various disproportionality methods. Results: NTRK1/2/3 expression is lower in most tumor tissues, while they have higher methylation levels. NTRK gene expression has prognostic value in some cancer types, such as breast invasive carcinoma (BRCA). The cancer type with highest NTRK alteration frequency is skin cutaneous melanoma (SKCM) (31.98%). Thyroid carcinoma (THCA) has the largest number of NTRK fusion cases, and the most common fusion pair is ETV6-NTRK3. Adverse drug events (ADEs) obtained from the FAERS database for larotrectinib and entrectinib are 524 and 563, respectively. At the System Organ Class (SOC) level, both drugs have positive signal value for "nervous system disorder". Other positive signals for entrectinib include "cardiac disorders", "metabolism and nutrition disorders", while for larotrectinib, it is "hepatobiliary disorders". The unexpected signals are also listed in detail. ADEs of the two NTRK inhibitors mainly occur in the first month. The median onset time of ADEs for entrectinib and larotrectinib was 16 days (interquartile range [IQR] 6-86.5) and 44 days ([IQR] 7-136), respectively. Conclusion: Our analysis provides a broad molecular view of the NTRK family. The real-world adverse drug event analysis of entrectinib and larotrectinib contributes to more refined medication management.
Collapse
Affiliation(s)
- Zhiwei Cui
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zhen Zhai
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - De Xie
- Department of Endocrinology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Lihui Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Feiyan Cheng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Siyu Lou
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Fan Zou
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Rumeng Pan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Shixue Chang
- Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Haoyan Yao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jing She
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yidan Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xinyuan Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
3
|
Lang B, Cao C, Zhao X, Wang Y, Cao Y, Zhou X, Zhao T, Wang Y, Liu T, Liang W, Hu Z, Tian X, Zhang J, Yan Y. Genomic alterations related to HPV infection status in a cohort of Chinese prostate cancer patients. Eur J Med Res 2023; 28:239. [PMID: 37461056 PMCID: PMC10351112 DOI: 10.1186/s40001-023-01207-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Human papillomavirus (HPV) has been proposed as a potential pathogenetic organism involved in prostate cancer (PCa), but the association between HPV infection and relevant genomic changes in PCa is poorly understood. METHODS To evaluate the relationship between HPV genotypes and genomic alterations in PCa, HPV capture sequencing of DNA isolated from 59 Han Chinese PCa patients was performed using an Illumina HiSeq2500. Additionally, whole-exome sequencing of DNA from these 59 PCa tissue samples and matched normal tissues was carried out using the BGI DNBSEQ platform. HPV infection status and genotyping were determined, and the genetic disparities between HPV-positive and HPV-negative PCa were evaluated. RESULTS The presence of the high-risk HPV genome was identified in 16.9% of our cohort, and HPV16 was the most frequent genotype detected. The overall mutational burden in HPV-positive and HPV-negative PCa was similar, with an average of 2.68/Mb versus 2.58/Mb, respectively, in the targeted whole-exome region. HPV-negative tumors showed a mutational spectrum concordant with published PCa analyses with enrichment for mutations in SPOP, FOXA1, and MED12. HPV-positive tumors showed more mutations in KMT2C, KMT2D and ERCC2. Copy number alterations per sample were comparable between the two groups. However, the significantly amplified or deleted regions of the two groups only partially overlapped. We identified amplifications in oncogenes, including FCGR2B and CCND1, and deletions of tumor suppressors, such as CCNC and RB1, only in HPV-negative tumors. HPV-positive tumors showed unique deletions of tumor suppressors such as NTRK1 and JAK1. CONCLUSIONS The genomic mutational landscape of PCa differs based on HPV infection status. This work adds evidence for the direct involvement of HPV in PCa etiology. Different genomic features render HPV-positive PCa a unique subpopulation that might benefit from virus-targeted therapy.
Collapse
Affiliation(s)
- Bin Lang
- Peking University Health Science Center-Macao Polytechnic University Nursing Academy, Macao Polytechnic University, Macao, 999078, China
| | - Chen Cao
- Department of Obstetrics and Gynecology, Academician Expert Workstation, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, Hubei, China
| | - Xiaoxiao Zhao
- Department of Pathology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, Hubei, China
| | - Yi Wang
- Operating Room, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Ying Cao
- Department of Obstetrics and Gynecology, Academician Expert Workstation, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, Hubei, China
| | - Xueying Zhou
- Department of Obstetrics and Gynecology, Academician Expert Workstation, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, Hubei, China
| | - Tong Zhao
- Department of Obstetrics and Gynecology, Academician Expert Workstation, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, Hubei, China
| | - Yuyan Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510000, Guangdong, China
| | - Ting Liu
- Department of Obstetrics and Gynecology, Academician Expert Workstation, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, Hubei, China
| | - Wenjia Liang
- Department of Obstetrics and Gynecology, Academician Expert Workstation, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, Hubei, China
| | - Zheng Hu
- Department of Obstetrics and Gynecology, Women and Children's Hospital Affiliated to Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Xun Tian
- Department of Obstetrics and Gynecology, Academician Expert Workstation, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, Hubei, China.
| | - Jingjing Zhang
- Department of Gynecology and Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430062, Hubei, China.
| | - Yongji Yan
- Department of Urology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| |
Collapse
|
4
|
The Role of Histology-Agnostic Drugs in the Treatment of Metastatic Castration-Resistant Prostate Cancer. Int J Mol Sci 2022; 23:ijms23158535. [PMID: 35955671 PMCID: PMC9369092 DOI: 10.3390/ijms23158535] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 02/07/2023] Open
Abstract
Precision medicine has opened up a new era in the development of anti-cancer agents that is focused on identifying biomarkers predictive of treatment response regardless of tumor histology. Since 2017, the Food and Drug Administration has approved six drugs with histology-agnostic indications: pembrolizumab (both for tumors with the mismatch-repair deficiency (dMMR)/high microsatellite instability (MSI-H) phenotype and for those with the high tumor mutational burden (TMB-H) phenotype), dostarlimab (for dMMR tumors), larotrectinib and entrectinib (for tumors harboring neurotrophic tyrosine receptor kinase (NTRK) fusions), and the combination of dabrafenib plus trametinib (for BRAF V600E-mutated tumors). The genomic alterations targeted by these antineoplastic agents are rare in metastatic castration-resistant prostate cancer (mCRPC). Furthermore, only a small number of mCRPC patients were enrolled in the clinical trials that led to the approval of the above-mentioned drugs. Therefore, we critically reviewed the literature on the efficacy of histology-agnostic drugs in mCRPC patients. Although the available evidence derives from retrospective studies and case reports, our results confirmed the efficacy of pembrolizumab in dMMR/MSI-H mCRPC. In contrast, few data are available for dostarlimab, larotrectinib, entrectinib, and dabrafenib-trametinib in this subset of patients. Large, multi-institutional registries aimed at collecting real-world data are needed to better comprehend the role of tissue-agnostic drugs in mCRPC patients.
Collapse
|