1
|
Biró B, Gál Z, Fekete Z, Klecska E, Hoffmann OI. Mitochondrial genome plasticity of mammalian species. BMC Genomics 2024; 25:278. [PMID: 38486136 PMCID: PMC10941376 DOI: 10.1186/s12864-024-10201-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 03/08/2024] [Indexed: 03/17/2024] Open
Abstract
There is an ongoing process in which mitochondrial sequences are being integrated into the nuclear genome. The importance of these sequences has already been revealed in cancer biology, forensic, phylogenetic studies and in the evolution of the eukaryotic genetic information. Human and numerous model organisms' genomes were described from those sequences point of view. Furthermore, recent studies were published on the patterns of these nuclear localised mitochondrial sequences in different taxa.However, the results of the previously released studies are difficult to compare due to the lack of standardised methods and/or using few numbers of genomes. Therefore, in this paper our primary goal is to establish a uniform mining pipeline to explore these nuclear localised mitochondrial sequences.Our results show that the frequency of several repetitive elements is higher in the flanking regions of these sequences than expected. A machine learning model reveals that the flanking regions' repetitive elements and different structural characteristics are highly influential during the integration process.In this paper, we introduce a general mining pipeline for all mammalian genomes. The workflow is publicly available and is believed to serve as a validated baseline for future research in this field. We confirm the widespread opinion, on - as to our current knowledge - the largest dataset, that structural circumstances and events corresponding to repetitive elements are highly significant. An accurate model has also been trained to predict these sequences and their corresponding flanking regions.
Collapse
Affiliation(s)
- Bálint Biró
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi Albert str. 4, 2100, Gödöllő, Hungary.
- Group BM, Data Insights Team, _VOIS, Kerepesi str. 35, 1087, Budapest, Hungary.
| | - Zoltán Gál
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi Albert str. 4, 2100, Gödöllő, Hungary
| | - Zsófia Fekete
- Department of Genetics and Genomics, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi Albert str. 4, 2100, Gödöllő, Hungary
| | - Eszter Klecska
- FamiCord Group, Krio Institute, Kelemen László str, 1026, Budapest, Hungary
| | - Orsolya Ivett Hoffmann
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi Albert str. 4, 2100, Gödöllő, Hungary.
| |
Collapse
|
2
|
Xue L, Moreira JD, Smith KK, Fetterman JL. The Mighty NUMT: Mitochondrial DNA Flexing Its Code in the Nuclear Genome. Biomolecules 2023; 13:753. [PMID: 37238623 PMCID: PMC10216076 DOI: 10.3390/biom13050753] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/07/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Nuclear-mitochondrial DNA segments (NUMTs) are mitochondrial DNA (mtDNA) fragments that have been inserted into the nuclear genome. Some NUMTs are common within the human population but most NUMTs are rare and specific to individuals. NUMTs range in size from 24 base pairs to encompassing nearly the entire mtDNA and are found throughout the nuclear genome. Emerging evidence suggests that the formation of NUMTs is an ongoing process in humans. NUMTs contaminate sequencing results of the mtDNA by introducing false positive variants, particularly heteroplasmic variants present at a low variant allele frequency (VAF). In our review, we discuss the prevalence of NUMTs in the human population, the potential mechanisms of de novo NUMT insertion via DNA repair mechanisms, and provide an overview of the existing approaches for minimizing NUMT contamination. Apart from filtering known NUMTs, both wet lab-based and computational methods can be used to minimize the contamination of NUMTs in analyses of human mtDNA. Current approaches include: (1) isolating mitochondria to enrich for mtDNA; (2) applying basic local alignment to identify NUMTs for subsequent filtering; (3) bioinformatic pipelines for NUMT detection; (4) k-mer-based NUMT detection; and (5) filtering candidate false positive variants by mtDNA copy number, VAF, or sequence quality score. Multiple approaches must be applied in order to effectively identify NUMTs in samples. Although next-generation sequencing is revolutionizing our understanding of heteroplasmic mtDNA, it also raises new challenges with the high prevalence and individual-specific NUMTs that need to be handled with care in studies of mitochondrial genetics.
Collapse
Affiliation(s)
- Liying Xue
- Evans Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Jesse D. Moreira
- Department of Health Sciences, Programs in Human Physiology, Boston University Sargent College, Boston, MA 02215, USA
| | - Karan K. Smith
- Evans Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Jessica L. Fetterman
- Evans Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
3
|
Special Issue "Feature Papers in Population and Evolutionary Genetics and Genomics". Genes (Basel) 2022; 14:genes14010038. [PMID: 36672779 PMCID: PMC9858693 DOI: 10.3390/genes14010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
Theodosius Dobzhansky famously wrote in 1973 that "nothing in biology makes sense except in the light of evolution" [...].
Collapse
|