1
|
Silva R, Sobral AF, Dinis-Oliveira RJ, Barbosa DJ. The Link Between Paraquat and Demyelination: A Review of Current Evidence. Antioxidants (Basel) 2024; 13:1354. [PMID: 39594496 PMCID: PMC11590890 DOI: 10.3390/antiox13111354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
Paraquat (1,1'-dimethyl-4,4'-bipyridilium dichloride), a widely used bipyridinium herbicide, is known for inducing oxidative stress, leading to extensive cellular toxicity, particularly in the lungs, liver, kidneys, and central nervous system (CNS), and is implicated in fatal poisonings. Due to its biochemical similarities with the neurotoxin 1-methyl-4-phenylpyridinium (MPP+), paraquat has been used as a Parkinson's disease model, although its broader neurotoxic effects suggest the participation of multiple mechanisms. Demyelinating diseases are conditions characterized by damage to the myelin sheath of neurons. They affect the CNS and peripheral nervous system (PNS), resulting in diverse clinical manifestations. In recent years, growing concerns have emerged about the impact of chronic, low-level exposure to herbicides on human health, particularly due to agricultural runoff contaminating drinking water sources and their presence in food. Studies indicate that paraquat may significantly impact myelinating cells, myelin-related gene expression, myelin structure, and cause neuroinflammation, potentially contributing to demyelination. Therefore, demyelination may represent another mechanism of neurotoxicity associated with paraquat, which requires further investigation. This manuscript reviews the potential association between paraquat and demyelination. Understanding this link is crucial for enhancing strategies to minimize exposure and preserve public health.
Collapse
Affiliation(s)
- Renata Silva
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, Porto University, 4050-313 Porto, Portugal
| | - Ana Filipa Sobral
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal; (A.F.S.); (R.J.D.-O.)
- UCIBIO—Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| | - Ricardo Jorge Dinis-Oliveira
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal; (A.F.S.); (R.J.D.-O.)
- UCIBIO—Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
- Department of Public Health and Forensic Sciences and Medical Education, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- FOREN—Forensic Science Experts, Dr. Mário Moutinho Avenue, No. 33-A, 1400-136 Lisbon, Portugal
| | - Daniel José Barbosa
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal; (A.F.S.); (R.J.D.-O.)
- UCIBIO—Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| |
Collapse
|
2
|
Sivera Mascaró R, García Sobrino T, Horga Hernández A, Pelayo Negro AL, Alonso Jiménez A, Antelo Pose A, Calabria Gallego MD, Casasnovas C, Cemillán Fernández CA, Esteban Pérez J, Fenollar Cortés M, Frasquet Carrera M, Gallano Petit MP, Giménez Muñoz A, Gutiérrez Gutiérrez G, Gutiérrez Martínez A, Juntas Morales R, Ciano-Petersen NL, Martínez Ulloa PL, Mederer Hengstl S, Millet Sancho E, Navacerrada Barrero FJ, Navarrete Faubel FE, Pardo Fernández J, Pascual Pascual SI, Pérez Lucas J, Pino Mínguez J, Rabasa Pérez M, Sánchez González M, Sotoca J, Rodríguez Santiago B, Rojas García R, Turon-Sans J, Vicent Carsí V, Sevilla Mantecón T. Clinical practice guidelines for the diagnosis and management of Charcot-Marie-Tooth disease. Neurologia 2024:S2173-5808(24)00047-6. [PMID: 38431252 DOI: 10.1016/j.nrleng.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/03/2023] [Indexed: 03/05/2024] Open
Abstract
INTRODUCTION Charcot-Marie-Tooth (CMT) disease is classified considering the neurophysiological and histological findings, the inheritance pattern and the underlying genetic defect. In recent years, with the advent of next generation sequencing, genetic complexity has increased exponentially, expanding the knowledge about disease pathways, and having an impact in clinical management. The aim of this guide is to offer recommendations for the diagnosis, prognosis, monitoring and treatment of this disease in Spain. MATERIAL AND METHODS This consensus guideline has been developed by a multidisciplinary panel encompassing a broad group of professionals including neurologists, neuropediatricians, geneticists, rehabilitators, and orthopaedic surgeons. RECOMMENDATIONS The diagnosis is based in the clinical characterization, usually presenting with a common phenotype. It should be followed by an appropriate neurophysiological study that allows for a correct classification, specific recommendations are established for the parameters that should be included. Genetic diagnosis must be approached in sequentially, once the PMP22 duplication has been ruled out if appropriate, a next generation sequencing should be considered taking into account the limitations of the available techniques. To date, there is no pharmacological treatment that modifies the course of the disease, but symptomatic management is important, as are the rehabilitation and orthopaedic considerations. The latter should be initiated early to identify and improve the patient's functional impairments, including individualised exercise guidelines, orthotic adaptation, and assessment of conservative surgeries such as tendon transpositions. The follow-up of patients with CMT is exclusively clinical, ancillary testing are not necessary in routine clinical practice.
Collapse
Affiliation(s)
- R Sivera Mascaró
- Servicio de Neurología, Hospital Universitari i Politécnic La Fe, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - T García Sobrino
- Servicio de Neurología, Complejo Hospitalario Universitario de Santiago, Santiago de Compostela, A Coruña, Spain.
| | - A Horga Hernández
- Servicio de Neurología, Hospital Clínico San Carlos, IdISSC, Madrid, Spain
| | - A L Pelayo Negro
- Servicio de Neurología, Hospital Universitario Marqués de Valdecilla, Santander, Spain; Center for Biomedical Research in the Neurodegenerative Diseases (CIBERNED) Network, Madrid, Spain
| | - A Alonso Jiménez
- Neuromuscular Reference Center, Neurology Department, University Hospital of Antwerp, Amberes, Belgium
| | - A Antelo Pose
- Servicio de Rehabilitación, Complejo Hospitalario Universitario de Santiago, Santiago de Compostela, A Coruña, Spain
| | | | - C Casasnovas
- Unitat de Neuromuscular, Servicio de Neurología, Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain
| | | | - J Esteban Pérez
- Servicio de Neurología, Unidad de ELA y Enfermedades Neuromusculares, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - M Fenollar Cortés
- Genética Clínica, Servicio de Análisis Clínicos, Instituto de Medicina del Laboratorio, IdISSC, Hospital Clínico San Carlos, Madrid, Spain
| | - M Frasquet Carrera
- CIBER de Enfermedades Raras (CIBERER), Madrid, Spain; Servicio de Neurología, Hospital Universitari Dr. Peset, Valencia, Spain
| | - M P Gallano Petit
- CIBER de Enfermedades Raras (CIBERER), Madrid, Spain; Servicio de Genética, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - A Giménez Muñoz
- Servicio de Neurología, Hospital Royo Villanova, Zaragoza, Spain
| | - G Gutiérrez Gutiérrez
- CIBER de Enfermedades Raras (CIBERER), Madrid, Spain; Servicio de Neurología, Hospital Universitario Infanta Sofía, San Sebastián de los Reyes, Madrid, Spain; Facultad de Medicina, Universidad Europea de Madrid, Madrid, Spain
| | - A Gutiérrez Martínez
- Servicio de Neurología, Hospital Universitario Insular de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - R Juntas Morales
- Servicio de Neurología, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - N L Ciano-Petersen
- Servicio de Neurología, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga, Málaga, Spain
| | - P L Martínez Ulloa
- Servicio de Neurología, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - S Mederer Hengstl
- Servicio de Neurología, Complejo Hospitalario de Pontevedra, Pontevedra, Spain
| | - E Millet Sancho
- CIBER de Enfermedades Raras (CIBERER), Madrid, Spain; Servicio de Neurofisiología, Hospital Universitari i Politécnic La Fe, Instituto de Investigación Sanitaria la Fe, Valencia, Spain
| | - F J Navacerrada Barrero
- Servicio de Neurología, Hospital Universitario Infanta Sofía, San Sebastián de los Reyes, Madrid, Spain
| | - F E Navarrete Faubel
- Servicio de Cirugía Ortopédica y Traumatología, Hospital Universitari i Politécnic La Fe, Valencia, Spain
| | - J Pardo Fernández
- Servicio de Neurología, Complejo Hospitalario Universitario de Santiago, Santiago de Compostela, A Coruña, Spain
| | | | - J Pérez Lucas
- Servicio de Neurología, Hospital del Tajo, Aranjuez, Madrid, Spain
| | - J Pino Mínguez
- Servicio de Cirugía Ortopédica y Traumatología, Complejo Hospitalario Universitario de Santiago, Santiago de Compostela, A Coruña, Spain
| | - M Rabasa Pérez
- Servicio de Neurología, Hospital Universitario de Fuenlabrada, Fuenlabrada, Madrid, Spain
| | - M Sánchez González
- Servicio de Cirugía Ortopédica y Traumatología, Hospital Universitari i Politécnic La Fe, Valencia, Spain
| | - J Sotoca
- Servicio de Neurología, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | | | - R Rojas García
- CIBER de Enfermedades Raras (CIBERER), Madrid, Spain; Servicio de Neurología, Hospital de la Santa Creu i Sant Pau, Departamento de Medicina, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - J Turon-Sans
- CIBER de Enfermedades Raras (CIBERER), Madrid, Spain; Servicio de Neurofisiología, Hospital de la Santa Creu i Sant Pau, Departamento de Medicina, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - V Vicent Carsí
- Servicio de Cirugía Ortopédica y Traumatología, Hospital Universitari i Politécnic La Fe, Valencia, Spain
| | - T Sevilla Mantecón
- Servicio de Neurología, Hospital Universitari i Politécnic La Fe, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; CIBER de Enfermedades Raras (CIBERER), Madrid, Spain; Universidad de Valencia, Valencia, Spain
| |
Collapse
|
3
|
Cao L, Yang J, Zhang X, Wang X, Chen Z, Tan S, Yang J. Clinical, neurophysiological evaluation and genetic features of axonal Charcot-Marie-Tooth disease in a Chinese family. Front Neurol 2024; 14:1337065. [PMID: 38371303 PMCID: PMC10870769 DOI: 10.3389/fneur.2023.1337065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 12/27/2023] [Indexed: 02/20/2024] Open
Abstract
Charcot-Marie-Tooth disease (CMT) is a group of inherited peripheral neuropathies related to variants in the mitochondrial transfer RNA (mt-tRNAval) gene. Here, we report a Chinese family harboring the m.1661A>G variant in the mt-tRNAval gene. Clinical evaluation, neuroelectrodiagnostic testing, and nerve biopsy were performed on four affected family members. Weakness, spasms, and pain in the limbs (especially in the lower limbs) were the main complaints of the proband. Physical examination revealed atrophy and weakness in the distal limbs, increased muscle tone, and hyperreflexia in four limbs. Neuroelectrodiagnostic tests and nerve biopsy supported an axonal polyneuropathy. This study furthers the understanding of phenotype diversity caused by variants in the mt-tRNAval gene in CMT.
Collapse
Affiliation(s)
- Li Cao
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center of Medical Genetics, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences, Chengdu, China
| | - Jie Yang
- Department of Neurology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaohuan Zhang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center of Medical Genetics, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences, Chengdu, China
| | - Xu Wang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center of Medical Genetics, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences, Chengdu, China
| | - Zhangyuwei Chen
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center of Medical Genetics, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences, Chengdu, China
| | - Song Tan
- Department of Neurology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiyun Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center of Medical Genetics, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences, Chengdu, China
| |
Collapse
|
4
|
Wang Y, Liu Y, Kuo Y, Guan S, Wang N, Lian Y, Huang J, Zhi X, Liu P, Li R, Yan L, Zhu X, Qiao J. Clinical practice and outcomes of preimplantation genetic testing for CMT1A using a novel direct detection method. Heliyon 2023; 9:e22196. [PMID: 38045147 PMCID: PMC10692806 DOI: 10.1016/j.heliyon.2023.e22196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/22/2023] [Accepted: 11/06/2023] [Indexed: 12/05/2023] Open
Abstract
Background Charcot-Marie-Tooth type 1A (CMT1A), the most frequent type of Charcot-Marie-Tooth disease, is mainly caused by a 1.4-Mb duplication containing the PMP22 gene. There is no effective treatment other than general supportive care and symptomatic treatment. Preimplantation genetic testing for monogenic defects (PGT-M) is an alternative approach for obtaining healthy babies. Methods A new technology and analysis method based on next-generation sequencing (NGS) was developed to detect duplication mutations directly. Simultaneously, aneuploidy and linkage analyses were performed to achieve a comprehensive and accurate embryo diagnosis. Results Eight couples were recruited in this study; PMP22 duplication was validated in seven couples, and PMP22 splicing mutation was found in one. Forty-five embryos from 12 PGT cycles were successfully detected using this novel method. The direct detection results for all embryos were consistent with the linkage analyses, suggesting a 100 % accuracy rate, and the aneuploidy rate of the biopsied blastocysts was 33.3 %. Eventually, 18 of the 45 diagnosed embryos were deemed suitable for transfer. Four healthy babies from three families were delivered and their genetic status confirmed by amniocentesis. Additionally, there were no adverse effects of anesthesia or increased pregnancy complications during PGT-M in female patients with CMT1A. Conclusions This study provided a simple, reliable, and efficient method that can directly detect PMP22 mutations based on NGS data and does not require positive family members. A clinical workflow for CMT1A interruption in the offspring before embryo implantation is also summarized.
Collapse
Affiliation(s)
- Yuqian Wang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100191, China
| | - Yujun Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Ying Kuo
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Shuo Guan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Nan Wang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Ying Lian
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Jin Huang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Xu Zhi
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Ping Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Rong Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Liying Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Xiaohui Zhu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
- Beijing Advanced Innovation Center for Genomics, Beijing, 100191, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100191, China
| |
Collapse
|
5
|
Coppedè F. Special Issue "Genetics and Epigenetics of Neuromuscular Diseases". Genes (Basel) 2023; 14:1522. [PMID: 37628574 PMCID: PMC10454685 DOI: 10.3390/genes14081522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 07/13/2023] [Indexed: 08/27/2023] Open
Abstract
Neuromuscular disorders (NMDs) include several hereditary or acquired conditions that impair the neuromuscular system and muscle function [...].
Collapse
Affiliation(s)
- Fabio Coppedè
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
6
|
Park JH, Kwon HM, Nam DE, Kim HJ, Nam SH, Kim SB, Choi BO, Chung KW. INF2 mutations in patients with a broad phenotypic spectrum of Charcot-Marie-Tooth disease and focal segmental glomerulosclerosis. J Peripher Nerv Syst 2023; 28:108-118. [PMID: 36637069 DOI: 10.1111/jns.12530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 01/14/2023]
Abstract
Mutations in INF2 are associated with the complex symptoms of Charcot-Marie-Tooth disease (CMT) and focal segmental glomerulosclerosis (FSGS). To date, more than 100 and 30 genes have been reported to cause these disorders, respectively. This study aimed to identify INF2 mutations in Korean patients with CMT. This study was conducted with 743 Korean families with CMT who were negative for PMP22 duplication. In addition, a family with FSGS was included in this study. INF2 mutations were screened using whole exome sequencing (WES) and filtering processes. As the results, four pathogenic INF2 mutations were identified in families with different clinical phenotypes: p.L78P and p.L132P in families with symptoms of both CMT and FSGS; p.C104Y in a family with CMT; and p.R218Q in a family with FSGS. Moreover, different CMT types were observed in families with CMT symptoms: CMT1 in two families and Int-CMT in another family. Hearing loss was observed in two families with CMT1. Pathogenicity was predicted by in silico analyses, and considerable conformational changes were predicted in the mutant proteins. Two mutations (p.L78P and p.C104Y) were unreported, and three families showed de novo mutations that were putatively occurred from fathers. This study suggests that patients with INF2 mutations show a broad phenotypic spectrum: CMT1, CMT1 + FSGS, CMTDIE + FSGS, and FSGS. Therefore, the genotype-phenotype correlation may be more complex than previously recognized. We believe that this study expands the clinical spectrum of patients with INF2 mutations and will be helpful in the molecular diagnosis of CMT and FSGS.
Collapse
Affiliation(s)
- Jin Hee Park
- Department of Biological Sciences, Kongju National University, Gongju, South Korea
| | - Hye Mi Kwon
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Da Eun Nam
- Department of Biological Sciences, Kongju National University, Gongju, South Korea
| | - Hye Jin Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Soo Hyun Nam
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Cell & Gene Theraphy Institute, Samsung Medical Center, Seoul, South Korea
| | - Sang Beom Kim
- Department of Neurology, Kyung Hee University Hospital at Gangdong, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Byung-Ok Choi
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Cell & Gene Theraphy Institute, Samsung Medical Center, Seoul, South Korea.,Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, South Korea
| | - Ki Wha Chung
- Department of Biological Sciences, Kongju National University, Gongju, South Korea
| |
Collapse
|