1
|
Luce L, Mazzanti C, Carcione M, Massini CL, Buonfiglio PI, Dalamón V, Díaz CB, Mesa L, Dubrovsky A, Cotignola J, Giliberto F. Prognostic significance of ACTN3 genotype in Duchenne muscular dystrophy: Findings from an Argentine patient cohort. Eur J Paediatr Neurol 2025; 54:32-41. [PMID: 39674052 DOI: 10.1016/j.ejpn.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 10/18/2024] [Accepted: 12/08/2024] [Indexed: 12/16/2024]
Abstract
A wide phenotypic spectrum exists among DMD patients, with genetic modifiers seen as a putative cause of this variability. The main aim was to evaluate the effect of 4 genetic modifiers and the location of DMD variants on disease severity in a DMD Argentine cohort. A secondary objective was to provide a summary of the current state of knowledge and association of the tested loci with DMD's phenotype. Two groups of patients with extreme phenotypes (Severe/Mild) were defined based on the age at loss of ambulation. SNVs in SPP1, LTBP4, CD40, and ACTN3 were genotyped, and their distribution was compared between groups using Chi-square or Fisher exact tests. Concurrent effects with glucocorticoids treatment, DMD mutation location (proximal/distal) and the other loci were evaluated by multivariate logistic regression. Additionally, we performed a systematic literature review to summarize and interpret the impact of modifiers on various DMD traits. ACTN3-rs1815739 was the only modifier loci of DMD progression in our cohort. A concurrent damaging effect between DMD mutation and ACTN3 was detected, identifying a possible interaction between distal variants and ACTN3 TT-genotype that need to be validated in a larger cohort. The systematic review showed agreement in the results when significant differences were reported. The employment of extreme DMD phenotypic groups was an innovative approach for identifying risk loci for disease severity. The interaction between DMD mutation location and ACTN3, if confirmed, could help to avoid confounding elements in assembling study cohorts for clinical trials. Finally, this report's major highlight is being the first study conducted on an Argentine and Latin-American population.
Collapse
Affiliation(s)
- Leonela Luce
- Laboratorio de Distrofinopatías, Cátedra de Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Inmunología, Genética y Metabolismo (INIGEM), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina; John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Chiara Mazzanti
- Laboratorio de Distrofinopatías, Cátedra de Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Inmunología, Genética y Metabolismo (INIGEM), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Micaela Carcione
- Laboratorio de Distrofinopatías, Cátedra de Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Inmunología, Genética y Metabolismo (INIGEM), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carmen Llames Massini
- Laboratorio de Distrofinopatías, Cátedra de Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Inmunología, Genética y Metabolismo (INIGEM), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Paula Inés Buonfiglio
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI) "Dr. Héctor N. Torres", CONICET, Buenos Aires, Argentina
| | - Viviana Dalamón
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI) "Dr. Héctor N. Torres", CONICET, Buenos Aires, Argentina
| | - Carla Bolaño Díaz
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; Instituto de Neurociencias, Fundación Favaloro, Buenos Aires, Argentina
| | - Lilia Mesa
- Instituto de Neurociencias, Fundación Favaloro, Buenos Aires, Argentina
| | - Alberto Dubrovsky
- Instituto de Neurociencias, Fundación Favaloro, Buenos Aires, Argentina
| | - Javier Cotignola
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET - Universidad de Buenos Aires, Argentina
| | - Florencia Giliberto
- Laboratorio de Distrofinopatías, Cátedra de Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Inmunología, Genética y Metabolismo (INIGEM), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Gatto F, Benemei S, Piluso G, Bello L. The complex landscape of DMD mutations: moving towards personalized medicine. Front Genet 2024; 15:1360224. [PMID: 38596212 PMCID: PMC11002111 DOI: 10.3389/fgene.2024.1360224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/26/2024] [Indexed: 04/11/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe genetic disorder characterized by progressive muscle degeneration, with respiratory and cardiac complications, caused by mutations in the DMD gene, encoding the protein dystrophin. Various DMD mutations result in different phenotypes and disease severity. Understanding genotype/phenotype correlations is essential to optimize clinical care, as mutation-specific therapies and innovative therapeutic approaches are becoming available. Disease modifier genes, trans-active variants influencing disease severity and phenotypic expressivity, may modulate the response to therapy, and become new therapeutic targets. Uncovering more disease modifier genes via extensive genomic mapping studies offers the potential to fine-tune prognostic assessments for individuals with DMD. This review provides insights into genotype/phenotype correlations and the influence of modifier genes in DMD.
Collapse
Affiliation(s)
| | | | - Giulio Piluso
- Medical Genetics and Cardiomyology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Napoli, Italy
| | - Luca Bello
- Department of Neurosciences DNS, University of Padova, Padova, Italy
| |
Collapse
|
3
|
Landfeldt E, Alemán A, Abner S, Zhang R, Werner C, Tomazos I, Ferizovic N, Lochmüller H, Kirschner J. Predictors of Loss of Ambulation in Duchenne Muscular Dystrophy: A Systematic Review and Meta-Analysis. J Neuromuscul Dis 2024; 11:579-612. [PMID: 38669554 PMCID: PMC11091649 DOI: 10.3233/jnd-230220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2024] [Indexed: 04/28/2024]
Abstract
Objective The objective of this study was to describe predictors of loss of ambulation in Duchenne muscular dystrophy (DMD). Methods This systematic review and meta-analysis included searches of MEDLINE ALL, Embase, and the Cochrane Database of Systematic Reviews from January 1, 2000, to December 31, 2022, for predictors of loss of ambulation in DMD. Search terms included "Duchenne muscular dystrophy" as a Medical Subject Heading or free text term, in combination with variations of the term "predictor". Risk of bias was assessed using the Newcastle-Ottawa Scale. We performed meta-analysis pooling of hazard ratios of the effects of glucocorticoids (vs. no glucocorticoid therapy) by fitting a common-effect inverse-variance model. Results The bibliographic searches resulted in the inclusion of 45 studies of children and adults with DMD from 17 countries across Europe, Asia, and North America. Glucocorticoid therapy was associated with delayed loss of ambulation (overall meta-analysis HR deflazacort/prednisone/prednisolone: 0.44 [95% CI: 0.40-0.48]) (n = 25 studies). Earlier onset of first signs or symptoms, earlier loss of developmental milestones, lower baseline 6MWT (i.e.,<350 vs. ≥350 metres and <330 vs. ≥330 metres), and lower baseline NSAA were associated with earlier loss of ambulation (n = 5 studies). Deletion of exons 3-7, proximal mutations (upstream intron 44), single exon 45 deletions, and mutations amenable of skipping exon 8, exon 44, and exon 53, were associated with prolonged ambulation; distal mutations (intron 44 and downstream), deletion of exons 49-50, and mutations amenable of skipping exon 45, and exon 51 were associated with earlier loss of ambulation (n = 13 studies). Specific single-nucleotide polymorphisms in CD40 gene rs1883832, LTBP4 gene rs10880, SPP1 gene rs2835709 and rs11730582, and TCTEX1D1 gene rs1060575 (n = 7 studies), as well as race/ethnicity and level of family/patient deprivation (n = 3 studies), were associated with loss of ambulation. Treatment with ataluren (n = 2 studies) and eteplirsen (n = 3 studies) were associated with prolonged ambulation. Magnetic resonance biomarkers (MRI and MRS) were identified as significant predictors of loss of ambulation (n = 6 studies). In total, 33% of studies exhibited some risk of bias. Conclusion Our synthesis of predictors of loss of ambulation in DMD contributes to the understanding the natural history of disease and informs the design of new trials of novel therapies targeting this heavily burdened patient population.
Collapse
Affiliation(s)
| | - A. Alemán
- Department of Pediatrics, Division of Neurology, Children’s Hospital of Eastern Ontario, Research Institute, University of Ottawa, Ottawa, ON, Canada
- Department of Medicine, Division of Neurology, The Ottawa Hospital, Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada
| | | | - R. Zhang
- PTC Therapeutics Sweden AB, Askim, Sweden
| | - C. Werner
- PTC Therapeutics Germany GmbH, Frankfurt, Germany
| | - I. Tomazos
- PTC Therapeutics Inc, South Plainfield, NJ, USA
| | | | - H. Lochmüller
- Department of Pediatrics, Division of Neurology, Children’s Hospital of Eastern Ontario, Research Institute, University of Ottawa, Ottawa, ON, Canada
- Department of Neuropediatrics and Muscle Disorders, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany
- Department of Medicine, Division of Neurology, The Ottawa Hospital, Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada
| | - J. Kirschner
- Department of Neuropediatrics and Muscle Disorders, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| |
Collapse
|
4
|
Bello L, Hoffman EP, Pegoraro E. Is it time for genetic modifiers to predict prognosis in Duchenne muscular dystrophy? Nat Rev Neurol 2023; 19:410-423. [PMID: 37308617 DOI: 10.1038/s41582-023-00823-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2023] [Indexed: 06/14/2023]
Abstract
Patients with Duchenne muscular dystrophy (DMD) show clinically relevant phenotypic variability, despite sharing the same primary biochemical defect (dystrophin deficiency). Factors contributing to this clinical variability include allelic heterogeneity (specific DMD mutations), genetic modifiers (trans-acting genetic polymorphisms) and variations in clinical care. Recently, a series of genetic modifiers have been identified, mostly involving genes and/or proteins that regulate inflammation and fibrosis - processes increasingly recognized as being causally linked with physical disability. This article reviews genetic modifier studies in DMD to date and discusses the effect of genetic modifiers on predicting disease trajectories (prognosis), clinical trial design and interpretation (inclusion of genotype-stratified subgroup analyses) and therapeutic approaches. The genetic modifiers identified to date underscore the importance of progressive fibrosis, downstream of dystrophin deficiency, in driving the disease process. As such, genetic modifiers have shown the importance of therapies aimed at slowing this fibrotic process and might point to key drug targets.
Collapse
Affiliation(s)
- Luca Bello
- Department of Neurosciences (DNS), University of Padova, Padova, Italy
| | - Eric P Hoffman
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University (State University of New York), Binghamton, NY, USA
| | - Elena Pegoraro
- Department of Neurosciences (DNS), University of Padova, Padova, Italy.
| |
Collapse
|