1
|
Zhao X, Wang S, Zhang H, Dong S, Chen J, Sun Y, Zhang Y, Liu Q. Genome-wide identification, expression analysis of the R2R3-MYB gene family and their potential roles under cold stress in Prunus sibirica. BMC Genomics 2024; 25:953. [PMID: 39402463 PMCID: PMC11472476 DOI: 10.1186/s12864-024-10868-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND The R2R3-MYB transcription factors in plants participate in various physiological and biochemical processes and responds to various external stimuli. Prunus sibirica (known as Siberian apricot) is a drupe tree species that produces extremely high nutritional value kernels. However, it is susceptiblility to frost damage during the flowering period, results in a marked reduction in kernel yield. RESULTS In this study, the MYB gene family of P. sibirica (PsMYB) was systematically analyzed, and 116 R2R3-MYB genes that were distributed unevenly over eight chromosomes were ultimately screened. Phylogenetic analysis divided these 116 genes into 30 subgroups. We discovered that 37 PsMYBs had cold stress-responsive promoters, and six PsMYBs were annotated to be associated with cold response. Intraspecific homology analysis identified segmental duplication as the primary gene amplification mechanism, and homology analysis of the PsMYB genes with those of five other species revealed phylogenetic relationships with Rosaceae species. Protein interaction studies revealed collaborative regulation of the PsMYB proteins with Arabidopsis protein, and transcriptome analysis identified PsMYB genes that were highly expressed at low temperatures. Additionally, the expression levels of 22 PsMYBs in different tissue parts of P. sibirica and under different low-temperature stress conditions were evaluated using quantitative real-time PCR, with the results verifying that PsMYBs are specifically expressed in different plant parts and may be involved in the growth and development of P. sibirica species. Genes upregulated after exposure to low-temperature stress and likely involved in cold response were identified. CONCLUSION This study lays a foundation for understanding the molecular biology of PsMYBs in P. sibirica and provides a theoretical basis for the future study of transgenic lines with cold resistance during the flowering period of this tree.
Collapse
Affiliation(s)
- Xin Zhao
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory for Silviculture of Liaoning Province, Shenyang Agricultural University, Shenyang, 110866, China
| | - Shipeng Wang
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory for Silviculture of Liaoning Province, Shenyang Agricultural University, Shenyang, 110866, China
| | - Hongrui Zhang
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory for Silviculture of Liaoning Province, Shenyang Agricultural University, Shenyang, 110866, China
| | - Shengjun Dong
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory for Silviculture of Liaoning Province, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jianhua Chen
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory for Silviculture of Liaoning Province, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yongqiang Sun
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory for Silviculture of Liaoning Province, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yueyuan Zhang
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
| | - Quangang Liu
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China.
- Key Laboratory for Silviculture of Liaoning Province, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
2
|
Xie L, Wang Y, Tao Y, Chen L, Lin H, Qi Z, Li J. Genome-wide identification and analysis of anthocyanin synthesis-related R2R3-MYB genes in Fragaria pentaphylla. BMC Genomics 2024; 25:952. [PMID: 39396954 PMCID: PMC11472487 DOI: 10.1186/s12864-024-10882-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND MYB transcription factors regulate anthocyanin biosynthesis across numerous plant species. However, comprehensive genome-wide investigations regarding the R2R3-MYB gene family and its involvement in regulating anthocyanin biosynthesis in the red and white fruit color morphs of Fragaria pentaphylla remain scarce. RESULTS A total of 101 FpR2R3-MYB genes were identified from the F. pentaphylla genome and were divided into 34 subgroups based on phylogenetic analysis. Gene structure (exon/intron) and protein motifs were particularly conserved among the FpR2R3-MYB genes, especially members within the same subgroup. The FpR2R3-MYB genes were distributed over seven F. pentaphylla chromosomes. Analysis of gene duplication events revealed five pairs of tandem duplication genes and 16 pairs of segmental duplication genes, suggesting that segmental duplications are the major pattern for expansion of the FpR2R3-MYB gene family expansion in F. pentaphylla. Cis-regulatory elements of the FpR2R3-MYB promoters were involved in cellular development, phytohormones, environmental stress and photoresponse. Based on the analysis of the FpR2R3-MYB gene family and transcriptome sequencing (RNA-seq) data, FpMYB9 was identified as a key transcription factor involved in the regulation of anthocyanin synthesis in F. pentaphylla fruits. The expression of FpMYB9 increases significantly during the ripening stage of red fruits, as confirmed by reverse transcription quantitative real-time PCR. In addition, subcellular localization experiments further confirmed the nuclear presence of FpMYB9, supporting its role as a transcription factor involved in anthocyanin biosynthesis. CONCLUSION Our results showed that the FpR2R3-MYB genes are highly conserved and play important roles in the anthocyanin biosynthesis in F. pentaphylla fruits. Our results also provide a compelling basis for further understanding of the regulatory mechanism underlying the role of FpMYB9 in anthocyanin formation in F. pentaphylla fruits.
Collapse
Affiliation(s)
- Liangmu Xie
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou, 318000, China
| | - Yinuo Wang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou, 318000, China
| | - Yutian Tao
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou, 318000, China
- School of Electronics and Information Engineering, Taizhou University, Taizhou, 318000, China
| | - Luxi Chen
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou, 318000, China
| | - Hanyang Lin
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou, 318000, China
- School of Advanced Study, Taizhou University, Taizhou, 318000, China
| | - Zhechen Qi
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Junmin Li
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou, 318000, China.
- School of Advanced Study, Taizhou University, Taizhou, 318000, China.
| |
Collapse
|
3
|
Chu NTB, Le MT, La HV, Le QTN, Le TD, Tran HTT, Tran LTM, Le CT, Nguyen DV, Cao PB, Chu HD. Genome-wide identification, characterization, and expression analysis of the small auxin-up RNA gene family during zygotic and somatic embryo maturation of the cacao tree (Theobroma cacao). Genomics Inform 2024; 22:2. [PMID: 38907330 PMCID: PMC11184954 DOI: 10.1186/s44342-024-00003-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/12/2023] [Indexed: 06/23/2024] Open
Abstract
Small auxin-up RNA (SAUR) proteins were known as a large family that supposedly participated in various biological processes in higher plant species. However, the SAUR family has been still not explored in cacao (Theobroma cacao L.), one of the most important industrial trees. The present work, as an in silico study, revealed comprehensive aspects of the structure, phylogeny, and expression of TcSAUR gene family in cacao. A total of 90 members of the TcSAUR gene family have been identified and annotated in the cacao genome. According to the physic-chemical features analysis, all TcSAUR proteins exhibited slightly similar characteristics. Phylogenetic analysis showed that these TcSAUR proteins could be categorized into seven distinct groups, with 10 sub-groups. Our results suggested that tandemly duplication events, segmental duplication events, and whole genome duplication events might be important in the growth of the TcSAUR gene family in cacao. By re-analyzing the available transcriptome databases, we found that a number of TcSAUR genes were exclusively expressed during the zygotic embryogenesis and somatic embryogenesis. Taken together, our study will be valuable to further functional characterizations of candidate TcSAUR genes for the genetic engineering of cacao.
Collapse
Affiliation(s)
- Ngoc Thi Bich Chu
- Faculty of Natural Sciences, Hung Vuong University, Viet Tri City, Phu Tho Province, 35000, Vietnam
| | - Man Thi Le
- Faculty of Natural Sciences, Hung Vuong University, Viet Tri City, Phu Tho Province, 35000, Vietnam
| | - Hong Viet La
- Institute of Research and Application, Hanoi Pedagogical University 2, Phuc Yen City, Vinh Phuc Province, 280000, Vietnam
| | - Quynh Thi Ngoc Le
- Department of Biotechnology, Thuyloi University, Hanoi City, 116830, Vietnam
| | - Thao Duc Le
- Agricultural Genetics Institute, Vietnam Academy of Agricultural Sciences, Hanoi City, 143330, Vietnam
| | - Huyen Thi Thanh Tran
- Faculty of Biology, Hanoi National University of Education, Xuan Thuy Road, Cau Giay District, Hanoi City, 122300, Vietnam
| | - Lan Thi Mai Tran
- Faculty of Natural Sciences, Hung Vuong University, Viet Tri City, Phu Tho Province, 35000, Vietnam
| | - Chi Toan Le
- Faculty of Biology and Agricultural Engineering, Hanoi Pedagogical University 2, Phuc Yen City, Vinh Phuc Province, 280000, Vietnam
| | - Dung Viet Nguyen
- Faculty of Natural Sciences, Hung Vuong University, Viet Tri City, Phu Tho Province, 35000, Vietnam
- Thanh Thuy Junior High School, Thanh Thuy District, Phu Tho Province, 35850, Vietnam
| | - Phi Bang Cao
- Faculty of Natural Sciences, Hung Vuong University, Viet Tri City, Phu Tho Province, 35000, Vietnam.
| | - Ha Duc Chu
- Faculty of Agricultural Technology, University of Engineering and Technology, Vietnam National University Hanoi, Xuan Thuy Road, Cau Giay District, Hanoi City, 122300, Vietnam.
| |
Collapse
|
4
|
Yuan Y, Zeng L, Kong D, Mao Y, Xu Y, Wang M, Zhao Y, Jiang CZ, Zhang Y, Sun D. Abscisic acid-induced transcription factor PsMYB306 negatively regulates tree peony bud dormancy release. PLANT PHYSIOLOGY 2024; 194:2449-2471. [PMID: 38206196 PMCID: PMC10980420 DOI: 10.1093/plphys/kiae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/08/2023] [Accepted: 12/02/2023] [Indexed: 01/12/2024]
Abstract
Bud dormancy is a crucial strategy for perennial plants to withstand adverse winter conditions. However, the regulatory mechanism of bud dormancy in tree peony (Paeonia suffruticosa) remains largely unknown. Here, we observed dramatically reduced and increased accumulation of abscisic acid (ABA) and bioactive gibberellins (GAs) GA1 and GA3, respectively, during bud endodormancy release of tree peony under prolonged chilling treatment. An Illumina RNA sequencing study was performed to identify potential genes involved in the bud endodormancy regulation in tree peony. Correlation matrix, principal component, and interaction network analyses identified a downregulated MYB transcription factor gene, PsMYB306, the expression of which positively correlated with 9-CIS-EPOXYCAROTENOID DIOXYGENASE 3 (PsNCED3) expression. Protein modeling analysis revealed 4 residues within the R2R3 domain of PsMYB306 to possess DNA binding capability. Transcription of PsMYB306 was increased by ABA treatment. Overexpression of PsMYB306 in petunia (Petunia hybrida) inhibited seed germination and plant growth, concomitant with elevated ABA and decreased GA contents. Silencing of PsMYB306 accelerated cold-triggered tree peony bud burst and influenced the production of ABA and GAs and the expression of their biosynthetic genes. ABA application reduced bud dormancy release and transcription of ENT-KAURENOIC ACID OXIDASE 1 (PsKAO1), GA20-OXIDASE 1 (PsGA20ox1), and GA3-OXIDASE 1 (PsGA3ox1) associated with GA biosynthesis in PsMYB306-silenced buds. In vivo and in vitro binding assays confirmed that PsMYB306 specifically transactivated the promoter of PsNCED3. Silencing of PsNCED3 also promoted bud break and growth. Altogether, our findings suggest that PsMYB306 negatively modulates cold-induced bud endodormancy release by regulating ABA production.
Collapse
Affiliation(s)
- Yanping Yuan
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lingling Zeng
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Derong Kong
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanxiang Mao
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yingru Xu
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Meiling Wang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yike Zhao
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cai-Zhong Jiang
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
- Crops Pathology and Genetics Research Unit, USDA-ARS, Davis, CA 95616, USA
| | - Yanlong Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Daoyang Sun
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
5
|
Zhang F, Ma J, Liu Y, Fang J, Wei S, Xie R, Han P, Zhao X, Bo S, Lu Z. A Multi-Omics Analysis Revealed the Diversity of the MYB Transcription Factor Family's Evolution and Drought Resistance Pathways. Life (Basel) 2024; 14:141. [PMID: 38255756 PMCID: PMC10820167 DOI: 10.3390/life14010141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
The MYB transcription factor family can regulate biological processes such as ABA signal transduction to cope with drought stress, but its evolutionary mechanism and the diverse pathways of response to drought stress in different species are rarely reported. In this study, a total of 4791 MYB family members were identified in 908,757 amino acid sequences from 12 model plants or crops using bioinformatics methods. It was observed that the number of MYB family members had a linear relationship with the chromosome ploidy of species. A phylogenetic analysis showed that the MYB family members evolved in subfamily clusters. In response to drought stress, the pathways of MYB transcription factor families exhibited species-specific diversity, with closely related species demonstrating a higher resemblance. This study provides abundant references for drought resistance research and the breeding of wheat, soybean, and other plants.
Collapse
Affiliation(s)
- Fan Zhang
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (F.Z.); (J.M.); (Y.L.); (J.F.); (S.W.); (R.X.); (P.H.)
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Hohhot 010031, China
- Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
| | - Jie Ma
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (F.Z.); (J.M.); (Y.L.); (J.F.); (S.W.); (R.X.); (P.H.)
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Hohhot 010031, China
- Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
- School of Life Science, Inner Mongolia University, Hohhot 010030, China
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, Hohhot 010030, China
| | - Ying Liu
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (F.Z.); (J.M.); (Y.L.); (J.F.); (S.W.); (R.X.); (P.H.)
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Hohhot 010031, China
- Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
- School of Life Science, Inner Mongolia University, Hohhot 010030, China
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, Hohhot 010030, China
| | - Jing Fang
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (F.Z.); (J.M.); (Y.L.); (J.F.); (S.W.); (R.X.); (P.H.)
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Hohhot 010031, China
- Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
- School of Life Science, Inner Mongolia University, Hohhot 010030, China
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, Hohhot 010030, China
| | - Shuli Wei
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (F.Z.); (J.M.); (Y.L.); (J.F.); (S.W.); (R.X.); (P.H.)
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Hohhot 010031, China
- Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
- School of Life Science, Inner Mongolia University, Hohhot 010030, China
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, Hohhot 010030, China
| | - Rui Xie
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (F.Z.); (J.M.); (Y.L.); (J.F.); (S.W.); (R.X.); (P.H.)
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Hohhot 010031, China
- Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
| | - Pingan Han
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (F.Z.); (J.M.); (Y.L.); (J.F.); (S.W.); (R.X.); (P.H.)
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Hohhot 010031, China
- Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
| | - Xiaoqing Zhao
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (F.Z.); (J.M.); (Y.L.); (J.F.); (S.W.); (R.X.); (P.H.)
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Hohhot 010031, China
- Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
- School of Life Science, Inner Mongolia University, Hohhot 010030, China
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, Hohhot 010030, China
| | - Suling Bo
- College of Computer Information, Inner Mongolia Medical University, Hohhot 010110, China
| | - Zhanyuan Lu
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (F.Z.); (J.M.); (Y.L.); (J.F.); (S.W.); (R.X.); (P.H.)
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Hohhot 010031, China
- Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
- School of Life Science, Inner Mongolia University, Hohhot 010030, China
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, Hohhot 010030, China
| |
Collapse
|
6
|
Li J, Guo S, Min Htwe Y, Sun X, Zhou L, Wang F, Zeng C, Chen S, Iqbal A, Yang Y. Genome-wide identification, classification and expression analysis of MYB gene family in coconut ( Cocos nucifera L.). FRONTIERS IN PLANT SCIENCE 2024; 14:1263595. [PMID: 38288415 PMCID: PMC10822967 DOI: 10.3389/fpls.2023.1263595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/21/2023] [Indexed: 01/31/2024]
Abstract
MYB transcription factors regulate the growth, development, and secondary metabolism of plant species. To investigate the origin of color variations in coconut pericarp, we identified and analyzed the MYB gene family present in coconut. According to the sequence of MYB genes in Arabidopsis thaliana, homologous MYB gene sequences were found in the whole genome database of coconut, the conserved sequence motifs within MYB proteins were analyzed by Motif Elicitation (MEME) tool, and the sequences without conservative structure were eliminated. Additionally, we employed RNA-seq technology to generate gene expression signatures of the R2R3-MYB genes across distinctive coconut parts exhibiting diverse colors. To validate these profiles, we conducted quantitative PCR (qPCR). Through comprehensive genome-wide screening, we successfully identified a collection of 179 MYB genes in coconut. Subsequent phylogenetic analysis categorized these 179 coconut MYB genes into 4-subfamilies: 124 R2R3-MYB, 4 3R-MYB types, 4 4R-MYB type, and 47 unknown types. Furthermore, these genes were further divided into 34 subgroups, with 28 of these subgroups successfully classified into known subfamilies found in Arabidopsis thaliana. By mapping the CnMYB genes onto the 16 chromosomes of the coconut genome, we unveiled a collinearity association between them. Moreover, a preservation of gene structure and motif distribution was observed across the CnMYB genes. Our research encompassed a thorough investigation of the R2R3-MYB genes present in the coconut genome, including the chromosomal localization, gene assembly, conserved regions, phylogenetic associations, and promoter cis-acting elements of the studied genes. Our findings revealed a collection of 12 R2R3-MYB candidate genes, namely CnMYB8, CnMYB15, CnMYB27, CnMYB28, CnMYB61, CnMYB63, CnMYB68, CnMYB94, CnMYB101, CnMYB150, CnMYB153, and CnMYB164. These genes showed differential expressions in diverse tissues and developmental stages of four coconut species, such as CnMYB68, CnMYB101, and CnMYB28 exhibited high expression in majority of tissues and coconut species, while CnMYB94 and CnMYB164 showed lower expression. These findings shed light on the crucial functional divergence of CnMYB genes across various coconut tissues, suggesting these genes as promising candidate genes for facilitating color development in this important crop.
Collapse
Affiliation(s)
- Jing Li
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
| | - Shukuan Guo
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
| | - Yin Min Htwe
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
| | - Xiwei Sun
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
| | - Lixia Zhou
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
| | - Fangyuan Wang
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
| | - Chunru Zeng
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
| | - Shuangyan Chen
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
- School of Tropical Crops, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Amjad Iqbal
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
- Department of Food Science & Technology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Yaodong Yang
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
| |
Collapse
|
7
|
Zhang Z, Liu Z, Wu H, Xu Z, Zhang H, Qian W, Gao W, She H. Genome-Wide Identification and Characterization of MYB Gene Family and Analysis of Its Sex-Biased Expression Pattern in Spinacia oleracea L. Int J Mol Sci 2024; 25:795. [PMID: 38255867 PMCID: PMC10815031 DOI: 10.3390/ijms25020795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/29/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
The members of the myeloblastosis (MYB) family of transcription factors (TFs) participate in a variety of biological regulatory processes in plants, such as circadian rhythm, metabolism, and flower development. However, the characterization of MYB genes across the genomes of spinach Spinacia oleracea L. has not been reported. Here, we identified 140 MYB genes in spinach and described their characteristics using bioinformatics approaches. Among the MYB genes, 54 were 1R-MYB, 80 were 2R-MYB, 5 were 3R-MYB, and 1 was 4R-MYB. Almost all MYB genes were located in the 0-30 Mb region of autosomes; however, the 20 MYB genes were enriched at both ends of the sex chromosome (chromosome 4). Based on phylogeny, conserved motifs, and the structure of genes, 2R-MYB exhibited higher conservation relative to 1R-MYB genes. Tandem duplication and collinearity of spinach MYB genes drive their evolution, enabling the functional diversification of spinach genes. Subcellular localization prediction indicated that spinach MYB genes were mainly located in the nucleus. Cis-acting element analysis confirmed that MYB genes were involved in various processes of spinach growth and development, such as circadian rhythm, cell differentiation, and reproduction through hormone synthesis. Furthermore, through the transcriptome data analysis of male and female flower organs at five different periods, ten candidate genes showed biased expression in spinach males, suggesting that these genes might be related to the development of spinach anthers. Collectively, this study provides useful information for further investigating the function of MYB TFs and novel insights into the regulation of sex determination in spinach.
Collapse
Affiliation(s)
- Zhilong Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China (W.Q.)
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Zhiyuan Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China (W.Q.)
| | - Hao Wu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China (W.Q.)
| | - Zhaosheng Xu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China (W.Q.)
| | - Helong Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China (W.Q.)
| | - Wei Qian
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China (W.Q.)
| | - Wujun Gao
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Hongbing She
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China (W.Q.)
| |
Collapse
|
8
|
Rao X, Qian Z, Xie L, Wu H, Luo Q, Zhang Q, He L, Li F. Genome-Wide Identification and Expression Pattern of MYB Family Transcription Factors in Erianthus fulvus. Genes (Basel) 2023; 14:2128. [PMID: 38136950 PMCID: PMC10743048 DOI: 10.3390/genes14122128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/19/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
MYB family genes have many functions and are widely involved in plant abiotic-stress responses. Erianthus fulvus is an important donor material for stress-resistance genes in sugarcane breeding. However, the MYB family genes in E. fulvus have not been systematically investigated. In this study, 133 EfMYB genes, including 48 Ef1R-MYB, 84 EfR2R3-MYB and 1 Ef3R-MYB genes, were identified in the E. fulvus genome. Among them, the EfR2R3-MYB genes were classified into 20 subgroups. In addition, these EfMYB genes were unevenly distributed across 10 chromosomes. A total of 4 pairs of tandemly duplicated EfMYB genes and 21 pairs of segmentally duplicated EfMYB genes were identified in the E. fulvus genome. Protein-interaction analysis predicted that 24 EfMYB proteins had potential interactions with 14 other family proteins. The EfMYB promoter mainly contains cis-acting elements related to the hormone response, stress response, and light response. Expression analysis showed that EfMYB39, EfMYB84, and EfMYB124 could be significantly induced using low-temperature stress. EfMYB30, EfMYB70, EfMYB81, and EfMYB101 responded positively to drought stress. ABA treatment significantly induced EfMYB1, EfMYB30, EfMYB39, EfMYB84, and EfMYB130. All nine genes were induced using MeJA treatment. These results provide comprehensive information on EfMYB genes and can serve as a reference for further studies of gene function.
Collapse
Affiliation(s)
- Xibing Rao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (X.R.); (Z.Q.); (L.X.); (H.W.); (Q.L.); (Q.Z.)
| | - Zhenfeng Qian
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (X.R.); (Z.Q.); (L.X.); (H.W.); (Q.L.); (Q.Z.)
| | - Linyan Xie
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (X.R.); (Z.Q.); (L.X.); (H.W.); (Q.L.); (Q.Z.)
| | - Huaying Wu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (X.R.); (Z.Q.); (L.X.); (H.W.); (Q.L.); (Q.Z.)
| | - Quan Luo
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (X.R.); (Z.Q.); (L.X.); (H.W.); (Q.L.); (Q.Z.)
| | - Qiyue Zhang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (X.R.); (Z.Q.); (L.X.); (H.W.); (Q.L.); (Q.Z.)
| | - Lilian He
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (X.R.); (Z.Q.); (L.X.); (H.W.); (Q.L.); (Q.Z.)
| | - Fusheng Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (X.R.); (Z.Q.); (L.X.); (H.W.); (Q.L.); (Q.Z.)
- The Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, Kunming 650201, China
- Sugarcane Research Institute, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|