1
|
Wang XR, Zhong H, Ma SS, Huang YH, Xu WH, Wang Y. Discovery of petroselinic acid with in vitro and in vivo antifungal activity by targeting fructose-1,6-bisphosphate aldolase. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155948. [PMID: 39153276 DOI: 10.1016/j.phymed.2024.155948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/29/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND The incidence of invasive fungal diseases (IFDs), represented by Candida albicans infection, is increasing year by year. However, clinically available antifungal drugs are very limited and encounter challenges such as limited efficacy, drug resistance, high toxicity, and exorbitant cost. Therefore, there is an urgent need for new antifungal drugs. PURPOSE This study aims to find new antifungal compounds from plants, preferably those with good activity and low toxicity, and reveal their antifungal targets. METHODS In vitro antifungal activities of compounds were investigated using broth microdilution method, spot assay, hyphal growth assay and biofilm formation assay. Synergistic effects were assessed using broth microdilution checkerboard technique. In vivo antifungal activities were evaluated using Galleria mellonella and murine candidiasis models. Cytotoxicity of compounds was investigated using Cell Counting Kit-8 (CCK-8). Discovery and validation of antifungal targets of compounds were conducted by using monoallelic knockout library of C. albicans, haploinsufficiency profiling (HIP), thermal shift assay (TSA), enzyme inhibitory effect assay, molecular docking, and in vitro and in vivo antifungal studies. RESULTS 814 plant products were screened, among which petroselinic acid (PeAc) was found as an antifungal molecule. As a rare fatty acid isolated from coriander (Coriandrum sativum), carrot (Daucus carota) and other plants of the Apiaceae family, PeAc had not previously been found to have antifungal effects. In this study, PeAc was revealed to inhibit the growth of various pathogenic fungi, exhibited synergistic effects with fluconazole (FLC), inhibited the formation of C. albicans hyphae and biofilms, and showed antifungal effects in vivo. PeAc was less toxic to mammalian cells. Fructose-1,6-bisphosphate aldolase (Fba1p) was identified as a target of PeAc by using HIP, TSA, enzyme inhibitory effect assay and molecular docking methods. PeAc exerted antifungal effects more effectively on fba1Δ/FBA1 than wild-type (WT) strain both in vitro and in vivo. CONCLUSIONS PeAc is an effective and low toxic antifungal compound. The target of PeAc is Fba1p. Fba1p is a promising target for antifungal drug development.
Collapse
Affiliation(s)
- Xin-Rong Wang
- School of Pharmacy, Second Military Medical University (Naval Medical University), Shanghai 200433, China
| | - Hua Zhong
- School of Pharmacy, Second Military Medical University (Naval Medical University), Shanghai 200433, China
| | - Shan-Shan Ma
- School of Pharmacy, Second Military Medical University (Naval Medical University), Shanghai 200433, China
| | - Ya-Hui Huang
- School of Pharmacy, Second Military Medical University (Naval Medical University), Shanghai 200433, China
| | - Wei-Heng Xu
- School of Pharmacy, Second Military Medical University (Naval Medical University), Shanghai 200433, China
| | - Yan Wang
- School of Pharmacy, Second Military Medical University (Naval Medical University), Shanghai 200433, China.
| |
Collapse
|
2
|
Pallares-Mendez R, Brassetti A, Bove AM, Simone G. Insights into the Interplay between the Urinary Microbiome and Bladder Cancer: A Comprehensive Review. J Clin Med 2024; 13:4927. [PMID: 39201069 PMCID: PMC11355659 DOI: 10.3390/jcm13164927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/11/2024] [Accepted: 08/18/2024] [Indexed: 09/02/2024] Open
Abstract
New insights in the urinary microbiome have led to a better understanding being built of the shifts in bacterial representations from health to disease; these hold promise as markers for diagnosis and therapeutic responses. Although several efforts have been made to identify a "core urinary microbiome", different fingerprints have been identified in men and women that shift with age. The main bacterial groups overall include Firmicutes, Actinobacteria, Fusobacteria, and Bacteroidetes. Although patients with bladder cancer have a microbiome that is similar to that of healthy individuals, differences have been observed at the species level with Fusobacterium nucleatum and Ralstonia, and at the genus level with Cutibacterium. Different bacterial representations may influence extracellular matrix composition, affecting tumor metastatic spreading and tumorigenic metalloproteinase expression. Furthermore, gene expression affecting targets of immune therapy, such as PD-L1, has been associated with changes in bacterial representations and therapeutic response to BCG. This comprehensive review aims to examine the influence of the urinary microbiome in bladder cancer.
Collapse
Affiliation(s)
| | - Aldo Brassetti
- Department of Urology, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53, 00128 Rome, Italy; (R.P.-M.)
| | | | | |
Collapse
|
3
|
Golshani M, Taylor JA, Woolbright BL. Understanding the microbiome as a mediator of bladder cancer progression and therapeutic response. Urol Oncol 2024:S1078-1439(24)00541-6. [PMID: 39117491 DOI: 10.1016/j.urolonc.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/17/2024] [Accepted: 07/02/2024] [Indexed: 08/10/2024]
Abstract
Bladder cancer (BCa) remains a significant source of morbidity and mortality. BCa is one of the most expensive tumors to treat, in part because of a lack of nonsurgical options. The recent advent of immunotherapy, alone or in combination with other compounds, has improved therapeutic options. Resistance to immunotherapy remains common, and many patients do not have durable response. Recent advances indicate immunotherapy efficacy may be tied in part to the endogenous bacteria present in our body, more commonly referred to as the microbiome. Laboratory and clinical data now support the idea that a healthy microbiome is critical to effective response to immunotherapy. At the same time, pathogenic interactions between the microbiome and immune cells can also serve to drive formation of tumors, increasing the complexity of these interactions. Given the rising importance of immunotherapy in BCa, understanding how we might be able to alter the microbiome to improve therapeutic efficacy offers a novel route to improved patient care. The goal of this review is to examine our current understanding of microbial interactions with the immune system and cancer with an emphasis on BCa. We will further attempt to define both current gaps in knowledge and future directions that may yield beneficial results to the field.
Collapse
Affiliation(s)
- Mahgol Golshani
- School of Medicine, University of Kansas Medical Center, Kansas City, KS
| | - John A Taylor
- Department of Urology, University of Kansas Medical Center, Kansas City, KS; Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS
| | | |
Collapse
|
4
|
Wu B, Quan C, He Y, Matsika J, Huang J, Liu B, Chen J. Targeting gut and intratumoral microbiota: a novel strategy to improve therapy resistance in cancer with a focus on urologic tumors. Expert Opin Biol Ther 2024; 24:747-759. [PMID: 38910461 DOI: 10.1080/14712598.2024.2371543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/19/2024] [Indexed: 06/25/2024]
Abstract
INTRODUCTION Growing attention has been drawn to urologic tumors due to their rising incidence and suboptimal clinical treatment outcomes. Cancer therapy resistance poses a significant challenge in clinical oncology, limiting the efficacy of conventional treatments and contributing to disease progression. Recent research has unveiled a complex interplay between the host microbiota and cancer cells, highlighting the role of the microbiota in modulating therapeutic responses. AREAS COVERED We used the PubMed and Web of Science search engines to identify key publications in the fields of tumor progression and urologic tumor treatment, specifically focusing on the role of the microbiota. In this review, we summarize the current literature on how microbiota influence the tumor microenvironment and anti-tumor immunity, as well as their impact on treatments for urinary system malignancies, highlighting promising future applications. EXPERT OPINION We explore how the composition and function of the gut microbiota influence the tumor microenvironment and immune response, ultimately impacting treatment outcomes. Additionally, we discuss emerging strategies targeting the microbiota to enhance therapeutic efficacy and overcome resistance. The application of antibiotics, fecal microbiota transplantation, and oncolytic bacteria has improved tumor treatment outcomes, which provides a novel insight into developing therapeutic strategies for urologic cancer.
Collapse
Affiliation(s)
- Bingquan Wu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chao Quan
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yunbo He
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juliet Matsika
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jinliang Huang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bolong Liu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Andrology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jinbo Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
5
|
Zhang Z, Qin X, Yi T, Li Y, Li C, Zeng M, Luo H, Lin X, Xie J, Xia B, Lin Y, Lin L. Gubra Amylin-NASH Diet Induced Nonalcoholic Fatty Liver Disease Associated with Histological Damage, Oxidative Stress, Immune Disorders, Gut Microbiota, and Its Metabolic Dysbiosis in Colon. Mol Nutr Food Res 2024; 68:e2300845. [PMID: 38966885 DOI: 10.1002/mnfr.202300845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/02/2024] [Indexed: 07/06/2024]
Abstract
SCOPE The overall changes of colon under nonalcoholic fatty liver disease (NAFLD) remain to be further elucidated. METHODS AND RESULTS This study establishes a mouse model of NAFLD through a long-term Gubra Amylin-nonalcoholic steatohepatitis (NASH) diet (GAN diet). The results show that GAN diet significantly induces weight gain, liver steatosis, colonic oxidative stress, and lipid accumulation in blood, liver, and adipose tissue in mice. GAN feeding reduces the diversity of the gut microbiota, alters the composition and abundance of the gut microbiota, and leads to an increase in microbial metabolites such as long-chain fatty acids (LCFAs) and secondary bile acids (BAs), as well as a decrease in short-chain fatty acids (SCFAs). The RNA-seq and immunofluorescence results reveal that the GAN diet alters the expression of proteins and their coding genes involved in oxidative stress, immune response, and barrier function in colon tissue, such as lipocalin-2 (Lcn2, p < 0.05), heme oxygenase-1 (HO-1/Hmox1, p < 0.05), interferon-gamma (IFN-γ), and claudin-3/7. In addition, correlation analysis indicates a strong correlation between the changes in gut microbiota and lipid biomarkers. Additionally, the expression of immune related genes in colon tissue is related to the LCFAs produced by microbial metabolism. CONCLUSION GAN-induced NAFLD is related to microbiota and its metabolic imbalance, oxidative stress, immune disorders, and impaired barrier function in colon.
Collapse
Affiliation(s)
- Zhimin Zhang
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Xinyi Qin
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Tao Yi
- College of Xiangxing, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yamei Li
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Chengfeng Li
- College of Xiangxing, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Min Zeng
- College of Xiangxing, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Hongshan Luo
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Xiulian Lin
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Jingchen Xie
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Bohou Xia
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yan Lin
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Limei Lin
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, China
| |
Collapse
|
6
|
Zou X, Huang H, Tan Y. Genetically determined metabolites in allergic conjunctivitis: A Mendelian randomization study. World Allergy Organ J 2024; 17:100894. [PMID: 38590722 PMCID: PMC10999487 DOI: 10.1016/j.waojou.2024.100894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/05/2024] [Accepted: 03/13/2024] [Indexed: 04/10/2024] Open
Abstract
Background Allergic conjunctivitis (AC) afflicts a significant portion of the global populace. Yet, its metabolic foundations remain largely unexplored. Methods We applied Mendelian Randomization (MR) and Linkage Disequilibrium Score Regression (LDSC) to scrutinize a cohort comprising 20 958 AC cases and 356 319 controls. Data were amalgamated from the metabolomics GWAS server and the FinnGen project, under strict quality control protocols. Results Using two-sample MR analysis, 486 blood metabolites were investigated in relation to AC. The IVW approach highlighted 18 metabolites as closely tied to AC risk; of these, 16 retained significance post sensitivity assessments for heterogeneity and horizontal pleiotropy. LDSC analysis, adopted to bolster our findings and negate confounders from shared genetic markers, revealed 8 metabolites with marked heritability, including: palmitate (OR = 0.614), 3-methoxytyrosine (OR = 0.657), carnitine (OR = 1.368), threonate (OR = 0.828), N-[3-(2-Oxopyrrolidin-1-yl)propyl]acetamide (OR = 1.257), metoprolol acid metabolite (OR = 0.982), oleoylcarnitine (OR = 0.635), and 2-palmitoylglycerophosphocholine (OR = 1.351). Conclusion AC is precipitated by ocular responses to environmental allergens. Our study unveils a causal link between 8 blood metabolites and AC. This insight accentuates the role of metabolites in AC onset, suggesting novel avenues for its early prediction, targeted prevention, and tailored therapeutic interventions.
Collapse
Affiliation(s)
- Xuyan Zou
- Changsha Aier Eye Hospital, Aier Eye Hospital Group, Changsha, 410000, China
| | - Haiyan Huang
- Clinical Medical College of Guizhou Medical University, Guiyang, 550004, China
| | - Yao Tan
- Department of Ophthalmology, The Third Xiangya Hospital, Central South University, Changsha, 410000, China
- Postdoctoral Station of Clinical Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410000, China
| |
Collapse
|
7
|
Chorbińska J, Krajewski W, Nowak Ł, Bardowska K, Żebrowska-Różańska P, Łaczmański Ł, Pacyga-Prus K, Górska S, Małkiewicz B, Szydełko T. Is the Urinary and Gut Microbiome Associated With Bladder Cancer? Clin Med Insights Oncol 2023; 17:11795549231206796. [PMID: 38023290 PMCID: PMC10644734 DOI: 10.1177/11795549231206796] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/24/2023] [Indexed: 12/01/2023] Open
Abstract
Background Microbiome dysbiosis plays a role in the pathogenesis of many urological diseases, including bladder cancer (BC). The aim of the study was to compare the urinary and gut microbiota of patients with BC with a healthy control (HC) group. Methods The study group included patients hospitalized in 2020 to 2021 with diagnosed BC and HC. Prior to the transurethral resection of bladder tumor, patients collected their urine and stool which was then subjected to 16S rRNA gene sequencing. Results Overall, 25 patients were enrolled in the study: 18 in the BC group and 7 in the HC group. Analysis of the urine and stool microbiome showed no statistically significant differences between patients with BC and HC in alpha diversity, beta diversity, and difference in taxa relative abundance. Detailed analysis of urine and stool microbiome depending on patient- and tumor-related characteristics also showed no statistically significant differences in alpha diversity and beta diversity. Differences in abundance (ANCOM) were noted in both types of samples in patients with BC. In the urine test, genus Lactobacillus was more common in patients with a positive history of Bacillus Calmette-Guérin (BCG) therapy, while genus Howardella and the strain Streptococcus anginosus were more common in women. In stool samples, abundance of phylum Desulfobacterota was most abundant in Grade G1 and least in G2. Class Alphaproteobacteria, order Rhodospirillales, order Flavobacteriales, and family Flavobacteriaceae were more common in women. Conclusions The microbiome of urine and stool of patients with BC does not differ significantly from that of HC; however, its composition in patients with BC varies according to the patient's sex.
Collapse
Affiliation(s)
- Joanna Chorbińska
- Department of Minimally Invasive and Robotic Urology, University Center of Excellence in Urology, Wrocław Medical University, Wrocław, Poland
| | - Wojciech Krajewski
- Department of Minimally Invasive and Robotic Urology, University Center of Excellence in Urology, Wrocław Medical University, Wrocław, Poland
| | - Łukasz Nowak
- Department of Minimally Invasive and Robotic Urology, University Center of Excellence in Urology, Wrocław Medical University, Wrocław, Poland
| | - Klaudia Bardowska
- Department of Nephrology and Transplantation Medicine, Wrocław Medical University, Wrocław, Poland
| | - Paulina Żebrowska-Różańska
- Laboratory of Genomics & Bioinformatics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Łukasz Łaczmański
- Laboratory of Genomics & Bioinformatics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Katarzyna Pacyga-Prus
- Laboratory of Microbiome Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Sabina Górska
- Laboratory of Microbiome Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Bartosz Małkiewicz
- Department of Minimally Invasive and Robotic Urology, University Center of Excellence in Urology, Wrocław Medical University, Wrocław, Poland
| | - Tomasz Szydełko
- University Center of Excellence in Urology, Wrocław Medical University, Wrocław, Poland
| |
Collapse
|
8
|
Yin Z, Liu B, Feng S, He Y, Tang C, Chen P, Wang X, Wang K. A Large Genetic Causal Analysis of the Gut Microbiota and Urological Cancers: A Bidirectional Mendelian Randomization Study. Nutrients 2023; 15:4086. [PMID: 37764869 PMCID: PMC10537765 DOI: 10.3390/nu15184086] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/08/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Several observational studies and clinical trials have shown that the gut microbiota is associated with urological cancers. However, the causal relationship between gut microbiota and urological cancers remains to be elucidated due to many confounding factors. METHODS In this study, we used two thresholds to identify gut microbiota GWAS from the MiBioGen consortium and obtained data for five urological cancers from the UK biobank and Finngen consortium, respectively. We then performed a two-sample Mendelian randomization (MR) analysis with Wald ratio or inverse variance weighted as the main method. We also performed comprehensive sensitivity analyses to verify the robustness of the results. In addition, we performed a reverse MR analysis to examine the direction of causality. RESULTS Our study found that family Rikenellaceae, genus Allisonella, genus Lachnospiraceae UCG001, genus Oscillibacter, genus Eubacterium coprostanoligenes group, genus Eubacterium ruminantium group, genus Ruminococcaceae UCG013, and genus Senegalimassilia were related to bladder cancer; genus Ruminococcus torques group, genus Oscillibacter, genus Barnesiella, genus Butyricicoccus, and genus Ruminococcaceae UCG005 were related to prostate cancer; class Alphaproteobacteria, class Bacilli, family Family XI, genus Coprococcus2, genus Intestinimonas, genus Lachnoclostridium, genus Lactococcus, genus Ruminococcus torques group, and genus Eubacterium brachy group were related to renal cell cancer; family Clostridiaceae 1, family Christensenellaceae, genus Eubacterium coprostanoligenes group, genus Clostridium sensu stricto 1, and genus Eubacterium eligens group were related to renal pelvis cancer; family Peptostreptococcaceae, genus Romboutsia, and genus Subdoligranulum were related to testicular cancer. Comprehensive sensitivity analyses proved that our results were reliable. CONCLUSIONS Our study confirms the role of specific gut microbial taxa on urological cancers, explores the mechanism of gut microbiota on urological cancers from a macroscopic level, provides potential targets for the screening and treatment of urological cancers, and is dedicated to providing new ideas for clinical research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kunjie Wang
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu 610041, China; (Z.Y.); (S.F.); (Y.H.); (C.T.); (P.C.)
| |
Collapse
|
9
|
Mingdong W, Xiang G, Yongjun Q, Mingshuai W, Hao P. Causal associations between gut microbiota and urological tumors: a two-sample mendelian randomization study. BMC Cancer 2023; 23:854. [PMID: 37697271 PMCID: PMC10496293 DOI: 10.1186/s12885-023-11383-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 09/06/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Dysbiosis of gut microbiota has been linked to numerous diseases, including cancer. The unique role of gut microbiota in urological tumors is gaining prominence. However, it is still controversial whether the dysbiosis of gut microbiota should be one of the etiological factors of bladder cancer (BCa), prostate cancer (PCa) or kidney cancer (KCa). MATERIALS AND METHODS The microbiome genome-wide association study (GWAS) from the MiBioGen consortium (18,340 samples of 24 population-based cohorts) was utilized as the exposure data. Additionally, outcomes data (951 BCa cases and 307,092 controls; 1,631 KCa cases and 238,678 controls; 79,148 PCa cases and 61,106 controls) were extracted from the GWAS of the FinnGen and PRACTICAL consortia. To detect the potential causative bacterial traits for BCa, PCa, and KCa, a two-sample Mendelian randomization (MR) analysis was performed, employing the inverse-variance weighted or Wald ratio method. Sensitivity analyses were subsequently conducted to explore the robustness of the primary results. Finally, the reverse MR analysis was undertaken to mitigate the reverse causation. RESULTS This study suggested that Bifidobacterium (p = 0.030), Actinobacteria (p = 0.037 for phylum, 0.041 for class), and Ruminococcustorques group (p = 0.018), exhibited an association with an increased risk of BCa using either the inverse-variance weighted or Wald ratio method. By utilizing the Wald ratio method, Allisonella (p = 0.004, p = 0.038) was associated with a decreased risk of BCa and PCa, respectively. Furthermore, Ruminococcustorques group (p = 0.028) and Erysipelatoclostridium (p = 0.048) were causally linked to an elevated risk of KCa. CONCLUSIONS This MR study supports that genetically predicted gut microbiota is causally related to BCa, PCa and KCa. Additionally, distinct bacterial traits are identified in relation to each tumor type.
Collapse
Affiliation(s)
- Wang Mingdong
- Department of Urology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Gao Xiang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Quan Yongjun
- Department of Urology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Wang Mingshuai
- Department of Urology, Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Ping Hao
- Department of Urology, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|