1
|
Zhang Z, Zhang G, Zhang X, Zhang H, Xie J, Zeng R, Guo B, Huang L. The complete chloroplast genome sequence and phylogenetic relationship analysis of Eomecon chionantha, one species unique to China. JOURNAL OF PLANT RESEARCH 2024; 137:575-587. [PMID: 38652407 DOI: 10.1007/s10265-024-01539-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 02/29/2024] [Indexed: 04/25/2024]
Abstract
Eomecon chionantha Hance, an endemic species in China, has a long medical history in Chinese ethnic minority medicine and is known for its anti-inflammatory and analgesic effects. However, studies of E. chionantha are lacking. In this study, we investigated the characteristics of the E. chionantha chloroplast genome and determined the taxonomic position of E. chionantha in Papaveraceae via phylogenetic analysis. In addition, we determined molecular markers to identify E. chionantha at the molecular level by comparing the chloroplast genomes of E. chionantha and its closely related species. The complete chloroplast genomic information indicated that E. chionantha chloroplast DNA (178,808 bp) contains 99 protein-coding genes, 8 rRNAs, and 37 tRNAs. Meanwhile, we were able to identify a total of 54 simple sequence repeats through our analysis. Our findings from the phylogenetic analysis suggest that E. chionantha shares a close relationship with four distinct species, namely Macleaya microcarpa, Coreanomecon hylomeconoides, Hylomecon japonica, and Chelidonium majus. Additionally, using the Kimura two-parameter model, we successfully identified five hypervariable regions (ycf4-cemA, ycf3-trnS-GGA, trnC-GCA-petN, rpl32-trnL-UAG, and psbI-trnS-UGA). To the best of our knowledge, this is the first report of the complete chloroplast genome of E. chionantha, providing a scientific reference for further understanding of E. chionantha from the perspective of the chloroplast genome and establishing a solid foundation for the future identification, taxonomic determination and evolutionary analysis of this species.
Collapse
Affiliation(s)
- Zhi Zhang
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Guoshuai Zhang
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Xinke Zhang
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Huihui Zhang
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Junbo Xie
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Rui Zeng
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, China
| | - Baolin Guo
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China.
| | - Linfang Huang
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
2
|
Javaid N, Ramzan M, Jabeen S, Du Y, Anwar M, Xiqiang S. The chloroplast genome of Chrozophora sabulosa Kar. & Kir. and its exploration in the evolutionary position uncertainty of genus Chrozophora. BMC Genomics 2024; 25:597. [PMID: 38877411 PMCID: PMC11177538 DOI: 10.1186/s12864-024-10366-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 04/29/2024] [Indexed: 06/16/2024] Open
Abstract
Chrozophora sabulosa Kar. & Kir. is a biennial herbaceous plant that belongs to the Euphorbiaceae family and has medicinal properties. This research aimed to identify the genetic characteristics and phylogenetic position of the Chrozophora genus within the Euphorbiaceae family. The evolutionary position of the Chrozophora genus was previously unknown due to insufficient research. Therefore, to determine the evolutionary link between C. sabulosa and other related species, we conducted a study using the NGS Illumina platform to sequence the C. sabulosa chloroplast (cp.) genome. The study results showed that the genome was 156,488 bp in length. It had a quadripartite structure consisting of two inverted repeats (IRb and IRa) of 24,649-bp, separated by an 87,696-bp LSC region and a 19,494-bp SSC region. The CP genome contained 113 unique genes, including four rRNA genes, 30 tRNA genes, and 79 CDS genes. In the second copy of the inverted repeat, there were 18 duplicated genes. The C. sabulosa lacks the petD, petB, rpl2, and rps16 intron. The analysis of simple sequence repeats (SSRs) revealed 93 SSR loci of 22 types and 78 oligonucleotide repeats of four kinds. The phylogenetic investigation showed that the Chrozophora genus evolved paraphyletically from other members of the Euphorbiaceae family. To support the phylogenetic findings, we selected species from the Euphorbiaceae and Phyllanthaceae families to compare with C. sabulosa for Ks and Ka substitution rates, InDels investigation, IR contraction and expansion, and SNPs analysis. The results of these comparative studies align with the phylogenetic findings. We identified six highly polymorphic regions shared by both families, which could be used as molecular identifiers for the Chrozophora genus (rpl33-rps18, rps18-rpl20, rps15-ycf1, ndhG-ndhI, psaI-ycf4, petA-psbJ). The cp. genome sequence of C. sabulosa reveals the evolution of plastid sequences in Chrozophora species. This is the first time the cp. genome of a Chrozophora genus has been sequenced, serving as a foundation for future sequencing of other species within the Chrozophoreae tribe and facilitating in-depth taxonomic research. The results of this research will also aid in identifying new Chrozophora species.
Collapse
Affiliation(s)
- Nida Javaid
- The Islamia University, Bahawalpur, Pakistan
| | | | | | - Yanjun Du
- School of Tropical Agriculture and Forestry (School of Agriculture and Rural Affairs,School of Rural Revitalization), Hainan University, Haikou, P.R. China
| | - Muhammad Anwar
- School of Tropical Agriculture and Forestry (School of Agriculture and Rural Affairs,School of Rural Revitalization), Hainan University, Haikou, P.R. China.
- Key Laboratory of Genetic and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, Hainan University, Haikou, P.R. China.
- , Haikou, P.R. China.
| | - Song Xiqiang
- Key Laboratory of Genetic and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, Hainan University, Haikou, P.R. China.
| |
Collapse
|
3
|
Wu T, Yin J, Wu X, Li W, Bie S, Zhao J, Song X, Yu H, Li Z. Discrimination and characterization of volatile organic compounds in Lonicerae Japonicae flos and Lonicerae flos using multivariate statistics combined with headspace gas chromatography-ion mobility spectrometry and headspace solid-phase microextraction gas chromatography-mass spectrometry techniques. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9693. [PMID: 38356085 DOI: 10.1002/rcm.9693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 02/16/2024]
Abstract
RATIONALE The volatile organic compounds (VOCs) of Lonicerae Japonicae flos (LJF) and Lonicera flos (LF) play a pivotal role in determining their sensory characteristics, medicinal properties, and subsequent impact on market pricing and consumer preferences. However, the differences and specificity of these VOCs remain obscure. Hence, it is crucial to conduct a comprehensive characterization of the VOCs in LJF and LF and pinpoint their potential differential VOCs. METHODS In this study, headspace gas chromatography-ion mobility spectrometry (HS-GC/IMS) and headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC/MS) were employed to comprehensively investigate the compositional characteristics and distinctions in VOCs between LJF and LF. Multivariate statistical analysis was used to identify candidate differential VOCs of LJF and LF samples. RESULTS A total of 54 and 88 VOCs were identified using HS-GC/IMS and HS-SPME-GC/MS analysis, respectively. Primary VOCs detected in LJF include leaf alcohol, (E)-2-hexen-1-ol dimer, 2-octyn-1-ol, and (E)-3-hexen-1-ol. Key VOCs prevalent in LF encompass farnesol, heptanoic acid, octanoic acid, and valeric acid. Multivariate statistical analysis indicates that compounds such as phenethyl alcohol and leaf alcohol were selected as potential VOCs for distinguishing between LJF and LF. CONCLUSION This research conducted a comprehensive analysis of the fundamental volatile components in both LJF and LF. It subsequently elucidated the distinctions and specificities within their respective VOC profiles. And this study enables differentiation between LJF and LF through the analysis of VOCs, offering valuable insights for enhancing the quality control of both LJF and LF.
Collapse
Affiliation(s)
- Tong Wu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiaxin Yin
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinlong Wu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wei Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Songtao Bie
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jing Zhao
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinbo Song
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Heshui Yu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zheng Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|