1
|
Wang WZ, Liu C, Luo JQ, Lei LJ, Chen MH, Zhang YY, Sheng R, Li YN, Wang L, Jiang XH, Xiao TM, Zhang YH, Li SW, Wu YX, Xu Y, Xu YN, Si SY. A novel small-molecule PCSK9 inhibitor E28362 ameliorates hyperlipidemia and atherosclerosis. Acta Pharmacol Sin 2024; 45:2119-2133. [PMID: 38811775 PMCID: PMC11420243 DOI: 10.1038/s41401-024-01305-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 04/30/2024] [Indexed: 05/31/2024] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) binds to the epidermal growth factor precursor homologous domain A (EGF-A) of low-density lipoprotein receptor (LDLR) in the liver and triggers the degradation of LDLR via the lysosomal pathway, consequently leading to an elevation in plasma LDL-C levels. Inhibiting PCSK9 prolongs the lifespan of LDLR and maintains cholesterol homeostasis in the body. Thus, PCSK9 is an innovative pharmacological target for treating hypercholesterolemia and atherosclerosis. In this study, we discovered that E28362 was a novel small-molecule PCSK9 inhibitor by conducting a virtual screening of a library containing 40,000 compounds. E28362 (5, 10, 20 μM) dose-dependently increased the protein levels of LDLR in both total protein and the membrane fraction in both HepG2 and AML12 cells, and enhanced the uptake of DiI-LDL in AML12 cells. MTT assay showed that E28362 up to 80 μM had no obvious toxicity in HepG2, AML12, and HEK293a cells. The effects of E28362 on hyperlipidemia and atherosclerosis were evaluated in three different animal models. In high-fat diet-fed golden hamsters, administration of E28362 (6.7, 20, 60 mg·kg-1·d-1, i.g.) for 4 weeks significantly reduced plasma total cholesterol (TC), triglyceride (TG), low-density lipoprotein-cholesterol (LDL-C) and PCSK9 levels, and reduced liver TC and TG contents. In Western diet-fed ApoE-/- mice (20, 60 mg·kg-1·d-1, i.g.) and human PCSK9 D374Y overexpression mice (60 mg·kg-1·d-1, i.g.), administration of E28362 for 12 weeks significantly decreased plasma LDL-C levels and the area of atherosclerotic lesions in en face aortas and aortic roots. Moreover, E28362 significantly increased the protein expression level of LDLR in the liver. We revealed that E28362 selectively bound to PCSK9 in HepG2 and AML12 cells, blocked the interaction between LDLR and PCSK9, and induced the degradation of PCSK9 through the ubiquitin-proteasome pathway, which finally resulted in increased LDLR protein levels. In conclusion, E28362 can block the interaction between PCSK9 and LDLR, induce the degradation of PCSK9, increase LDLR protein levels, and alleviate hyperlipidemia and atherosclerosis in three distinct animal models, suggesting that E28362 is a promising lead compound for the treatment of hyperlipidemia and atherosclerosis.
Collapse
Affiliation(s)
- Wei-Zhi Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, 100050, China
| | - Chao Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, 100050, China.
| | - Jin-Que Luo
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, 100050, China
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, 410219, China
| | - Li-Juan Lei
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, 100050, China
| | - Ming-Hua Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, 100050, China
- Xinjiang Key Laboratory of Uighur Medicine, Xinjiang Institute of Materia Medica, Urumqi, 830002, China
| | - Yu-Yan Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, 100050, China
| | - Ren Sheng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, 100050, China
| | - Yi-Ning Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, 100050, China
| | - Li Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, 100050, China
| | - Xin-Hai Jiang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, 100050, China
| | - Tong-Mei Xiao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, 100050, China
| | - Yu-Hao Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, 100050, China
| | - Shun-Wang Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, 100050, China
| | - Ye-Xiang Wu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, 100050, China
| | - Yang Xu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, 100050, China
| | - Yan-Ni Xu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, 100050, China.
| | - Shu-Yi Si
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, 100050, China.
| |
Collapse
|
2
|
Mareboina M, Deng E, Mouratidis I, Yee NS, Pitteloud N, Georgakopoulos-Soares I, Chartoumpekis DV. A review on cell-free RNA profiling: Insights into metabolic diseases and predictive value for bariatric surgery outcomes. Mol Metab 2024; 87:101987. [PMID: 38977131 PMCID: PMC11305000 DOI: 10.1016/j.molmet.2024.101987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/25/2024] [Accepted: 07/04/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND The advent of liquid biopsies presents a novel, minimally invasive methodology for the detection of disease biomarkers, offering a significant advantage over traditional biopsy techniques. Particularly, the analysis of cell-free RNA (cfRNA) has garnered interest due to its dynamic expression profiles and the capability to study various RNA species, including messenger RNA (mRNA) and long non-coding RNA (lncRNA). These attributes position cfRNA as a versatile biomarker with broad potential applications in clinical research and diagnostics. SCOPE OF REVIEW This review delves into the utility of cfRNA biomarkers as prognostic tools for obesity-related comorbidities, such as diabetes, dyslipidemia, and non-alcoholic fatty liver disease. MAJOR CONCLUSIONS We evaluate the efficacy of cfRNA in forecasting metabolic outcomes associated with obesity and in identifying patients likely to experience favorable clinical outcomes following bariatric surgery. Additionally, this review synthesizes evidence from studies examining circulating cfRNA across different physiological and pathological states, with a focus on its role in diabetes, including disease progression monitoring and treatment efficacy assessment. Through this exploration, we underscore the emerging relevance of cfRNA signatures in the context of obesity and its comorbidities, setting the stage for future investigative efforts in this rapidly advancing domain.
Collapse
Affiliation(s)
- Manvita Mareboina
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Elen Deng
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Ioannis Mouratidis
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Nelson S Yee
- Division of Hematology-Oncology, Department of Medicine, Penn State Health Milton S. Hershey Medical Center, Next-Generation Therapies Program, Penn State Cancer Institute, Hershey, PA, USA
| | - Nelly Pitteloud
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and University of Lausanne, CH-1011, Lausanne, Switzerland
| | - Ilias Georgakopoulos-Soares
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA.
| | - Dionysios V Chartoumpekis
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and University of Lausanne, CH-1011, Lausanne, Switzerland.
| |
Collapse
|
3
|
Villar SR, Herreros-Cabello A, Callejas-Hernández F, Maza MC, Del Moral-Salmoral J, Gómez-Montes M, Rodríguez-Angulo HO, Carrillo I, Górgolas M, Bosch-Nicolau P, Molina I, Pérez-Molina JA, Monge-Maillo B, Bottasso OA, Beloscar J, Pérez AR, Fresno M, Gironès N. Discovery of circulating miRNAs as biomarkers of chronic Chagas heart disease via a small RNA-Seq approach. Sci Rep 2024; 14:1187. [PMID: 38216639 PMCID: PMC10786931 DOI: 10.1038/s41598-024-51487-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/05/2024] [Indexed: 01/14/2024] Open
Abstract
Chagas disease affects approximately 7 million people worldwide in Latin America and is a neglected tropical disease. Twenty to thirty percent of chronically infected patients develop chronic Chagas cardiomyopathy decades after acute infection. Identifying biomarkers of Chagas disease progression is necessary to develop better therapeutic and preventive strategies. Circulating microRNAs are increasingly reliable biomarkers of disease and therapeutic targets. To identify new circulating microRNAs for Chagas disease, we performed exploratory small RNA sequencing from the plasma of patients and performed de novo miRNA prediction, identifying potential new microRNAs. The levels of the new microRNAs temporarily named miR-Contig-1519 and miR-Contig-3244 and microRNAs that are biomarkers for nonchagasic cardiomyopathies, such as miR-148a-3p and miR-224-5p, were validated by quantitative reverse transcription. We found a specific circulating microRNA signature defined by low miR-Contig-3244, miR-Contig-1519, and miR-148a-3 levels but high miR-224-5p levels for patients with chronic Chagas disease. Finally, we predicted in silico that these altered circulating microRNAs could affect the expression of target genes involved in different cellular pathways and biological processes, which we will explore in the future.
Collapse
Affiliation(s)
- Silvina R Villar
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER-CONICET-UNR), Rosario, Argentina
| | - Alfonso Herreros-Cabello
- Departamento de Biología Molecular, Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Francisco Callejas-Hernández
- Departamento de Biología Molecular, Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - María C Maza
- Departamento de Biología Molecular, Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Javier Del Moral-Salmoral
- Departamento de Biología Molecular, Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Mario Gómez-Montes
- Departamento de Biología Molecular, Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | | | - Irene Carrillo
- Division of Infectious Diseases, IIS-Fundación Jiménez Díaz, Madrid, Spain
- Department of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Miguel Górgolas
- Division of Infectious Diseases, IIS-Fundación Jiménez Díaz, Madrid, Spain
- Department of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Pau Bosch-Nicolau
- International Health Unit Vall d'Hebron-Drassanes, Infectious Diseases Department, Vall d'Hebron University Hospital, PROSICS Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Israel Molina
- International Health Unit Vall d'Hebron-Drassanes, Infectious Diseases Department, Vall d'Hebron University Hospital, PROSICS Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - José A Pérez-Molina
- National Referral Unit for Tropical Diseases, Infectious Diseases Department, Ramón y Cajal University Hospital, IRICYS, Madrid, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Begoña Monge-Maillo
- National Referral Unit for Tropical Diseases, Infectious Diseases Department, Ramón y Cajal University Hospital, IRICYS, Madrid, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Oscar A Bottasso
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER-CONICET-UNR), Rosario, Argentina
| | - Juan Beloscar
- Cátedra y Servicio de Cardiología, Sección Chagas, Hospital Provincial del Centenario, Rosario, Argentina
| | - Ana R Pérez
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER-CONICET-UNR), Rosario, Argentina
| | - Manuel Fresno
- Departamento de Biología Molecular, Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
- Instituto Universitario de Biología Molecular, Universidad Autónoma de Madrid (IUBM-UAM), Madrid, Spain
- Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa, Madrid, Spain
| | - Núria Gironès
- Departamento de Biología Molecular, Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain.
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain.
- Instituto Universitario de Biología Molecular, Universidad Autónoma de Madrid (IUBM-UAM), Madrid, Spain.
- Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa, Madrid, Spain.
| |
Collapse
|
4
|
Martino E, D'Onofrio N, Balestrieri A, Mele L, Sardu C, Marfella R, Campanile G, Balestrieri ML. MiR-15b-5p and PCSK9 inhibition reduces lipopolysaccharide-induced endothelial dysfunction by targeting SIRT4. Cell Mol Biol Lett 2023; 28:66. [PMID: 37587410 PMCID: PMC10428548 DOI: 10.1186/s11658-023-00482-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/01/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Endothelial dysfunction and deregulated microRNAs (miRNAs) participate in the development of sepsis and are associated with septic organ failure and death. Here, we explored the role of miR-15b-5p on inflammatory pathways in lipopolysaccharide (LPS)-treated human endothelial cells, HUVEC and TeloHAEC. METHODS The miR-15b-5p levels were evaluated in LPS-stimulated HUVEC and TeloHAEC cells by quantitative real-time PCR (qRT-PCR). Functional experiments using cell counting kit-8 (CCK-8), transfection with antagomir, and enzyme-linked immunosorbent assays (ELISA) were conducted, along with investigation of pyroptosis, apoptosis, autophagy, and mitochondrial reactive oxygen species (ROS) by cytofluorometric analysis and verified by fluorescence microscopy. Sirtuin 4 (SIRT4) levels were detected by ELISA and immunoblotting, while proprotein convertase subtilisin-kexin type 9 (PCSK9) expression was determined by flow cytometry (FACS) and immunofluorescence analyses. Dual-luciferase reporter evaluation was performed to confirm the miR-15b-5p-SIRT4 interaction. RESULTS The results showed a correlation among miR-15b-5p, PCSK9, and SIRT4 levels in septic HUVEC and TeloHAEC. Inhibition of miR-15b-5p upregulated SIRT4 content, alleviated sepsis-related inflammatory pathways, attenuated mitochondrial stress, and prevented apoptosis, pyroptosis, and autophagic mechanisms. Finally, a PCSK9 inhibitor (i-PCSK9) was used to analyze the involvement of PCSK9 in septic endothelial injury. i-PCSK9 treatment increased SIRT4 protein levels, opposed the septic inflammatory cascade leading to pyroptosis and autophagy, and strengthened the protective role of miR-15b-5p inhibition. Increased luciferase signal validated the miR-15b-5p-SIRT4 binding. CONCLUSIONS Our in vitro findings suggested the miR-15b-5p-SIRT4 axis as a suitable target for LPS-induced inflammatory pathways occurring in sepsis, and provide additional knowledge on the beneficial effect of i-PCSK9 in preventing vascular damage by targeting SIRT4.
Collapse
Affiliation(s)
- Elisa Martino
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138, Naples, Italy
| | - Nunzia D'Onofrio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138, Naples, Italy.
| | - Anna Balestrieri
- Food Safety Department, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055, Portici, Italy
| | - Luigi Mele
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Via Luciano Armanni 5, 80138, Naples, Italy
| | - Celestino Sardu
- Department of Advanced Clinical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Miraglia, 80138, Naples, Italy
| | - Raffaele Marfella
- Department of Advanced Clinical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Miraglia, 80138, Naples, Italy
| | - Giuseppe Campanile
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via F. Delpino 1, 80137, Naples, Italy
| | - Maria Luisa Balestrieri
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138, Naples, Italy
| |
Collapse
|