1
|
Versoza CJ, Ehmke EE, Jensen JD, Pfeifer SP. Characterizing the rates and patterns of de novo germline mutations in the aye-aye ( Daubentonia madagascariensis). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.08.622690. [PMID: 39605388 PMCID: PMC11601268 DOI: 10.1101/2024.11.08.622690] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Given the many levels of biological variation in mutation rates observed to date in primates - spanning from species to individuals to genomic regions - future steps in our understanding of mutation rate evolution will be aided by both a greater breadth of species coverage across the primate clade, but also by a greater depth as afforded by an evaluation of multiple trios within individual species. In order to help bridge these gaps, we here present an analysis of a species representing one of the most basal splits on the primate tree (aye-ayes), combining whole-genome sequencing of seven parent-offspring trios from a three-generation pedigree with a novel computational pipeline that takes advantage of recently developed pan-genome graphs, thereby circumventing the application of (highly subjective) quality metrics that has previously been shown to result in notable differences in the detection of de novo mutations, and ultimately estimates of mutation rates. This deep sampling has enabled both a detailed picture of parental age effects as well as sex dependency in mutation rates which we here compare with previously studied primates, but has also provided unique insights into the nature of genetic variation in one of the most endangered primates on the planet.
Collapse
Affiliation(s)
- Cyril J. Versoza
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | | | - Jeffrey D. Jensen
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Susanne P. Pfeifer
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
2
|
Jang Y, Tomasini L, Bae T, Szekely A, Vaccarino FM, Abyzov A. Transgenerational transmission of post-zygotic mutations suggests symmetric contribution of first two blastomeres to human germline. Nat Commun 2024; 15:9117. [PMID: 39438473 PMCID: PMC11496613 DOI: 10.1038/s41467-024-53485-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 10/10/2024] [Indexed: 10/25/2024] Open
Abstract
Little is known about the origin of germ cells in humans. We previously leveraged post-zygotic mutations to reconstruct zygote-rooted cell lineage ancestry trees in a phenotypically normal woman, termed NC0. Here, by sequencing the genome of her children and their father, we analyze the transmission of early pre-gastrulation lineages and corresponding mutations across human generations. We find that the germline in NC0 is polyclonal and is founded by at least two cells likely descending from the two blastomeres arising from the first zygotic cleavage. Analyzes of public data from several multi-children families and from 1934 familial quads confirm this finding in larger cohorts, revealing that known imbalances of up to 90:10 in early lineages allocation in somatic tissues are not reflected in mutation transmission to offspring, establishing a fundamental difference in lineage allocation between the soma and the germline. Analyzes of all the data consistently suggest that the germline has a balanced 50:50 lineage allocation from the first two blastomeres.
Collapse
Affiliation(s)
- Yeongjun Jang
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Taejeong Bae
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Anna Szekely
- Department of Neurology, Yale University, New Haven, CT, USA
| | - Flora M Vaccarino
- Child Study Center, Yale University, New Haven, CT, USA.
- Department of Neuroscience, Yale University, New Haven, CT, USA.
- Yale Kavli Institute for Neuroscience, New Haven, CT, USA.
| | - Alexej Abyzov
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
3
|
Pacot L, Vidaud D, Ye M, Chansavang A, Coustier A, Maillard T, Barbance C, Laurendeau I, Hébrard B, Lunati-Rozie A, Funalot B, Wolkenstein P, Vidaud M, Goldenberg A, Morice-Picard F, Hadjadj D, Parfait B, Pasmant E. Prenatal diagnosis for neurofibromatosis type 1 and the pitfalls of germline mosaics. NPJ Genom Med 2024; 9:41. [PMID: 39245665 PMCID: PMC11381512 DOI: 10.1038/s41525-024-00425-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 08/30/2024] [Indexed: 09/10/2024] Open
Abstract
We report our 5-year experience in neurofibromatosis type 1 prenatal diagnosis (PND): 205 PNDs in 146 women (chorionic villus biopsies, 88% or amniocentesis, 12%). The NF1 variant was present in 85 (41%) and absent in 122 (59%) fetuses. Among 205 pregnancies (207 fetuses), 135 were carried to term (119 unaffected and 16 NF1 affected children), 69 pregnancy terminations (affected fetuses), 2 miscarriages, and 1 in utero death. The majority of PND requests came from parents with sporadic NF1. We describe two PNDs in women with mosaic NF1. In both families, direct PND showed the absence of the maternal NF1 variant in the fetus. However, microsatellite markers analysis showed that the risk haplotype had been transmitted. These rare cases of germline mosaicism illustrate the pitfall of indirect PND. Our study illustrates the crucial consequences of PND for medical and genetic counseling decisions. We also point to the challenges of germline mosaics.
Collapse
Affiliation(s)
- Laurence Pacot
- AP-HP, Hôpital Cochin, DMU BioPhyGen, Université Paris Cité, Paris, France
- Institut Cochin, Inserm U1016, CNRS UMR8104, Université Paris Cité, CARPEM, Paris, France
| | - Dominique Vidaud
- AP-HP, Hôpital Cochin, DMU BioPhyGen, Université Paris Cité, Paris, France
- Institut Cochin, Inserm U1016, CNRS UMR8104, Université Paris Cité, CARPEM, Paris, France
| | - Manuela Ye
- Institut Cochin, Inserm U1016, CNRS UMR8104, Université Paris Cité, CARPEM, Paris, France
| | - Albain Chansavang
- AP-HP, Hôpital Cochin, DMU BioPhyGen, Université Paris Cité, Paris, France
- Institut Cochin, Inserm U1016, CNRS UMR8104, Université Paris Cité, CARPEM, Paris, France
| | - Audrey Coustier
- AP-HP, Hôpital Cochin, DMU BioPhyGen, Université Paris Cité, Paris, France
| | - Theodora Maillard
- AP-HP, Hôpital Cochin, DMU BioPhyGen, Université Paris Cité, Paris, France
| | - Cécile Barbance
- AP-HP, Hôpital Cochin, DMU BioPhyGen, Université Paris Cité, Paris, France
| | - Ingrid Laurendeau
- Institut Cochin, Inserm U1016, CNRS UMR8104, Université Paris Cité, CARPEM, Paris, France
| | - Bérénice Hébrard
- Department of Genetics, Hôpital Henri Mondor, Assistance Publique-Hôpital Paris (AP-HP), Créteil, France
| | - Ariane Lunati-Rozie
- Department of Genetics, Hôpital Henri Mondor, Assistance Publique-Hôpital Paris (AP-HP), Créteil, France
| | - Benoît Funalot
- Department of Genetics, Hôpital Henri Mondor, Assistance Publique-Hôpital Paris (AP-HP), Créteil, France
| | - Pierre Wolkenstein
- Department of Dermatology, Hôpital Henri Mondor, Assistance Publique-Hôpital Paris (AP-HP), Créteil, France
- INSERM, Clinical Investigation Center 1430, Referral Center of Neurofibromatosis, Hôpital Henri Mondor, AP-HP, Faculté de Santé Paris Est Créteil, Créteil, France
| | - Michel Vidaud
- Institut Cochin, Inserm U1016, CNRS UMR8104, Université Paris Cité, CARPEM, Paris, France
- LBMM SeqOIA, AP-HP, Paris, France
| | - Alice Goldenberg
- Department of Genetics and Reference Center for Developmental Disorders, Inserm U1245 and CHU Rouen, Université de Rouen Normandie, Rouen, France
| | - Fanny Morice-Picard
- Pediatric Dermatology Unit, National Center for Rare Skin Disorders, University Hospital of Bordeaux, Bordeaux, France
| | - Djihad Hadjadj
- Institut Cochin, Inserm U1016, CNRS UMR8104, Université Paris Cité, CARPEM, Paris, France
| | - Béatrice Parfait
- AP-HP, Hôpital Cochin, DMU BioPhyGen, Université Paris Cité, Paris, France
- Institut Cochin, Inserm U1016, CNRS UMR8104, Université Paris Cité, CARPEM, Paris, France
| | - Eric Pasmant
- AP-HP, Hôpital Cochin, DMU BioPhyGen, Université Paris Cité, Paris, France.
- Institut Cochin, Inserm U1016, CNRS UMR8104, Université Paris Cité, CARPEM, Paris, France.
| |
Collapse
|
4
|
Jang Y, Tomasini L, Bae T, Szekely A, Vaccarino FM, Abyzov A. Transgenerational transmission of post-zygotic mutations suggests symmetric contribution of first two blastomeres to human germline. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.599438. [PMID: 38948757 PMCID: PMC11213018 DOI: 10.1101/2024.06.18.599438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Little is known about the origin of germ cells in humans. We previously leveraged post-zygotic mutations to reconstruct zygote-rooted cell lineage ancestry trees in a phenotypically normal woman, termed NC0. Here, by sequencing the genome of her children and their father, we analyzed the transmission of early pregastrulation lineages and corresponding mutations across human generations. We found that the germline in NC0 is polyclonal and is founded by at least two cells likely descending from the two blastomeres arising from the first zygotic cleavage. Analyses of public data from several multi-children families and from 1,934 familial quads confirmed this finding in larger cohorts, revealing that known imbalances of up to 90:10 in early lineages allocation in somatic tissues are not reflected in transmission to offspring, establishing a fundamental difference in lineage allocation between the soma and the germline. Analyses of all the data consistently suggest that germline has a balanced 50:50 lineage allocation from the first two blastomeres.
Collapse
Affiliation(s)
- Yeongjun Jang
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Livia Tomasini
- Child Study Center, Yale University, New Haven, CT 06520, USA
| | - Taejeong Bae
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Anna Szekely
- Department of Neurology, Yale University, New Haven, CT 06520, USA
| | - Flora M. Vaccarino
- Child Study Center, Yale University, New Haven, CT 06520, USA
- Department of Neuroscience, Yale University, New Haven, CT 06520, USA
- Yale Kavli Institute for Neuroscience, New Haven, CT 06520, USA
| | - Alexej Abyzov
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
5
|
Islam M, Yang Y, Simmons AJ, Shah VM, Pavan MK, Xu Y, Tasneem N, Chen Z, Trinh LT, Molina P, Ramirez-Solano MA, Sadien I, Dou J, Chen K, Magnuson MA, Rathmell JC, Macara IG, Winton D, Liu Q, Zafar H, Kalhor R, Church GM, Shrubsole MJ, Coffey RJ, Lau KS. Temporal recording of mammalian development and precancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.18.572260. [PMID: 38187699 PMCID: PMC10769302 DOI: 10.1101/2023.12.18.572260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Key to understanding many biological phenomena is knowing the temporal ordering of cellular events, which often require continuous direct observations [1, 2]. An alternative solution involves the utilization of irreversible genetic changes, such as naturally occurring mutations, to create indelible markers that enables retrospective temporal ordering [3-8]. Using NSC-seq, a newly designed and validated multi-purpose single-cell CRISPR platform, we developed a molecular clock approach to record the timing of cellular events and clonality in vivo , while incorporating assigned cell state and lineage information. Using this approach, we uncovered precise timing of tissue-specific cell expansion during murine embryonic development and identified new intestinal epithelial progenitor states by their unique genetic histories. NSC-seq analysis of murine adenomas and single-cell multi-omic profiling of human precancers as part of the Human Tumor Atlas Network (HTAN), including 116 scRNA-seq datasets and clonal analysis of 418 human polyps, demonstrated the occurrence of polyancestral initiation in 15-30% of colonic precancers, revealing their origins from multiple normal founders. Thus, our multimodal framework augments existing single-cell analyses and lays the foundation for in vivo multimodal recording, enabling the tracking of lineage and temporal events during development and tumorigenesis.
Collapse
|
6
|
Chen J, Chen Y, Yang Y, Niu X, Zhang J, Zeng Q, Liu A, Xu X, Yang X, Li S, Yang X, Wang Y, Zhang Y. Detecting genomic mosaicism in "de novo" genetic epilepsy by amplicon-based deep sequencing. J Hum Genet 2023; 68:73-80. [PMID: 36482122 DOI: 10.1038/s10038-022-01103-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
Abstract
AIM To investigate the occurrence of mosaicism in epilepsy probands and their parents using amplicon-based deep sequencing (ADS). METHODS Patients were recruited from the outpatient of Peking University First Hospital. Two hundred and sixty-four probands with pathogenic variants tested by next-generation sequencing (NGS) were enrolled. RESULTS Mosaic variants were detected in seventeen disease-associated genes from 20 probands, 5 paternal, and 6 maternal parents. The frequency of mosaicism was 11.74% (31/264). Mosaicism in 11 genes was identified from 20 probands with the mutant allelic fractions (MAFs) of 12.95-38.00% in autosomal dominant genes. Five paternal mosaicisms were identified in genes with a MAF of 6.30-20.99%, and six maternal mosaic individuals with a MAF of 2.07-21.90%. Only four mosaic parents had milder seizure history. The affected sibling had the same phenotype consistent with that of the proband, who inherited the variant of SLC1A2 or STXBP1 from their unaffected mosaic mothers, respectively. INTERPRETATION Mosaic phenomenon is not rare in families with epilepsy. Phenotypes of mosaic parents were milder or normal. Mosaicism detection is helpful to identify the mutation origin and it provides a theoretical basis for prenatal diagnosis of family reproduction. ADS is a reliable way of mosaicism detection for clinical application.
Collapse
Affiliation(s)
- Jiaoyang Chen
- Department of Pediatrics and Pediatric Epilepsy Center, Peking University First Hospital, Beijing, 100034, China
| | - Yi Chen
- Department of Pediatrics and Pediatric Epilepsy Center, Peking University First Hospital, Beijing, 100034, China
| | - Ying Yang
- Department of Pediatrics and Pediatric Epilepsy Center, Peking University First Hospital, Beijing, 100034, China
| | - Xueyang Niu
- Department of Pediatrics and Pediatric Epilepsy Center, Peking University First Hospital, Beijing, 100034, China
| | - Jing Zhang
- Department of Pediatrics and Pediatric Epilepsy Center, Peking University First Hospital, Beijing, 100034, China
| | - Qi Zeng
- Department of Pediatrics and Pediatric Epilepsy Center, Peking University First Hospital, Beijing, 100034, China
| | - Aijie Liu
- Department of Pediatrics and Pediatric Epilepsy Center, Peking University First Hospital, Beijing, 100034, China
| | - Xiaojing Xu
- Department of Pediatrics and Pediatric Epilepsy Center, Peking University First Hospital, Beijing, 100034, China
| | - Xiaoxu Yang
- Center for Bioinformatics, Peking University, Beijing, 100871, China
| | - Shupin Li
- Department of Pediatrics and Pediatric Epilepsy Center, Peking University First Hospital, Beijing, 100034, China
| | - Xiaoling Yang
- Department of Pediatrics and Pediatric Epilepsy Center, Peking University First Hospital, Beijing, 100034, China
| | - Yi Wang
- Department of Neurology, National Epilepsy Center, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Yuehua Zhang
- Department of Pediatrics and Pediatric Epilepsy Center, Peking University First Hospital, Beijing, 100034, China.
| |
Collapse
|
7
|
Zemet R, Van den Veyver IB, Stankiewicz P. Parental mosaicism for apparent de novo genetic variants: Scope, detection, and counseling challenges. Prenat Diagn 2022; 42:811-821. [PMID: 35394072 PMCID: PMC9995893 DOI: 10.1002/pd.6144] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/04/2022] [Accepted: 04/04/2022] [Indexed: 11/07/2022]
Abstract
The disease burden of de novo mutations (DNMs) has been evidenced only recently when the common application of next-generation sequencing technologies enabled their reliable and affordable detection through family-based clinical exome or genome sequencing. Implementation of exome sequencing into prenatal diagnostics revealed that up to 63% of pathogenic or likely pathogenic variants associated with fetal structural anomalies are apparently de novo, primarily for autosomal dominant disorders. Apparent DNMs have been considered to primarily occur as germline or zygotic events, with consequently negligible recurrence risks. However, there is now evidence that a considerable proportion of them are in fact inherited from a parent mosaic for the variant. Here, we review the burden of DNMs in prenatal diagnostics and the influence of parental mosaicism on the interpretation of apparent DNMs and discuss the challenges with detecting and quantifying parental mosaicism and its effect on recurrence risk. We also describe new bioinformatic and technological tools developed to assess mosaicism and discuss how they improve the accuracy of reproductive risk counseling when parental mosaicism is detected.
Collapse
Affiliation(s)
- Roni Zemet
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Ignatia B Van den Veyver
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas, USA.,Texas Children's Hospital, Houston, Texas, USA
| | - Paweł Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
8
|
A patient with severe congenital neutropenia harbors a missense ELANE mutation due to paternal germline mosaicism. Clin Chim Acta 2021; 526:14-20. [PMID: 34968504 DOI: 10.1016/j.cca.2021.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/02/2021] [Accepted: 12/23/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND Clinical and genetic characteristics of ELANE mutation of a 3-year-old male who had a severe congenital neutropenia (SCN) were examined. We then investigated whether CRISPR/Cas9-mediated gene editing could correct the mutation. PROCEDURE The proband underwent extensive clinical assessments, such as exome sequencing and bioinformatics analysis, so that pathogenic genes could be identified. Sanger sequencing was also utilized for confirmation. The cell line, 293-ELANE, harboring ELANE mutation was generated, and the mutation was then corrected by CRISPR/Cas9-mediated homology-directed repair (HDR). RESULTS The ELANE gene test in the proband unveiled a heterozygous de novo missense mutation: c. 248T > A (p.V83D), which was not detected in his asymptomatic parents who had provided peripheral blood samples. We found that 46.01% of his father's sperm cells had the same mutation. These results demonstrate that the proband inherited the ELANE mutation from his father, who had an average neutrophil count but had a germline mosaicism. The highest repair efficiency of CRISPR/Cas9-mediated HDR for 293-ELANE is 4.43%. CONCLUSIONS We identified a missense mutation (p.V83D) in ELANE that causes SCN. This is the first report on paternal semen mosaicism of an ELANE mutation. Our study paves the way for preimplantation genetic diagnosis (PGD) based on ELANE mutation prevention and clinical treatment of congenital disabilities.
Collapse
|
9
|
Breuss MW, Yang X, Gleeson JG. Sperm mosaicism: implications for genomic diversity and disease. Trends Genet 2021; 37:890-902. [PMID: 34158173 PMCID: PMC9484299 DOI: 10.1016/j.tig.2021.05.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/18/2022]
Abstract
While sperm mosaicism has few consequences for men, the offspring and future generations are unwitting recipients of gonadal cell mutations, often yielding severe disease. Recent studies, fueled by emergent technologies, show that sperm mosaicism is a common source of de novo mutations (DNMs) that underlie severe pediatric disease as well as human genetic diversity. Sperm mosaicism can be divided into three types: Type I arises during sperm meiosis and is non-age dependent; Type II arises in spermatogonia and increases as men age; and Type III arises during paternal embryogenesis, spreads throughout the body, and contributes stably to sperm throughout life. Where Types I and II confer little risk of recurrence, Type III may confer identifiable risk to future offspring. These mutations are likely to be the single largest contributor to human genetic diversity. New sequencing approaches may leverage this framework to evaluate and reduce disease risk for future generations.
Collapse
Affiliation(s)
- Martin W Breuss
- Department of Pediatrics, Section of Genetics and Metabolism, University of Colorado School of Medicine, Aurora, CO, USA
| | - Xiaoxu Yang
- Rady Children's Institute for Genomic Medicine, Department of Neurosciences, University of California, San Diego, CA, USA
| | - Joseph G Gleeson
- Rady Children's Institute for Genomic Medicine, Department of Neurosciences, University of California, San Diego, CA, USA.
| |
Collapse
|
10
|
Clonal dynamics in early human embryogenesis inferred from somatic mutation. Nature 2021; 597:393-397. [PMID: 34433967 DOI: 10.1038/s41586-021-03786-8] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 06/29/2021] [Indexed: 12/19/2022]
Abstract
Cellular dynamics and fate decision in early human embryogenesis remain largely unknown owing to the challenges of performing studies in human embryos1. Here, we explored whole-genomes of 334 single-cell colonies and targeted deep sequences of 379 bulk tissues obtained from various anatomical locations of seven recently deceased adult human donors. Using somatic mutations as an intrinsic barcode, we reconstructed early cellular phylogenies that demonstrate (1) an endogenous mutational rate that is higher in the first cell division but decreases to approximately one per cell per cell division later in life; (2) universal unequal contribution of early cells to embryo proper, resulting from early cellular bottlenecks that stochastically set aside epiblast cells within the embryo; (3) examples of varying degrees of early clonal imbalances between tissues on the left and right sides of the body, different germ layers and specific anatomical parts and organs; (4) emergence of a few ancestral cells that will substantially contribute to adult cell pools in blood and liver; and (5) presence of mitochondrial DNA heteroplasmy in the fertilized egg. Our approach also provides insights into the age-related mutational processes and loss of sex chromosomes in normal somatic cells. In sum, this study provides a foundation for future studies to complete cellular phylogenies in human embryogenesis.
Collapse
|
11
|
Lornage X, Quijano-Roy S, Amthor H, Carlier RY, Monnier N, Deleuze JF, Romero NB, Laporte J, Böhm J. Asymmetric muscle weakness due to ACTA1 mosaic mutations. Neurology 2020; 95:e3406-e3411. [DOI: 10.1212/wnl.0000000000010947] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/06/2020] [Indexed: 11/15/2022] Open
Abstract
ObjectiveTo characterize 2 unrelated patients with either asymmetric or unilateral muscle weakness at the clinical, genetic, histologic, and ultrastructural level.MethodsThe patients underwent thorough clinical examination, whole-body MRI, and exome sequencing. Muscle morphology was assessed by histology and electron microscopy.ResultsBoth patients presented with early-onset hypotonia, delayed motor milestones, scoliosis, and reduced pulmonary function. Patient P1 manifested unilateral muscle weakness exclusively affecting the left side of the body; the asymmetry was less pronounced in patient P2. Muscle biopsies from both patients showed nemaline rods as the main histopathologic hallmark, and MRI revealed major fatty infiltrations in selective head, proximal, and distal muscles, correlating with the degree of muscle weakness asymmetry. Exome sequencing on blood DNA from both patients identified de novo ACTA1 missense mutations in a small number of reads, suggesting mutation mosaicism. Subsequent Sanger sequencing confirmed the presence of the mutations on muscle DNA, while they were barely detectable on blood DNA.ConclusionsDe novo mutations can occur anytime during embryonic development and may result in a mosaic pattern of affected cells and tissues and lead to the development of an asymmetric clinical picture. The present study points out that mosaic mutations might not be easily detectable on leukocyte DNA and thereby escape routine genetic analysis, and possibly account for a significant number of molecularly undiagnosed patients.
Collapse
|
12
|
Jackson M, Marks L, May GHW, Wilson JB. The genetic basis of disease. Essays Biochem 2018; 62:643-723. [PMID: 30509934 PMCID: PMC6279436 DOI: 10.1042/ebc20170053] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/02/2018] [Accepted: 10/05/2018] [Indexed: 12/13/2022]
Abstract
Genetics plays a role, to a greater or lesser extent, in all diseases. Variations in our DNA and differences in how that DNA functions (alone or in combinations), alongside the environment (which encompasses lifestyle), contribute to disease processes. This review explores the genetic basis of human disease, including single gene disorders, chromosomal imbalances, epigenetics, cancer and complex disorders, and considers how our understanding and technological advances can be applied to provision of appropriate diagnosis, management and therapy for patients.
Collapse
Affiliation(s)
- Maria Jackson
- School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Leah Marks
- School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Gerhard H W May
- School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, U.K.
| | - Joanna B Wilson
- School of Life Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, U.K
| |
Collapse
|
13
|
Jónsson H, Sulem P, Arnadottir GA, Pálsson G, Eggertsson HP, Kristmundsdottir S, Zink F, Kehr B, Hjorleifsson KE, Jensson BÖ, Jonsdottir I, Marelsson SE, Gudjonsson SA, Gylfason A, Jonasdottir A, Jonasdottir A, Stacey SN, Magnusson OT, Thorsteinsdottir U, Masson G, Kong A, Halldorsson BV, Helgason A, Gudbjartsson DF, Stefansson K. Multiple transmissions of de novo mutations in families. Nat Genet 2018; 50:1674-1680. [DOI: 10.1038/s41588-018-0259-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 09/19/2018] [Indexed: 11/09/2022]
|
14
|
Rehmann-Sutter C. Why Human Germline Editing is More Problematic than Selecting Between Embryos: Ethically Considering Intergenerational Relationships. New Bioeth 2018. [PMID: 29529985 DOI: 10.1080/20502877.2018.1441669] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Do we have a moral obligation to genetically cure embryos rather than selecting between them? Such an obligation would be an ethical argument for human germline gene editing (hGGE) to avoid the inheritance of genetic conditions instead of using pre-implantation genetic diagnosis (PGD). In this article, the intuition that we do have such a moral obligation is critically evaluated. The article first develops a theoretical framework for discussing the ethical questions of hGGE. This framework is based on an exploration of the phenomenology of the germline, from both biological and philosophical points of view. It interprets the germline as an embodied intergenerational relationship that carries meanings for the parents and for the children-to-be. It relates them to previous family generations, and to their own children. Hence, the germline is a phenomenologically much richer concept than just the line of cells that carry the inheritable genetic information. Against this background, selection is compared with editing and a key moral difference is identified: editing is in effect an act of co-constructing the genome, which necessarily assumes a wider range of responsibilities that include those parts that are left unedited. Introducing hGGE into societies would hence significantly affect and change the moral structure of the intergenerational relationships. Selective implantation, on the other hand (in the context of PGD), is based on a moral choice in favour of the embryo which is to be unaffected by a disease or disability that causes suffering, rather than selecting knowingly the affected one. The claim that hGGE is in the best interests of the child-to-be counterfactually assumes the presence of a patient who has an interest in being cured. The embryo (a potential future patient) is, however, brought into existence by the same act that is also the treatment. The future children who would result from treatment by hGGE may rather have an interest in not having been treated by hGGE, since it makes the intergenerational relationships more complicated and burdensome. The question 'Is hGGE justified, or even an obligation?' is answered with a No.
Collapse
Affiliation(s)
- Christoph Rehmann-Sutter
- a Institute of History of Medicine and Science Studies , University of Lübeck , Lubeck , Germany
| |
Collapse
|
15
|
Wang Y, Masaki T, Khan SG, Tamura D, Kuschal C, Rogers M, DiGiovanna JJ, Kraemer KH. Four-dimensional, dynamic mosaicism is a hallmark of normal human skin that permits mapping of the organization and patterning of human epidermis during terminal differentiation. PLoS One 2018; 13:e0198011. [PMID: 29897937 PMCID: PMC5999106 DOI: 10.1371/journal.pone.0198011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 05/11/2018] [Indexed: 01/12/2023] Open
Abstract
Recent findings of mosaicism (DNA sequence variation) challenge the dogma that each person has a stable genetic constitution. Copy number variations, point mutations and chromosome abnormalities in normal or diseased tissues have been described. We studied normal skin mosaicism of a single nucleotide polymorphism (SNP) [rs1426654, p.Thr111Ala] in SLC24A5, an ion transporter gene. This SNP is unusual in that more than 90% of people of European descent have homozygous germline A/A alleles, while more than 90% of East Asians and Blacks have homozygous germline G/G alleles. We found mosaicism in neonatal foreskins as well as in 69% of nearly 600 skin surface scraping samples from 114 donors of different ages. Strikingly, donors with germline (buccal or blood) A/A, A/G or G/G genotypes had all three sequences (A/A, A/G or G/G) in the skin surface scrapings. SNP sequence differences extended within the epidermis in the vertical dimension from basal cell layer to the stratum corneum at the surface, as well as across the two-dimensions of the skin surface. Furthermore, repeated scrapings in the same location revealed variation in the sequences in the same individuals over time, adding a fourth dimension to this variation. We then used this mosaicism to track the movement of epidermal cells during normal differentiation and characterize the patterning of epidermal cells during terminal differentiation. In this coordinated proliferation model of epidermal differentiation, the skin surface is alternatively populated by synchronous, cycling of waves of cells, with each group having a different DNA sequence. These groups of cells abruptly flatten into large sheets at the surface providing patches of uniform SNP sequence. This four-dimensional mosaicism is a normal, previously unrecognized form of dynamic mosaicism in human skin.
Collapse
Affiliation(s)
- Yun Wang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
- Department of Dermatology, Peking University First Hospital, Beijing, China
| | - Taro Masaki
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
- Department of Dermatology, Kobe University School of Medicine, Kobe, Japan
| | - Sikandar G. Khan
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Deborah Tamura
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Christiane Kuschal
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Megan Rogers
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - John J. DiGiovanna
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Kenneth H. Kraemer
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
- * E-mail:
| |
Collapse
|
16
|
Hagege E, Grey RJ, Lopez G, Roshan Lal T, Sidransky E, Tayebi N. Type 2 Gaucher disease in an infant despite a normal maternal glucocerebrosidase gene. Am J Med Genet A 2017; 173:3211-3215. [PMID: 29091352 DOI: 10.1002/ajmg.a.38487] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/27/2017] [Accepted: 08/29/2017] [Indexed: 01/15/2023]
Abstract
Gaucher disease (GD) is a recessively inherited autosomal lysosomal storage disease, the most severe of which is type 2, an acute neuronopathic form. We report an affected infant who inherited one mutant allele, Arg257Gln (c.887G>A; p.Arg296Gln) from his father, while the second, Gly202Arg (c.721G>A; p.Gly241Arg) arose by either maternal germline mosaicism or as a de novo mutation. This is the first time mutation Gly202Arg has been reported to be inherited non-traditionally. This report is part of a growing literature suggesting that GD can be inherited via germline or de novo mutations, and emphasizes that it is critical for clinicians to consider such inheritance when making diagnostic decisions or providing genetic counseling.
Collapse
Affiliation(s)
- Ermias Hagege
- Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland
| | - Richard J Grey
- Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland
| | - Grisel Lopez
- Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland
| | - Tamanna Roshan Lal
- Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland
| | - Ellen Sidransky
- Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland
| | - Nahid Tayebi
- Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland
| |
Collapse
|
17
|
Fusco F, Conte MI, Diociaiuti A, Bigoni S, Branda MF, Ferlini A, El Hachem M, Ursini MV. Unusual Father-to-Daughter Transmission of Incontinentia Pigmenti Due to Mosaicism in IP Males. Pediatrics 2017; 140:peds.2016-2950. [PMID: 28794079 DOI: 10.1542/peds.2016-2950] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/25/2017] [Indexed: 11/24/2022] Open
Abstract
Incontinentia pigmenti (IP; Online Mendelian Inheritance in Man catalog #308300) is an X-linked dominant ectodermal disorder caused by mutations of the inhibitor of κ polypeptide gene enchancer in B cells, kinase γ (IKBKG)/ nuclear factor κB, essential modulator (NEMO) gene. Hemizygous IKBKG/NEMO loss-of-function (LoF) mutations are lethal in males, thus patients are female, and the disease is always transmitted from an IP-affected mother to her daughter. We present 2 families with father-to-daughter transmission of IP and provide for the first time molecular evidence that the combination of somatic and germ-line mosaicism for IKBKG/NEMO loss of function mutations in IP males resulted in the transmission of the disease to a female child. We searched for the IKBKG/NEMO mutant allele in blood, urine, skin, and sperm DNA and found that the 2 fathers were somatic and germ-line mosaics for the p.Gln132×mutation or the exon 4-10 deletion of IKBKG/NEMO, respectively. The highest level of IKBKG/NEMO mutant cells was detected in the sperm, which might explain the recurrence of the disease. We therefore recommend careful clinical evaluation in IP male cases and the genetic investigation in sperm DNA to ensure correct genetic counseling and prevent the risk of paternal transmission of IP.
Collapse
Affiliation(s)
- Francesca Fusco
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso," IGB-CNR, Naples, Italy
| | | | - Andrea Diociaiuti
- Dermatology Unit, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy; and
| | - Stefania Bigoni
- Unità Operativa Logistica of Medical Genetics, Ferrara University Hospital, Ferrara, Italy
| | | | - Alessandra Ferlini
- Unità Operativa Logistica of Medical Genetics, Ferrara University Hospital, Ferrara, Italy
| | - Maya El Hachem
- Dermatology Unit, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy; and
| | - Matilde Valeria Ursini
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso," IGB-CNR, Naples, Italy;
| |
Collapse
|
18
|
Ju YS, Martincorena I, Gerstung M, Petljak M, Alexandrov LB, Rahbari R, Wedge DC, Davies HR, Ramakrishna M, Fullam A, Martin S, Alder C, Patel N, Gamble S, O’Meara S, Giri DD, Sauer T, Pinder SE, Purdie CA, Borg Å, Stunnenberg H, van de Vijver M, Tan BK, Caldas C, Tutt A, Ueno NT, van’t Veer LJ, Martens JWM, Sotiriou C, Knappskog S, Span PN, Lakhani SR, Eyfjörd JE, Børresen-Dale AL, Richardson A, Thompson AM, Viari A, Hurles ME, Nik-Zainal S, Campbell PJ, Stratton MR. Somatic mutations reveal asymmetric cellular dynamics in the early human embryo. Nature 2017; 543:714-718. [PMID: 28329761 PMCID: PMC6169740 DOI: 10.1038/nature21703] [Citation(s) in RCA: 196] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 02/08/2017] [Indexed: 01/05/2023]
Abstract
Somatic cells acquire mutations throughout the course of an individual's life. Mutations occurring early in embryogenesis are often present in a substantial proportion of, but not all, cells in postnatal humans and thus have particular characteristics and effects. Depending on their location in the genome and the proportion of cells they are present in, these mosaic mutations can cause a wide range of genetic disease syndromes and predispose carriers to cancer. They have a high chance of being transmitted to offspring as de novo germline mutations and, in principle, can provide insights into early human embryonic cell lineages and their contributions to adult tissues. Although it is known that gross chromosomal abnormalities are remarkably common in early human embryos, our understanding of early embryonic somatic mutations is very limited. Here we use whole-genome sequences of normal blood from 241 adults to identify 163 early embryonic mutations. We estimate that approximately three base substitution mutations occur per cell per cell-doubling event in early human embryogenesis and these are mainly attributable to two known mutational signatures. We used the mutations to reconstruct developmental lineages of adult cells and demonstrate that the two daughter cells of many early embryonic cell-doubling events contribute asymmetrically to adult blood at an approximately 2:1 ratio. This study therefore provides insights into the mutation rates, mutational processes and developmental outcomes of cell dynamics that operate during early human embryogenesis.
Collapse
Affiliation(s)
- Young Seok Ju
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | | | - Moritz Gerstung
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Mia Petljak
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Ludmil B Alexandrov
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
- Theoretical Biology and Biophysics (T-6), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Raheleh Rahbari
- Genomic Mutation and Genetic Disease, Wellcome Trust Sanger Institute, Hinxton, UK
| | - David C Wedge
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
- Oxford Big Data Institute and Oxford Centre for Cancer Gene Research, Wellcome Trust Centre for Human Genetics, Oxford, UK
| | - Helen R Davies
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | | | - Anthony Fullam
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Sancha Martin
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | | | - Nikita Patel
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Steve Gamble
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Sarah O’Meara
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Dilip D Giri
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, USA
| | - Torril Sauer
- Institute of Clinical Medicine, Campus at Akershus University Hospital, University of Oslo, Lørenskog, Norway
| | - Sarah E Pinder
- King’s Health Partners Cancer Biobank, Guy’s Hospital, King’s College London School of Medicine, London, UK
| | - Colin A Purdie
- Department of Pathology, Ninewells Hospital and Medical School, Dundee, UK
| | - Åke Borg
- BioCare, Strategic Cancer Research Program, Lund, Sweden
- CREATE Health, Strategic Centre for Translational Cancer Research, Lund, Sweden
- Department of Oncology and Pathology, Lund University Cancer Center, Lund, Sweden
| | | | - Marc van de Vijver
- Department of Pathology, Academic Medical Center, Amsterdam, The Netherlands
| | - Benita K.T. Tan
- SingHealth Duke-NUS Breast Centre, Division of Surgical Oncology, National Cancer Centre Singapore, Department of General Surgery, Singapore General Hospital, Singapore
| | - Carlos Caldas
- Cancer Research UK (CRUK) Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Andrew Tutt
- Breast Cancer Now Research Unit, King’s College London, London SE1 9RT, UK
- Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London SW3 6JB, UK
| | - Naoto T Ueno
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Laura J van’t Veer
- Department of Laboratory Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, USA
| | - John W. M. Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands
| | | | - Stian Knappskog
- Section of Oncology, Department of Clinical Science, University of Bergen, Norway
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Paul N. Span
- Department of Radiation Oncology and Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Sunil R. Lakhani
- University of Queensland, School of Medicine, Brisbane, Australia
- Pathology Queensland, Royal Brisbane and Women's s Hospital, Brisbane, Australia
- University of Queensland, UQ Centre for Clinical Research, Brisbane, Australia
| | | | - Anne-Lise Børresen-Dale
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
- The K.G. Jebsen Center for Breast Cancer Research, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
| | - Andrea Richardson
- Sibley Pathology Department, Johns Hopkins Medicine, Washington DC 20016, USA
| | - Alastair M. Thompson
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Alain Viari
- Plateforme Gilles Thomas - Synergie Lyon Cancer, Centre Léon Bérard, Lyon Cedex 08, FRANCE
| | - Matthew E Hurles
- Genomic Mutation and Genetic Disease, Wellcome Trust Sanger Institute, Hinxton, UK
| | | | - Peter J Campbell
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | | |
Collapse
|
19
|
Cervera-Gaviria M, Alcántara-Ortigoza MA, González-Del Angel A, Moyers-Pérez P, Legorreta-Ramírez BGL, Barrera-Carmona N, Cervera-Gaviria J. An uncommon inheritance pattern in Niemann-Pick disease type C: identification of probable paternal germline mosaicism in a Mexican family. BMC Neurol 2016; 16:147. [PMID: 27549128 PMCID: PMC4994172 DOI: 10.1186/s12883-016-0649-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 07/26/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Niemann-Pick disease type C (NP-C) is a fatal lysosomal neurodegenerative and neurovisceral disease. It is caused by defects in intracellular lipid trafficking, which lead to the accumulation of lipids and glycosphingolipids within the endosomes and lysosomes of affected individuals. Pathogenic variants of the NPC1 or NPC2 genes yield highly variable phenotypes with a time course that ranges from fetal onset (i.e., hydrops fetalis) to progressive dementia in adults. NP-C is typically inherited in an autosomal-recessive manner. To our knowledge, no previous report has identified germline mosaicism as an inheritance mechanism in NP-C. CASE PRESENTATION We report the case of a male Mexican patient with "variant" filipin staining and a juvenile form of NP-C attributed to compound heterozygosity for two previously reported pathogenic variants of NPC1: c.[1042C>T];[2780C>T] or p.[Arg348*];[Ala927Val]. The proband's mother and healthy sister were heterozygous carriers of the c.2780C > T (exon 18) and c.1042C > T (exon 8) variants, respectively. However, direct sequencing of exons 8 and 18 of NPC1 revealed no mutation in genomic DNA obtained from the father's peripheral blood. DNA profiling ruled out the possibility of non-paternity. We were unable to obtain a sperm sample to demonstrate paternal gonadal mosaicism. NPC1 haplotype analysis using 20 linked single nucleotide variants failed to yield sufficient information to document a p.(Arg348*) NPC1 pathogenic variant-associated haplotype in the family. CONCLUSIONS We propose that this case of NP-C involves paternal germline mosaicism. To the best of our knowledge, this has not previously been reported in NP-C.
Collapse
Affiliation(s)
- Marivi Cervera-Gaviria
- Departamento de Genética Médica, Centro de Rehabilitación e Inclusión Infantil Teletón, Vía Gustavo Baz No. 219, Colonia San Pedro Barrientos, Tlalnepantla, Estado de México, 54960, México.
| | - Miguel Angel Alcántara-Ortigoza
- Laboratorio de Biología Molecular, Departamento de Genética Humana, Instituto Nacional de Pediatría, Ciudad de México, México.,DNA-GEN, S.C. Centro de Alta Especialidad en Genética Humana, Ciudad de México, México
| | - Ariadna González-Del Angel
- Laboratorio de Biología Molecular, Departamento de Genética Humana, Instituto Nacional de Pediatría, Ciudad de México, México.,DNA-GEN, S.C. Centro de Alta Especialidad en Genética Humana, Ciudad de México, México
| | - Paola Moyers-Pérez
- Departamento de Genética Médica, Centro de Rehabilitación e Inclusión Infantil Teletón, Vía Gustavo Baz No. 219, Colonia San Pedro Barrientos, Tlalnepantla, Estado de México, 54960, México
| | | | - Nancy Barrera-Carmona
- Departamento de Neuropediatría, Centro de Rehabilitación e Inclusión Infantil Teletón, Estado de México, México
| | - Jaime Cervera-Gaviria
- Servicio de Medicina Interna, Sociedad de Beneficencia Española, Ciudad de México, México
| |
Collapse
|
20
|
Abstract
Genome sequencing studies of de novo mutations in humans have revealed surprising incongruities in our understanding of human germline mutation. In particular, the mutation rate observed in modern humans is substantially lower than that estimated from calibration against the fossil record, and the paternal age effect in mutations transmitted to offspring is much weaker than expected from our long-standing model of spermatogenesis. I consider possible explanations for these discrepancies, including evolutionary changes in life-history parameters such as generation time and the age of puberty, a possible contribution from undetected post-zygotic mutations early in embryo development, and changes in cellular mutation processes at different stages of the germline. I suggest a revised model of stem-cell state transitions during spermatogenesis, in which 'dark' gonial stem cells play a more active role than hitherto envisaged, with a long cycle time undetected in experimental observations. More generally, I argue that the mutation rate and its evolution depend intimately on the structure of the germline in humans and other primates.This article is part of the themed issue 'Dating species divergences using rocks and clocks'.
Collapse
Affiliation(s)
- Aylwyn Scally
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| |
Collapse
|
21
|
Zhang J, Wu QQ, Wang L, Sun LJ. A Rare Novel Copy Number Variation of Xp22.33-p11.22 Duplication is Associated with Congenital Heart Defects. Chin Med J (Engl) 2015; 128:2829-30. [PMID: 26481757 PMCID: PMC4736901 DOI: 10.4103/0366-6999.167369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
| | - Qing-Qing Wu
- Department of Ultrasound, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
| | | | | |
Collapse
|