1
|
Merteroglu M, Santoro MM. Exploiting the metabolic vulnerability of circulating tumour cells. Trends Cancer 2024; 10:541-556. [PMID: 38580535 DOI: 10.1016/j.trecan.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/07/2024]
Abstract
Metastasis has a major part in the severity of disease and lethality of cancer. Circulating tumour cells (CTCs) represent a reservoir of metastatic precursors in circulation, most of which cannot survive due to hostile conditions in the bloodstream. Surviving cells colonise a secondary site based on a combination of physical, metabolic, and oxidative stress protection states required for that environment. Recent advances in CTC isolation methods and high-resolution 'omics technologies are revealing specific metabolic pathways that support this selection of CTCs. In this review, we discuss recent advances in our understanding of CTC biology and discoveries of adaptations in metabolic pathways during their selection. Understanding these traits and delineating mechanisms by which they confer acquired resistance or vulnerability in CTCs is crucial for developing successful prognostic and therapeutic strategies in cancer.
Collapse
|
2
|
Ni Z, Cao Y, Liu L, Huang C, Xie H, Zhou J, Ge B, Huang Q. Impact of endoscopic metallic stent placement and emergency surgery on detection of viable circulating tumor cells for acute malignant left-sided colonic obstruction. World J Surg Oncol 2023; 21:1. [PMID: 36588150 PMCID: PMC9806888 DOI: 10.1186/s12957-022-02879-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/17/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Self-expanding metal stents (SEMS) served as a bridge to surgery (BTS). However, this method may be associated with worse long-term prognosis and relapse of CRC patients. Therefore, we attempted to clarify this in the angle of circulating tumor cells (CTCs). METHODS A multicenter study was performed from March 2018 to January 2021. Thirty-two colorectal cancer patients with obstruction were selected, of which 21 patients were performed SEMS as a BTS while 11 patients were performed emergency surgery. Bloods samples were collected in two groups of patients for further detecting CTCs. In the SEMS group, the samples were collected before and after stent insert and after radical surgery performed. In the ES group, the samples were collected before stent insert and after emergency surgery performed. RESULTS The number of CTCs did not show statistically significant differences before and after stent placement (34.90 vs 38.33, p=0.90), neither between the SEMS group and ES group in initial CTC levels (34.90 vs 58.09, p=0.394). No significant differences (38.33 vs 58.09, p=0.632) were observed after stent insert in the SMES group and the initial CTC levels in the ES group. Moreover, no major differences (24.17 vs 42.27, p=0.225) were observed after radical operation performed in both groups. CONCLUSION The treatment of SEMS does not cause an increase in the number of CTC after stent insertion. Furthermore, there are may be other factors besides CTC to cause these poorer oncologic outcomes after SEMS placement.
Collapse
Affiliation(s)
- Zhizhan Ni
- grid.24516.340000000123704535Department of General Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuepeng Cao
- grid.24516.340000000123704535Department of General Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China ,grid.416271.70000 0004 0639 0580Department of Colorectal Surgery, Ningbo First Hospital, Ningbo, China
| | - Liming Liu
- Department of General Surgery, Shanghai Jing’an Shibei Hospital, Shanghai, China
| | - Chenshen Huang
- grid.24516.340000000123704535Department of General Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China ,grid.415108.90000 0004 1757 9178Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Fuzhou, China
| | - Huahao Xie
- grid.24516.340000000123704535Department of General Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jinzhe Zhou
- grid.24516.340000000123704535Department of General Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bujun Ge
- grid.24516.340000000123704535Department of General Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qi Huang
- grid.24516.340000000123704535Department of General Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Chen Q, Zou J, He Y, Pan Y, Yang G, Zhao H, Huang Y, Zhao Y, Wang A, Chen W, Lu Y. A narrative review of circulating tumor cells clusters: A key morphology of cancer cells in circulation promote hematogenous metastasis. Front Oncol 2022; 12:944487. [PMID: 36059616 PMCID: PMC9434215 DOI: 10.3389/fonc.2022.944487] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/18/2022] [Indexed: 11/28/2022] Open
Abstract
Circulating tumor cells (CTCs) that survive in the blood are playing an important role in the metastasis process of tumor. In addition, they have become a tool for tumor diagnosis, prognosis and recurrence monitoring. CTCs can exist in the blood as individual cells or as clumps of aggregated cells. In recent years, more and more studies have shown that clustered CTCs have stronger metastasis ability compared to single CTCs. With the deepening of studies, scholars have found that cancer cells can combine not only with each other, but also with non-tumor cells present in the blood, such as neutrophils, platelets, etc. At the same time, it was confirmed that non-tumor cells bound to CTCs maintain the survival and proliferation of cancer cells through a variety of ways, thus promoting the occurrence and development of tumor. In this review, we collected information on tumorigenesis induced by CTC clusters to make a summary and a discussion about them. Although CTC clusters have recently been considered as a key role in the transition process, many characteristics of them remain to be deeply explored. A detailed understanding of their vulnerability can prospectively pave the way for new inhibitors for metastasis.
Collapse
Affiliation(s)
- Qiong Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jueyao Zou
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yong He
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yanhong Pan
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Pharmacy, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Gejun Yang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Han Zhao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ying Huang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Zhao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing, China
| | - Aiyun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing, China
| | - Wenxing Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing, China
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing, China
| |
Collapse
|
4
|
Casado-Pelaez M, Bueno-Costa A, Esteller M. Single cell cancer epigenetics. Trends Cancer 2022; 8:820-838. [PMID: 35821003 DOI: 10.1016/j.trecan.2022.06.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/02/2022] [Accepted: 06/08/2022] [Indexed: 10/17/2022]
Abstract
Bulk sequencing methodologies have allowed us to make great progress in cancer research. Unfortunately, these techniques lack the resolution to fully unravel the epigenetic mechanisms that govern tumor heterogeneity. Consequently, many novel single cell-sequencing methodologies have been developed over the past decade, allowing us to explore the epigenetic components that regulate different aspects of cancer heterogeneity, namely: clonal heterogeneity, tumor microenvironment (TME), spatial organization, intratumoral differentiation programs, metastasis, and resistance mechanisms. In this review, we explore the different sequencing techniques that enable researchers to study different aspects of epigenetics (DNA methylation, chromatin accessibility, histone modifications, DNA-protein interactions, and chromatin 3D architecture) at the single cell level, their potential applications in cancer, and their current technical limitations.
Collapse
Affiliation(s)
- Marta Casado-Pelaez
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
| | - Alberto Bueno-Costa
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
| | - Manel Esteller
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain; Centro de Investigacion Biomedica en Red Cancer (CIBERONC), 28029 Madrid, Spain; Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain; Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain.
| |
Collapse
|
5
|
Keup C, Kimmig R, Kasimir-Bauer S. Combinatorial Power of cfDNA, CTCs and EVs in Oncology. Diagnostics (Basel) 2022; 12:870. [PMID: 35453918 PMCID: PMC9031112 DOI: 10.3390/diagnostics12040870] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/18/2022] [Accepted: 03/28/2022] [Indexed: 01/01/2023] Open
Abstract
Liquid biopsy is a promising technique for clinical management of oncological patients. The diversity of analytes circulating in the blood useable for liquid biopsy testing is enormous. Circulating tumor cells (CTCs), cell-free DNA (cfDNA) and extracellular vesicles (EVs), as well as blood cells and other soluble components in the plasma, were shown as liquid biopsy analytes. A few studies directly comparing two liquid biopsy analytes showed a benefit of one analyte over the other, while most authors concluded the benefit of the additional analyte. Only three years ago, the first studies to examine the value of a characterization of more than two liquid biopsy analytes from the same sample were conducted. We attempt to reflect on the recent development of multimodal liquid biopsy testing in this review. Although the analytes and clinical purposes of the published multimodal studies differed significantly, the additive value of the analytes was concluded in almost all projects. Thus, the blood components, as liquid biopsy reservoirs, are complementary rather than competitive, and orthogonal data sets were even shown to harbor synergistic effects. The unmistakable potential of multimodal liquid biopsy testing, however, is dampened by its clinical utility, which is yet to be proven, the lack of methodical standardization and insufficiently mature reimbursement, logistics and data handling.
Collapse
Affiliation(s)
- Corinna Keup
- Department of Gynecology and Obstetrics, University Hospital of Essen, Hufelandstr. 55, 45122 Essen, Germany
| | - Rainer Kimmig
- Department of Gynecology and Obstetrics, University Hospital of Essen, Hufelandstr. 55, 45122 Essen, Germany
| | - Sabine Kasimir-Bauer
- Department of Gynecology and Obstetrics, University Hospital of Essen, Hufelandstr. 55, 45122 Essen, Germany
| |
Collapse
|
6
|
Circulating tumour cells in the -omics era: how far are we from achieving the 'singularity'? Br J Cancer 2022; 127:173-184. [PMID: 35273384 PMCID: PMC9296521 DOI: 10.1038/s41416-022-01768-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 01/27/2022] [Accepted: 02/17/2022] [Indexed: 12/22/2022] Open
Abstract
Over the past decade, cancer diagnosis has expanded to include liquid biopsies in addition to tissue biopsies. Liquid biopsies can result in earlier and more accurate diagnosis and more effective monitoring of disease progression than tissue biopsies as samples can be collected frequently. Because of these advantages, liquid biopsies are now used extensively in clinical care. Liquid biopsy samples are analysed for circulating tumour cells (CTCs), cell-free DNA, RNA, proteins and exosomes. CTCs originate from the tumour, play crucial roles in metastasis and carry information on tumour heterogeneity. Multiple single-cell omics approaches allow the characterisation of the molecular makeup of CTCs. It has become evident that CTCs are robust biomarkers for predicting therapy response, clinical development of metastasis and disease progression. This review describes CTC biology, molecular heterogeneity within CTCs and the involvement of EMT in CTC dynamics. In addition, we describe the single-cell multi-omics technologies that have provided insights into the molecular features within therapy-resistant and metastasis-prone CTC populations. Functional studies coupled with integrated multi-omics analyses have the potential to identify therapies that can intervene the functions of CTCs.
Collapse
|
7
|
The potential of liquid biopsy in the management of cancer patients. Semin Cancer Biol 2022; 84:69-79. [DOI: 10.1016/j.semcancer.2022.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 03/06/2022] [Accepted: 03/17/2022] [Indexed: 02/07/2023]
|
8
|
Cucchiara F, Scarpitta R, Crucitta S, Scatena C, Arici R, Naccarato AG, Fogli S, Danesi R, Del Re M. Diagnosis and treatment monitoring in breast cancer: how liquid biopsy can support patient management. Pharmacogenomics 2022; 23:119-134. [PMID: 35006002 DOI: 10.2217/pgs-2021-0099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Imaging and tissue biopsies represent the current gold standard for breast cancer diagnosis and patient management. However, these practices are time-consuming, expensive and require invasive procedures. Moreover, tissue biopsies do not capture spatial and temporal tumor heterogeneity. Conversely, liquid biopsy, which includes circulating tumor cells, circulating free nucleic acids and extracellular vesicles, is minimally invasive, easy to perform and can be repeated during a patient's follow-up. Increasing evidence also suggests that liquid biopsy can be used to efficiently screen and diagnose tumors at an early stage, and to monitor changes in the tumor molecular profile. In the present review, clinical applications and prospects are discussed.
Collapse
Affiliation(s)
- Federico Cucchiara
- Unit of Clinical Pharmacology & Pharmacogenetics, Department of Clinical & Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - Rosa Scarpitta
- Division of Pathology, Department of Translational Research & New Technologies in Medicine & Surgery, University of Pisa, Pisa 56126, Italy
| | - Stefania Crucitta
- Unit of Clinical Pharmacology & Pharmacogenetics, Department of Clinical & Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - Cristian Scatena
- Division of Pathology, Department of Translational Research & New Technologies in Medicine & Surgery, University of Pisa, Pisa 56126, Italy
| | - Roberta Arici
- Unit of Clinical Pharmacology & Pharmacogenetics, Department of Clinical & Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - Antonio Giuseppe Naccarato
- Division of Pathology, Department of Translational Research & New Technologies in Medicine & Surgery, University of Pisa, Pisa 56126, Italy
| | - Stefano Fogli
- Unit of Clinical Pharmacology & Pharmacogenetics, Department of Clinical & Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - Romano Danesi
- Unit of Clinical Pharmacology & Pharmacogenetics, Department of Clinical & Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - Marzia Del Re
- Unit of Clinical Pharmacology & Pharmacogenetics, Department of Clinical & Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| |
Collapse
|
9
|
Mohanty A, Mohanty SK, Rout S, Pani C. Liquid Biopsy, the hype vs. hope in molecular and clinical oncology. Semin Oncol 2021; 48:259-267. [PMID: 34384614 DOI: 10.1053/j.seminoncol.2021.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 05/28/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022]
Abstract
The molecular landscape of tumors has been traditionally established using a biopsy or resection specimens. These modalities result in sampling bias that offer only a single snapshot of tumor heterogeneity. Over the last decade intensive research towards alleviating such a bias and obtaining an integral yet accurate portrait of the tumors, evolved to the use of established molecular and genetic analysis using blood and several other body fluids, such as urine, saliva, and pleural effusions as liquid biopsies. Genomic profiling of the circulating markers including circulating cell-free tumor DNA (ctDNA), circulating tumor cells (CTCs) or even RNA, proteins, and lipids constituting exosomes, have facilitated the diligent monitoring of response to treatment, allowed one to follow the emergence of drug resistance, and enumerate minimal residual disease. The prevalence of tumor educated platelets (TEPs) and our understanding of how tumor cells influence platelets are beginning to unearth TEPs as a potentially dynamic component of liquid biopsies. Here, we review the biology, methodology, approaches, and clinical applications of biomarkers used to assess liquid biopsies. The current review addresses recent technological advances and different forms of liquid biopsy along with upcoming challenges and how they can be integrated to get the best possible tumor-derived genetic information that can be leveraged to more precise therapies for patient as liquid biopsies become increasingly routine in clinical practice.
Collapse
Affiliation(s)
- Abhishek Mohanty
- Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India.
| | - Sambit K Mohanty
- Advanced Medical Research Institute, Bhubaneswar, Odisha, India; CORE Diagnostics, Gurgaon, Haryana, India
| | - Sipra Rout
- Christian Medical College, Vellore, Tamil Nadu, India
| | | |
Collapse
|
10
|
Rompianesi G, Di Martino M, Gordon-Weeks A, Montalti R, Troisi R. Liquid biopsy in cholangiocarcinoma: Current status and future perspectives. World J Gastrointest Oncol 2021; 13:332-350. [PMID: 34040697 PMCID: PMC8131901 DOI: 10.4251/wjgo.v13.i5.332] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/02/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023] Open
Abstract
Cholangiocarcinoma (CCA) are a heterogeneous group of tumors in terms of aetiology, natural history, morphological subtypes, molecular alterations and management, but all sharing complex diagnosis, management, and poor prognosis. Several mutated genes and epigenetic changes have been detected in CCA, with the potential to identify diagnostic and prognostic biomarkers and therapeutic targets. Accessing tumoral components and genetic material is therefore crucial for the diagnosis, management and selection of targeted therapies; but sampling tumor tissue, when possible, is often risky and difficult to be repeated at different time points. Liquid biopsy (LB) represents a way to overcome these issues and comprises a diverse group of methodologies centering around detection of tumor biomarkers from fluid samples. Compared to the traditional tissue sampling methods LB is less invasive and can be serially repeated, allowing a real-time monitoring of the tumor genetic profile or the response to therapy. In this review, we analysis the current evidence on the possible roles of LB (circulating DNA, circulating RNA, exosomes, cytokines) in the diagnosis and management of patients affected by CCA.
Collapse
Affiliation(s)
- Gianluca Rompianesi
- Hepato-Bilio-Pancreatic, Minimally Invasive and Robotic Surgery Unit, Department of Clinical Medicine and Surgery, Federico II University Hospital, Napoli 80131, Italy
| | - Marcello Di Martino
- Hepato-Bilio-Pancreatic Surgery Unit, Department of General and Digestive Surgery, Hospital Universitario La Princesa, Madrid 28006, Spain
| | - Alex Gordon-Weeks
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Roberto Montalti
- Hepato-Bilio-Pancreatic, Minimally Invasive and Robotic Surgery Unit, Department of Clinical Medicine and Surgery, Federico II University Hospital, Napoli 80131, Italy
| | - Roberto Troisi
- Hepato-Bilio-Pancreatic, Minimally Invasive and Robotic Surgery Unit, Department of Clinical Medicine and Surgery, Federico II University Hospital, Napoli 80131, Italy
| |
Collapse
|
11
|
Emerging noninvasive methylation biomarkers of cancer prognosis and drug response prediction. Semin Cancer Biol 2021; 83:584-595. [PMID: 33757849 DOI: 10.1016/j.semcancer.2021.03.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/15/2021] [Accepted: 03/16/2021] [Indexed: 12/27/2022]
Abstract
Cancer is the second leading cause of death worldwide being responsible for 9.6 million deaths in 2018. Epigenetic alterations are key in directing the aberrant expression of tumor-associated genes that drive cellular malignant transformation and cancer progression. Among epigenetic alterations, DNA methylation is the most deeply studied one in relation to environmental exposure. Tissue biopsies have traditionally been the main procedure by which a small sample of body tissue is excised to confirm cancer diagnosis or to indicate the primary site when cancer has spread. In contrast, the analysis of circulating tumor-derived material, or tumor circulome, by means of liquid biopsy of peripheral blood, urine, saliva or sputum is a noninvasive, fast and reproducible alternative to tissue biopsy. Recently, the assessment of epigenetic alterations such as DNA methylation and hydroxymethylation in circulating free DNA has been proved possible. These marks can be associated to prognosis and response to a variety of treatments including chemotherapy, hormonotherapy or immunotherapy. Epigenetic biomarkers may offer some advantages over RNA or genetic biomarkers given their stability in bodily fluids and their high tissue-specificity. While many challenges are still ahead, the unique advantages of these types of biomarkers is urging the scientific community to persevere in their clinical validation and integration into reliable prediction models. This review aims at recapitulating the emerging noninvasive DNA methylated biomarkers of importance for prediction of prognosis and drug response in cancer.
Collapse
|
12
|
Vasantharajan SS, Eccles MR, Rodger EJ, Pattison S, McCall JL, Gray ES, Calapre L, Chatterjee A. The Epigenetic landscape of Circulating tumour cells. Biochim Biophys Acta Rev Cancer 2021; 1875:188514. [PMID: 33497709 DOI: 10.1016/j.bbcan.2021.188514] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/18/2021] [Accepted: 01/18/2021] [Indexed: 12/31/2022]
Abstract
Cancer metastasis is the main reason for the high mortality in patients, contributing to 90% of cancer-related deaths. Biomarkers for early detection and therapeutic monitoring are essential to improve cancer outcomes. Circulating tumour cells (CTCs) arise from solid tumours and are capable of metastatic dissemination via the bloodstream or lymphatic system. Thus, CTCs can potentially be developed as a minimally invasive biomarker for early detection and therapeutic monitoring. Despite its clinical potential, research on CTCs remains limited, and this is likely due to their low numbers, short half-life, and the lack of robust methods for their isolation. There is also a need for molecular characterisation of CTCs to identify tumour-specific features, such as epigenetic signatures of metastasis. This review provides an overview of the epigenetic landscape of CTCs. We discuss the role of epigenetic modifications in CTC dissemination,metastatic tumour formation and progression and highlight its clinical implications.
Collapse
Affiliation(s)
| | - Michael R Eccles
- Department of Pathology, Otago Medical School-Dunedin Campus, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland 1010, New Zealand.
| | - Euan J Rodger
- Department of Pathology, Otago Medical School-Dunedin Campus, New Zealand.
| | - Sharon Pattison
- Department of Medicine, Otago Medical School-Dunedin Campus, New Zealand.
| | - John L McCall
- Department of Surgical Sciences, Otago Medical School-Dunedin Campus, New Zealand.
| | - Elin S Gray
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia.
| | - Leslie Calapre
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia.
| | - Aniruddha Chatterjee
- Department of Pathology, Otago Medical School-Dunedin Campus, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland 1010, New Zealand.
| |
Collapse
|
13
|
Di Domenico A, Pipinikas CP, Maire RS, Bräutigam K, Simillion C, Dettmer MS, Vassella E, Thirlwell C, Perren A, Marinoni I. Epigenetic landscape of pancreatic neuroendocrine tumours reveals distinct cells of origin and means of tumour progression. Commun Biol 2020; 3:740. [PMID: 33288854 PMCID: PMC7721725 DOI: 10.1038/s42003-020-01479-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
Recent data suggest that Pancreatic Neuroendocrine Tumours (PanNETs) originate from α- or β-cells of the islets of Langerhans. The majority of PanNETs are non-functional and do not express cell-type specific hormones. In the current study we examine whether tumour DNA methylation (DNAme) profiling combined with genomic data is able to identify cell of origin and to reveal pathways involved in PanNET progression. We analyse genome-wide DNAme data of 125 PanNETs and sorted α- and β-cells. To confirm cell identity, we investigate ARX and PDX1 expression. Based on epigenetic similarities, PanNETs cluster in α-like, β-like and intermediate tumours. The epigenetic similarity to α-cells progressively decreases in the intermediate tumours, which present unclear differentiation. Specific transcription factor methylation and expression vary in the respective α/β-tumour groups. Depending on DNAme similarity to α/β-cells, PanNETs have different mutational spectra, stage of the disease and prognosis, indicating potential means of PanNET progression.
Collapse
Affiliation(s)
- Annunziata Di Domenico
- Institute of Pathology, University of Bern, Murtenstrasse 31, 3008, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3010, Bern, Switzerland
| | | | - Renaud S Maire
- Institute of Pathology, University of Bern, Murtenstrasse 31, 3008, Bern, Switzerland
| | - Konstantin Bräutigam
- Institute of Pathology, University of Bern, Murtenstrasse 31, 3008, Bern, Switzerland
| | - Cedric Simillion
- Bioinformatics and Computational Biology, University of Bern, Baltzerstrasse 6, 3012, Bern, Switzerland
| | - Matthias S Dettmer
- Institute of Pathology, University of Bern, Murtenstrasse 31, 3008, Bern, Switzerland
| | - Erik Vassella
- Institute of Pathology, University of Bern, Murtenstrasse 31, 3008, Bern, Switzerland
| | - Chrissie Thirlwell
- UCL Cancer Institute, 72, Huntley Street, London, WC1E 6JD, UK
- University of Exeter, College of Medicine and Health, St Luke's Campus, Heavitree Road, Exeter, EX1 2LU, UK
| | - Aurel Perren
- Institute of Pathology, University of Bern, Murtenstrasse 31, 3008, Bern, Switzerland
| | - Ilaria Marinoni
- Institute of Pathology, University of Bern, Murtenstrasse 31, 3008, Bern, Switzerland.
| |
Collapse
|
14
|
Mentis AFA, Grivas PD, Dardiotis E, Romas NA, Papavassiliou AG. Circulating tumor cells as Trojan Horse for understanding, preventing, and treating cancer: a critical appraisal. Cell Mol Life Sci 2020; 77:3671-3690. [PMID: 32333084 PMCID: PMC11104835 DOI: 10.1007/s00018-020-03529-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/29/2020] [Accepted: 04/15/2020] [Indexed: 02/06/2023]
Abstract
Circulating tumor cells (CTCs) are regarded as harbingers of metastases. Their ability to predict response to therapy, relapse, and resistance to treatment has proposed their value as putative diagnostic and prognostic indicators. CTCs represent one of the zeniths of cancer evolution in terms of cell survival; however, the triggers of CTC generation, the identification of potentially metastatic CTCs, and the mechanisms contributing to their heterogeneity and aggressiveness represent issues not yet fully deciphered. Thus, prior to enabling liquid biopsy applications to reach clinical prime time, understanding how the above mechanistic information can be applied to improve treatment decisions is a key challenge. Here, we provide our perspective on how CTCs can provide mechanistic insights into tumor pathogenesis, as well as on CTC clinical value. In doing so, we aim to (a) describe how CTCs disseminate from the primary tumor, and their link to epithelial-mesenchymal transition (EMT); (b) trace the route of CTCs through the circulation, focusing on tumor self-seeding and the possibility of tertiary metastasis; (c) describe possible mechanisms underlying the enhanced metastatic potential of CTCs; (d) discuss how CTC could provide further information on the tissue of origin, especially in cancer of unknown primary origin. We also provide a comprehensive review of meta-analyses assessing the prognostic significance of CTCs, to highlight the emerging role of CTCs in clinical oncology. We also explore how cell-free circulating tumor DNA (ctDNA) analysis, using a combination of genomic and phylogenetic analysis, can offer insights into CTC biology, including our understanding of CTC heterogeneity and tumor evolution. Last, we discuss emerging technologies, such as high-throughput quantitative imaging, radiogenomics, machine learning approaches, and the emerging breath biopsy. These technologies could compliment CTC and ctDNA analyses, and they collectively represent major future steps in cancer detection, monitoring, and management.
Collapse
Affiliation(s)
- Alexios-Fotios A Mentis
- Public Health Laboratories, Hellenic Pasteur Institute, Athens, Greece
- Department of Microbiology, University Hospital of Thessaly, Larissa, Greece
| | - Petros D Grivas
- Division of Oncology, Department of Medicine, University of Washington School of Medicine, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Nicholas A Romas
- Department of Urology, Columbia University Medical Center, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street-Bldg. 16, 11527, Athens, Greece.
| |
Collapse
|
15
|
Bond DR, Uddipto K, Enjeti AK, Lee HJ. Single-cell epigenomics in cancer: charting a course to clinical impact. Epigenomics 2020; 12:1139-1151. [PMID: 32790506 DOI: 10.2217/epi-2020-0046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cancer is a disease of global epigenetic dysregulation. Mutations in epigenetic regulators are common events in multiple cancer types and epigenetic therapies are emerging as a treatment option in several malignancies. A major challenge for the clinical management of cancer is the heterogeneous nature of this disease. Cancers are composed of numerous cell types and evolve over time. This heterogeneity confounds decisions regarding treatment and promotes disease relapse. The emergence of single-cell epigenomic technologies has introduced the exciting possibility of linking genetic and transcriptional heterogeneity in the context of cancer biology. The next challenge is to leverage these tools for improved patient outcomes. Here we consider how single-cell epigenomic technologies may address the current challenges faced by cancer clinicians.
Collapse
Affiliation(s)
- Danielle R Bond
- School of Biomedical Sciences & Pharmacy, Faculty of Health & Medicine, University of Newcastle, Callaghan 2308, New South Wales, Australia
| | - Kumar Uddipto
- School of Biomedical Sciences & Pharmacy, Faculty of Health & Medicine, University of Newcastle, Callaghan 2308, New South Wales, Australia
| | - Anoop K Enjeti
- Department of Haematology, Calvary Mater Newcastle, Waratah 2298, New South Wales, Australia.,School of Medicine & Public Health, Faculty of Health & Medicine, University of Newcastle, Callaghan 2308, New South Wales, Australia.,NSW Health Pathology - Hunter, New Lambton Heights 2305, New South Wales, Australia
| | - Heather J Lee
- School of Biomedical Sciences & Pharmacy, Faculty of Health & Medicine, University of Newcastle, Callaghan 2308, New South Wales, Australia
| |
Collapse
|
16
|
Bao-Caamano A, Rodriguez-Casanova A, Diaz-Lagares A. Epigenetics of Circulating Tumor Cells in Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1220:117-134. [PMID: 32304083 DOI: 10.1007/978-3-030-35805-1_8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Liquid biopsy based on the analysis of circulating tumor cells (CTCs) has emerged as an important field of research. Molecular characterization of CTCs can provide insights into cancer biology and biomarkers for the clinic, representing a non-invasive powerful tool for monitoring breast cancer metastasis and predict the therapeutic response. Epigenetic mechanisms play a key role in the control of gene expression and their alteration contributes to cancer development and progression. These epigenetic modifications in CTCs have been described mainly related to modifications of the DNA methylation pattern and changes in the expression profile of noncoding RNAs. Here we summarize the recent findings on the epigenetic characterization of CTCs in breast cancer and their clinical value as tumor biomarkers, and discuss challenges and opportunities in this field.
Collapse
Affiliation(s)
- Aida Bao-Caamano
- Cancer Epigenomics, Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Aitor Rodriguez-Casanova
- Cancer Epigenomics, Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain.,Roche-Chus Joint Unit, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
| | - Angel Diaz-Lagares
- Cancer Epigenomics, Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain. .,Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
17
|
Heitzer E. Circulating Tumor DNA for Modern Cancer Management. Clin Chem 2019; 66:clinchem.2019.304774. [PMID: 31672857 DOI: 10.1373/clinchem.2019.304774] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/20/2019] [Indexed: 01/28/2023]
Affiliation(s)
- Ellen Heitzer
- Institute of Human Genetics, Christian Doppler Laboratory for Liquid Biopsies for Early Detection of Cancer, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Graz, Austria.
| |
Collapse
|
18
|
Heitzer E, Haque IS, Roberts CES, Speicher MR. Current and future perspectives of liquid biopsies in genomics-driven oncology. Nat Rev Genet 2019; 20:71-88. [PMID: 30410101 DOI: 10.1038/s41576-018-0071-5] [Citation(s) in RCA: 829] [Impact Index Per Article: 165.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Precision oncology seeks to leverage molecular information about cancer to improve patient outcomes. Tissue biopsy samples are widely used to characterize tumours but are limited by constraints on sampling frequency and their incomplete representation of the entire tumour bulk. Now, attention is turning to minimally invasive liquid biopsies, which enable analysis of tumour components (including circulating tumour cells and circulating tumour DNA) in bodily fluids such as blood. The potential of liquid biopsies is highlighted by studies that show they can track the evolutionary dynamics and heterogeneity of tumours and can detect very early emergence of therapy resistance, residual disease and recurrence. However, the analytical validity and clinical utility of liquid biopsies must be rigorously demonstrated before this potential can be realized.
Collapse
Affiliation(s)
- Ellen Heitzer
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Graz, Austria. .,BioTechMed-Graz, Graz, Austria. .,Christian Doppler Laboratory for Liquid Biopsies for Early Detection of Cancer, Graz, Austria.
| | | | | | - Michael R Speicher
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| |
Collapse
|
19
|
Circulating biomarkers for early detection and clinical management of colorectal cancer. Mol Aspects Med 2019; 69:107-122. [PMID: 31189073 DOI: 10.1016/j.mam.2019.06.002] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 06/07/2019] [Accepted: 06/08/2019] [Indexed: 02/06/2023]
Abstract
New non-invasive approaches that can complement and improve on current strategies for colorectal cancer (CRC) screening and management are urgently needed. A growing number of publications have documented that components of tumors, which are shed into the circulation, can be detected in the form of liquid biopsies and can be used to detect CRC at early stages, to predict response to certain therapies and to detect CRC recurrence in a minimally invasive way. The analysis of circulating tumor DNA (ctDNA), tumor-derived cells (CTC, circulating tumor cells) or circulating microRNA (miRNA) in blood and other body fluids, have a great potential to improve different aspects of CRC management. The challenge now is to find which types of components, biofluids and detection methods would be the most suitable to be applied in the different steps of CRC detection and treatment. This chapter will provide an up to date review on ctDNA, CTCs and circulating miRNAs as new biomarkers for CRC, either for clinical management or early detection, highlighting their advantages and limitations.
Collapse
|
20
|
Genome-Wide Plasma Cell-Free DNA Methylation Profiling Identifies Potential Biomarkers for Lung Cancer. DISEASE MARKERS 2019; 2019:4108474. [PMID: 30867848 PMCID: PMC6379867 DOI: 10.1155/2019/4108474] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/04/2018] [Accepted: 12/16/2018] [Indexed: 12/18/2022]
Abstract
As a noninvasive blood testing, the detection of cell-free DNA (cfDNA) methylation in plasma has raised an increasing interest due to diagnostic applications. Although extensively used in cfDNA methylation analysis, bisulfite sequencing is less cost-effective. In this study, we investigated the cfDNA methylation patterns in lung cancer patients by MeDIP-seq. Compared with the healthy individuals, 330 differentially methylated regions (DMRs) at gene promoters were identified in lung cancer patients with 33 hypermethylated and 297 hypomethylated regions, respectively. Moreover, these hypermethylated genes were validated with the publicly available DNA methylation data, yielding a set of ten significant differentially methylated genes in lung cancer, including B3GAT2, BCAR1, HLF, HOPX, HOXD11, MIR1203, MYL9, SLC9A3R2, SYT5, and VTRNA1-3. Our study demonstrated MeDIP-seq could be effectively used for cfDNA methylation profiling and identified a set of potential biomarker genes with clinical application for lung cancer.
Collapse
|
21
|
mei T, Lu X, Sun N, Li X, Chen J, Liang M, Zhou X, Fang Z. Real-time quantitative PCR detection of circulating tumor cells using tag DNA mediated signal amplification strategy. J Pharm Biomed Anal 2018; 158:204-208. [DOI: 10.1016/j.jpba.2018.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/27/2018] [Accepted: 06/03/2018] [Indexed: 01/22/2023]
|
22
|
Palmirotta R, Lovero D, Cafforio P, Felici C, Mannavola F, Pellè E, Quaresmini D, Tucci M, Silvestris F. Liquid biopsy of cancer: a multimodal diagnostic tool in clinical oncology. Ther Adv Med Oncol 2018; 10:1758835918794630. [PMID: 30181785 PMCID: PMC6116068 DOI: 10.1177/1758835918794630] [Citation(s) in RCA: 274] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 06/28/2018] [Indexed: 12/17/2022] Open
Abstract
Over the last decades, the concept of precision medicine has dramatically renewed
the field of medical oncology; the introduction of patient-tailored therapies
has significantly improved all measurable outcomes. Liquid biopsy is a
revolutionary technique that is opening previously unexpected perspectives. It
consists of the detection and isolation of circulating tumor cells, circulating
tumor DNA and exosomes, as a source of genomic and proteomic information in
patients with cancer. Many technical hurdles have been resolved thanks to newly
developed techniques and next-generation sequencing analyses, allowing a broad
application of liquid biopsy in a wide range of settings. Initially correlated
to prognosis, liquid biopsy data are now being studied for cancer diagnosis,
hopefully including screenings, and most importantly for the prediction of
response or resistance to given treatments. In particular, the identification of
specific mutations in target genes can aid in therapeutic decisions, both in the
appropriateness of treatment and in the advanced identification of secondary
resistance, aiming to early diagnose disease progression. Still application is
far from reality but ongoing research is leading the way to a new era in
oncology. This review summarizes the main techniques and applications of liquid
biopsy in cancer.
Collapse
Affiliation(s)
- Raffaele Palmirotta
- Section of Clinical and Molecular Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Domenica Lovero
- Section of Clinical and Molecular Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Paola Cafforio
- Section of Clinical and Molecular Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Claudia Felici
- Section of Clinical and Molecular Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Francesco Mannavola
- Section of Clinical and Molecular Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Eleonora Pellè
- Section of Clinical and Molecular Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Davide Quaresmini
- Section of Clinical and Molecular Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Marco Tucci
- Section of Clinical and Molecular Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Franco Silvestris
- Section of Clinical and Molecular Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, 70124, Italy
| |
Collapse
|
23
|
Yadav DK, Bai X, Yadav RK, Singh A, Li G, Ma T, Chen W, Liang T. Liquid biopsy in pancreatic cancer: the beginning of a new era. Oncotarget 2018; 9:26900-26933. [PMID: 29928492 PMCID: PMC6003564 DOI: 10.18632/oncotarget.24809] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/25/2018] [Indexed: 12/21/2022] Open
Abstract
With dismal survival rate pancreatic cancer remains one of the most aggressive and devastating malignancy. Predominantly, due to the absence of a dependable methodology for early identification and limited therapeutic options for advanced disease. However, it takes over 17 years to develop pancreatic cancer from initiation of mutation to metastatic cancer; therefore, if diagnosed early; it may increase overall survival dramatically, thus, providing a window of opportunity for early detection. Recently, genomic expression analysis defined 4 subtypes of pancreatic cancer based on mutated genes. Hence, we need simple and standard, minimally invasive test that can monitor those altered genes or their associated pathways in time for the success of precision medicine, and liquid biopsy seems to be one answer to all these questions. Again, liquid biopsy has an ability to pair with genomic tests. Additionally, liquid biopsy based development of circulating tumor cells derived xenografts, 3D organoids system, real-time monitoring of genetic mutations by circulating tumor DNA and exosome as the targeted drug delivery vehicle holds lots of potential for the treatment and cure of pancreatic cancer. At present, diagnosis of pancreatic cancer is frantically done on the premise of CA19-9 and radiological features only, which doesn't give a picture of genetic mutations and epigenetic alteration involved. In this manner, the current diagnostic paradigm for pancreatic cancer diagnosis experiences low diagnostic accuracy. This review article discusses the current state of liquid biopsy in pancreatic cancer as diagnostic and therapeutic tools and future perspectives of research in the light of circulating tumor cells, circulating tumor DNA and exosomes.
Collapse
Affiliation(s)
- Dipesh Kumar Yadav
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Rajesh Kumar Yadav
- Department of Pharmacology, Gandaki Medical College, Tribhuwan University, Institute of Medicine, Pokhara 33700, Nepal
| | - Alina Singh
- Department of Surgery, Bir Hospital, National Academy of Medical Science, Kanti Path, Kathmandu 44600, Nepal
| | - Guogang Li
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Tao Ma
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Wei Chen
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
24
|
Hwang WL, Pleskow HM, Miyamoto DT. Molecular analysis of circulating tumors cells: Biomarkers beyond enumeration. Adv Drug Deliv Rev 2018; 125:122-131. [PMID: 29326053 DOI: 10.1016/j.addr.2018.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 10/15/2017] [Accepted: 01/05/2018] [Indexed: 12/13/2022]
Abstract
Advances in our molecular understanding of cancer biology have paved the way to an expanding compendium of molecularly-targeted therapies, accompanied by the urgent need for biomarkers that enable the precise selection of the most appropriate therapies for individual cancer patients. Circulating biomarkers such as circulating tumor cells (CTCs) are poised to fill this need, since they are "liquid biopsies" that can be performed non-invasively and serially, and may capture the spectrum of spatial and temporal tumor heterogeneity better than conventional tissue biopsies. Increasing evidence suggests that moving beyond the enumeration of CTCs towards more sophisticated molecular analyses can provide actionable data that may predict and potentially improve clinical outcomes. In this review, we discuss the potential of molecular CTC analyses to serve as prognostic and predictive biomarkers to guide cancer therapy and early cancer detection. As technologies to capture and analyze CTCs continue to increase in sophistication, we anticipate that the potential clinical applications of CTCs will grow exponentially in the coming years.
Collapse
Affiliation(s)
- William L Hwang
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, United States; Massachusetts General Hospital Cancer Center, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Haley M Pleskow
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, United States
| | - David T Miyamoto
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, United States; Massachusetts General Hospital Cancer Center, Boston, MA, United States; Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
25
|
Mastoraki S, Strati A, Tzanikou E, Chimonidou M, Politaki E, Voutsina A, Psyrri A, Georgoulias V, Lianidou E. ESR1 Methylation: A Liquid Biopsy-Based Epigenetic Assay for the Follow-up of Patients with Metastatic Breast Cancer Receiving Endocrine Treatment. Clin Cancer Res 2017; 24:1500-1510. [PMID: 29284708 DOI: 10.1158/1078-0432.ccr-17-1181] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/29/2017] [Accepted: 12/21/2017] [Indexed: 11/16/2022]
Abstract
Purpose: Liquid biopsy provides real-time monitoring of tumor evolution and response to therapy through analysis of circulating tumor cells (CTCs) and plasma-circulating tumor DNA (ctDNA). ESR1 epigenetic silencing potentially affects response to endocrine treatment. We evaluated ESR1 methylation in CTCs and paired plasma ctDNA. We evaluated ESR1 methylation in CTCs and paired plasma ctDNA as a potential biomarker for response to everolimus/exemestane treatment.Experimental Design: A highly sensitive and specific real-time MSP assay for ESR1 methylation was developed and validated in (i) 65 primary breast tumors formalin-fixed paraffin-embedded (FFPE), (ii) EpCAM+ CTC fractions (122 patients and 30 healthy donors; HD), (iii) plasma ctDNA (108 patients and 30HD), and (iv) in CTCs (CellSearch) and in paired plasma ctDNA for 58 patients with breast cancer. ESR1 methylation status was investigated in CTCs isolated from serial peripheral blood samples of 19 patients with ER+/HER2- advanced breast cancer receiving everolimus/exemestane.Results:ESR1 methylation was detected in: (i) 25/65 (38.5%) FFPEs, (ii) EpCAM+ CTC fractions: 26/112 (23.3%) patients and 1/30 (3.3%) HD, and (iii) plasma ctDNA: 8/108 (7.4%) patients and 1/30 (3.3%) HD. ESR1 methylation was highly concordant in 58 paired DNA samples, isolated from CTCs (CellSearch) and corresponding plasma. In serial peripheral blood samples of patients treated with everolimus/exemestane, ESR1 methylation was observed in 10/36 (27.8%) CTC-positive samples, and was associated with lack of response to treatment (P = 0.023, Fisher exact test).Conclusions: We report for the first time the detection of ESR1 methylation in CTCs and a high concordance with paired plasma ctDNA. ESR1 methylation in CTCs was associated with lack of response to everolimus/exemestane regimen. ESR1 methylation should be further evaluated as a potential liquid biopsy-based biomarker. Clin Cancer Res; 24(6); 1500-10. ©2017 AACR.
Collapse
Affiliation(s)
- Sophia Mastoraki
- Analysis of Circulating Tumor Cells, Lab of Analytical Chemistry, Department of Chemistry, University of Athens, Athens, Greece
| | - Areti Strati
- Analysis of Circulating Tumor Cells, Lab of Analytical Chemistry, Department of Chemistry, University of Athens, Athens, Greece
| | - Eleni Tzanikou
- Analysis of Circulating Tumor Cells, Lab of Analytical Chemistry, Department of Chemistry, University of Athens, Athens, Greece
| | - Maria Chimonidou
- Analysis of Circulating Tumor Cells, Lab of Analytical Chemistry, Department of Chemistry, University of Athens, Athens, Greece
| | | | | | - Amanda Psyrri
- Oncology Unit, 2nd Department of Internal Medicine-Propaedeutic, Attikon University Hospital, Haidari, Greece
| | | | - Evi Lianidou
- Analysis of Circulating Tumor Cells, Lab of Analytical Chemistry, Department of Chemistry, University of Athens, Athens, Greece.
| |
Collapse
|
26
|
Benezeder T, Tiran V, Treitler AAN, Suppan C, Rossmann C, Stoeger H, Cote RJ, Datar RH, Balic M, Dandachi N. Multigene methylation analysis of enriched circulating tumor cells associates with poor progression-free survival in metastatic breast cancer patients. Oncotarget 2017; 8:92483-92496. [PMID: 29190932 PMCID: PMC5696198 DOI: 10.18632/oncotarget.21426] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 08/27/2017] [Indexed: 12/18/2022] Open
Abstract
Blood-based biomarkers such as circulating tumor cells (CTCs) provide dynamic real-time assessment of molecular tumor characteristics beyond the primary tumor. The aim of this study was to evaluate the feasibility of a size-based microfilter to assess multigene methylation analysis of enriched CTCs in a prospective proof-of principle study. We examined the quantitative methylation status of nine genes (AKR1B1, BMP6, CST6, HOXB4, HIST1H3C, ITIH5, NEUROD1, RASSF1, SOX17) in enriched CTCs from metastatic breast cancer patients. Feasibility and clinical performance testing were assessed in a test set consisting of 37 patients and 25 healthy controls. With established cut-off values from the healthy control group, methylation of enriched CTCs was detected in at least one gene in 18/37 patients (48.6%), while 97.8% of all control samples were unmethylated. Patients with CTCs unmethylated for CST6, ITIH5, or RASSF1 showed significantly longer PFS compared to patients with corresponding enriched methylated CTCs. This proof-of-principle study shows the feasibility of a size-based microfilter to enrich and analyze multigene methylation profile of CTCs from metastatic breast cancer patients. For the first time, we report that multigene methylation analysis of enriched CTCs provides prognostic information in metastatic breast cancer patients.
Collapse
Affiliation(s)
- Theresa Benezeder
- Medical University of Graz, Department of Internal Medicine, Division of Oncology, Graz, Austria
| | - Verena Tiran
- Medical University of Graz, Department of Internal Medicine, Division of Oncology, Graz, Austria
| | - Alexandra A N Treitler
- Medical University of Graz, Department of Internal Medicine, Division of Oncology, Graz, Austria
| | - Christoph Suppan
- Medical University of Graz, Department of Internal Medicine, Division of Oncology, Graz, Austria
| | - Christopher Rossmann
- Medical University of Graz, Department of Internal Medicine, Division of Oncology, Graz, Austria
| | - Herbert Stoeger
- Medical University of Graz, Department of Internal Medicine, Division of Oncology, Graz, Austria
| | - Richard J Cote
- University of Miami Miller School of Medicine, Department of Pathology, Miami, Florida, U.S.A
| | - Ram H Datar
- University of Miami Miller School of Medicine, Department of Pathology, Miami, Florida, U.S.A
| | - Marija Balic
- Medical University of Graz, Department of Internal Medicine, Division of Oncology, Graz, Austria.,Medical University of Graz, Research Unit Circulating Tumor Cells and Cancer Stem Cells, Graz, Austria
| | - Nadia Dandachi
- Medical University of Graz, Department of Internal Medicine, Division of Oncology, Graz, Austria.,Medical University of Graz, Research Unit Epigenetic and Genetic Cancer Biomarkers, Division of Oncology, Graz, Austria
| |
Collapse
|
27
|
Otte J, Wruck W, Adjaye J. New insights into human primordial germ cells and early embryonic development from single-cell analysis. FEBS Lett 2017. [PMID: 28627120 DOI: 10.1002/1873-3468.12716] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Human preimplantation developmental studies are difficult to accomplish due to associated ethical and moral issues. Preimplantation cells are rare and exist only in transient cell states. From a single cell, it is very challenging to analyse the origination of the heterogeneity and complexity inherent to the human body. However, recent advances in single-cell technology and data analysis have provided new insights into the process of early human development and germ cell specification. In this Review, we examine the latest single-cell datasets of human preimplantation embryos and germ cell development, compare them to bulk cell analyses, and interpret their biological implications.
Collapse
Affiliation(s)
- Jörg Otte
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Wasco Wruck
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| |
Collapse
|
28
|
Abstract
During cancer progression and treatment, multiple subclonal populations of tumour cells compete with one another, with selective pressures leading to the emergence of predominant subclones that replicate and spread most proficiently, and are least susceptible to treatment. At present, the molecular landscapes of solid tumours are established using surgical or biopsy tissue samples. Tissue-based tumour profiles are, however, subject to sampling bias, provide only a snapshot of tumour heterogeneity, and cannot be obtained repeatedly. Genomic profiles of circulating cell-free tumour DNA (ctDNA) have been shown to closely match those of the corresponding tumours, with important implications for both molecular pathology and clinical oncology. Analyses of circulating nucleic acids, commonly referred to as 'liquid biopsies', can be used to monitor response to treatment, assess the emergence of drug resistance, and quantify minimal residual disease. In addition to blood, several other body fluids, such as urine, saliva, pleural effusions, and cerebrospinal fluid, can contain tumour-derived genetic information. The molecular profiles gathered from ctDNA can be further complemented with those obtained through analysis of circulating tumour cells (CTCs), as well as RNA, proteins, and lipids contained within vesicles, such as exosomes. In this Review, we examine how different forms of liquid biopsies can be exploited to guide patient care and should ultimately be integrated into clinical practice, focusing on liquid biopsy of ctDNA - arguably the most clinically advanced approach.
Collapse
|
29
|
Batth IS, Mitra A, Manier S, Ghobrial IM, Menter D, Kopetz S, Li S. Circulating tumor markers: harmonizing the yin and yang of CTCs and ctDNA for precision medicine. Ann Oncol 2017; 28:468-477. [PMID: 27998963 DOI: 10.1093/annonc/mdw619] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Current trajectory of clinical care is heading in the direction of personalized medicine. In an ideal scenario, clinicians can obtain extensive diagnostic and prognostic information via minimally-invasive assays. Information available in the peripheral blood has the potential to bring us closer to this goal. In this review we highlight the contributions of circulating tumor cells and circulating tumor DNA and RNA (ctDNA/ctRNA) towards cancer therapeutic field. We discuss clinical relevance, summarize available and upcoming technologies, and hypothesize how future care could be impacted by a combined study.
Collapse
Affiliation(s)
- I S Batth
- Department of Pediatrics - Research, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - A Mitra
- Department of Pediatrics - Research, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - S Manier
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - I M Ghobrial
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - D Menter
- Department of Gastrointestinal (GI) Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - S Kopetz
- Department of Gastrointestinal (GI) Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - S Li
- Department of Pediatrics - Research, The University of Texas MD Anderson Cancer Center, Houston, USA
| |
Collapse
|
30
|
Analysis of DNA methylation in single circulating tumor cells. Oncogene 2017; 36:3223-3231. [PMID: 28068321 DOI: 10.1038/onc.2016.480] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 10/28/2016] [Accepted: 11/15/2016] [Indexed: 01/01/2023]
Abstract
Direct analysis of circulating tumor cells (CTCs) can inform on molecular mechanisms underlying systemic spread. Here we investigated promoter methylation of three genes regulating epithelial-to-mesenchymal transition (EMT), a key mechanism enabling epithelial tumor cells to disseminate and metastasize. For this, we developed a single-cell protocol based on agarose-embedded bisulfite treatment, which allows investigating DNA methylation of multiple loci via a multiplex PCR (multiplexed-scAEBS). We established our assay for the simultaneous analysis of three EMT-associated genes miR-200c/141, miR-200b/a/429 and CDH1 in single cells. The assay was validated in solitary cells of GM14667, MDA-MB-231 and MCF-7 cell lines, achieving a DNA amplification efficiency of 70% with methylation patterns identical to the respective bulk DNA. Then we applied multiplexed-scAEBS to 159 single CTCs from 11 patients with metastatic breast and six with metastatic castration-resistant prostate cancer, isolated via CellSearch (EpCAMpos/CKpos/CD45neg/DAPIpos) and subsequent FACS sorting. In contrast to CD45pos white blood cells isolated and processed by the identical approach, we observed in the isolated CTCs methylation patterns resembling more those of epithelial-like cells. Methylation at the promoter of microRNA-200 family was significantly higher in prostate CTCs. Data from our single-cell analysis revealed an epigenetic heterogeneity among CTCs and indicates tumor-specific active epigenetic regulation of EMT-associated genes during blood-borne dissemination.
Collapse
|
31
|
Wang J, Han X, Sun Y. DNA methylation signatures in circulating cell-free DNA as biomarkers for the early detection of cancer. SCIENCE CHINA-LIFE SCIENCES 2017; 60:356-362. [DOI: 10.1007/s11427-016-0253-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/16/2016] [Indexed: 02/06/2023]
|
32
|
Development and validation of a multiplex methylation specific PCR-coupled liquid bead array for liquid biopsy analysis. Clin Chim Acta 2016; 461:156-64. [DOI: 10.1016/j.cca.2016.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/06/2016] [Accepted: 08/03/2016] [Indexed: 12/21/2022]
|
33
|
Huang W, Qi CB, Lv SW, Xie M, Feng YQ, Huang WH, Yuan BF. Correction to Determination of DNA and RNA Methylation in Circulating Tumor Cells by Mass Spectrometry. Anal Chem 2016; 88:4581. [PMID: 27046000 DOI: 10.1021/acs.analchem.6b01215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Lianidou ES. Gene expression profiling and DNA methylation analyses of CTCs. Mol Oncol 2016; 10:431-42. [PMID: 26880168 DOI: 10.1016/j.molonc.2016.01.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/19/2016] [Accepted: 01/25/2016] [Indexed: 01/26/2023] Open
Abstract
A variety of molecular assays have been developed for CTCs detection and molecular characterization. Molecular assays are based on the nucleic acid analysis in CTCs and are based on total RNA isolation and subsequent mRNA quantification of specific genes, or isolation of genomic DNA that can be for DNA methylation studies and mutation analysis. This review is mainly focused on gene expression and methylation studies in CTCs in various types of cancer.
Collapse
Affiliation(s)
- Evi S Lianidou
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, University of Athens, 15771, Greece.
| |
Collapse
|
35
|
Huang W, Qi CB, Lv SW, Xie M, Feng YQ, Huang WH, Yuan BF. Determination of DNA and RNA Methylation in Circulating Tumor Cells by Mass Spectrometry. Anal Chem 2016; 88:1378-84. [PMID: 26707930 DOI: 10.1021/acs.analchem.5b03962] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
DNA methylation (5-methylcytosine, 5-mC) is the best characterized epigenetic mark that has regulatory roles in diverse biological processes. Recent investigation of RNA modifications also raises the possible functions of RNA adenine and cytosine methylations on gene regulation in the form of "RNA epigenetics." Previous studies demonstrated global DNA hypomethylation in tumor tissues compared to healthy controls. However, DNA and RNA methylation in circulating tumor cells (CTCs) that are derived from tumors are still a mystery due to the lack of proper analytical methods. In this respect, here we established an effective CTCs capture system conjugated with a combined strategy of sample preparation for the captured CTCs lysis, nucleic acids digestion, and nucleosides extraction in one tube. The resulting nucleosides were then further analyzed by liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS). With the developed method, we are able to detect DNA and RNA methylation (5-methyl-2'-deoxycytidine, 5-methylcytidine, and N(6)-methyladenosine) in a single cell. We then further successfully determined DNA and RNA methylation in CTCs from lung cancer patients. Our results demonstrated, for the first time, a significant decrease of DNA methylation (5-methyl-2'-deoxycytidine) and increase of RNA adenine and cytosine methylations (N(6)-methyladenosine and 5-methylcytidine) in CTCs compared with whole blood cells. The discovery of DNA hypomethylation and RNA hypermethylation in CTCs in the current study together with previous reports of global DNA hypomethylation in tumor tissues suggest that nucleic acid modifications play important roles in the formation and development of cancer cells. This work constitutes the first step for the investigation of DNA and RNA methylation in CTCs, which may facilitate uncovering the metastasis mechanism of cancers in the future.
Collapse
Affiliation(s)
- Wei Huang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University , Wuhan 430072, Peoples' Republic of China
| | - Chu-Bo Qi
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University , Wuhan 430072, Peoples' Republic of China.,Department of Pathology, Hubei Cancer Hospital , Wuhan, Hubei 430079, Peoples' Republic of China
| | - Song-Wei Lv
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University , Wuhan 430072, Peoples' Republic of China
| | - Min Xie
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University , Wuhan 430072, Peoples' Republic of China
| | - Yu-Qi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University , Wuhan 430072, Peoples' Republic of China
| | - Wei-Hua Huang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University , Wuhan 430072, Peoples' Republic of China
| | - Bi-Feng Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University , Wuhan 430072, Peoples' Republic of China
| |
Collapse
|