1
|
Nadia SN, Hasib M, Hasan I, Saba AA, Sayem M, Ebihara A, Hasan AM, Nabi AN. Genetic analyses of truncated variant rs200185429 in ZNT8 encoding SLC30A8 gene with respect to prediabetes and type 2 diabetes in Bangladeshi population. ENDOCRINE AND METABOLIC SCIENCE 2024; 16:100189. [DOI: 10.1016/j.endmts.2024.100189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
|
2
|
Amine Ikhanjal M, Ali Elouarid M, Zouine C, El Alami H, Errafii K, Ghazal H, Alidrissi N, Bakkali F, Benmoussa A, Hamdi S. FTO gene variants (rs9939609, rs8050136 and rs17817449) and type 2 diabetes mellitus risk: A Meta-Analysis. Gene 2023; 887:147791. [PMID: 37696421 DOI: 10.1016/j.gene.2023.147791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/31/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND AND AIMS There is tremendous increase in type 2 diabetes mellitus (T2DM) worldwide. The impact of FTO gene polymorphisms on the risk of T2DM is not yet clear because of the controversial results of studies. This meta-analysis aimed to better clarify the association between three FTO gene polymorphisms SNPs (rs9939609, rs8050136 and rs17817449) and T2DM in a larger combined population worldwide. MATERIAL AND METHODS A comprehensive search on the PubMed, Science Direct, and Web of Science databases was conducted to identify investigations in relationship between different FTO gene polymorphisms (rs9939609, rs8050136 and rs17817449) and T2DM globally. Published papers from January 2007 to May 2023 were collected. Inclusion criteria are limited to human case-control studies published in English and peer-reviewed, which provided data on the genotype distributions of FTO gene polymorphisms and T2DM risk. Odds ratios (OR) and 95% confidence intervals (CI) were calculated to express the results of the meta-analysis. Potential sources of bias and heterogeneity using Egger's regression analysis were also assessed. RESULTS Of 234695 identified articles, forty-eight studies were selected including 36,051 patients with T2DM and 51,266 control subjects. Overall, we found a significant increased risk of T2DM susceptibility and rs9939609 FTO gene polymorphism in the Allele contrast (A vs. T: OR = 1,30, 95% CI = 1.14; 1.48, P < 0,05, I2 = 0,94), Recessive model (AA vs. AT + TT: OR = 1,54, 95% CI = 1.19; 2.00, P < 0,05, I2 = 0,94), Dominant model (AA + AT vs. TT: OR = 1,26, 95% CI = 1.10; 1.45, P < 0,05, I2 = 0,89), homozygote model (AA vs. TT: OR = 1,60, 95% CI = 1.26; 2.03, P < 0,05, I2 = 0,90), and heterozygote model (AA vs. AT: OR = 1,43, 95% CI = 1.09; 1.88, P = 0,008, I2 = 0,93). we also found a significantly increased risk of T2DM susceptibility and rs8050136 FTO gene polymorphism under all models. For rs17817449 we did not find any association between with T2DM. CONCLUSION The present meta-analysis confirms that rs9939609 and rs8050136 in the FTO gene are significantly associated with T2DM, while rs17817449 does not show any association.
Collapse
Affiliation(s)
- Mohammed Amine Ikhanjal
- Environmental Health Laboratory, Institut Pasteur du Maroc, Morocco; University of Mohamed VI of Sciences and Health, Morocco.
| | - Mohammed Ali Elouarid
- Environmental Health Laboratory, Institut Pasteur du Maroc, Morocco; University of Mohamed VI of Sciences and Health, Morocco.
| | - Chaimae Zouine
- Environmental Health Laboratory, Institut Pasteur du Maroc, Morocco; University of Mohamed VI of Sciences and Health, Morocco.
| | - Houda El Alami
- Environmental Health Laboratory, Institut Pasteur du Maroc, Morocco.
| | - Khaoula Errafii
- African Genomic Center (AGC), University Mohamed VI Polytechnic, Bengurir, Morocco.
| | - Hassan Ghazal
- Laboratory of Genomics, Bioinformatics and Digital Health, School of Medicine, Mohammed VI University of Science and Health, Casablanca, Morocco;s Royal Institute for Management Training, Rabat, Morocco.
| | - Najib Alidrissi
- Department of Surgery and Laboratory of Genomics, Bioinformatics and Digital Health, School of Medicine, Mohammed VI University of Health Sciences, Casablanca, Morocco; Hospital Cheikh Khalifa, Casablanca, Morocco.
| | - Fadil Bakkali
- University of Mohamed VI of Sciences and Health, Morocco; Laboratory of toxicology, toxicogenomics and ecotoxicology, University of Mohamed VI of Sciences and Health, Morocco.
| | - Adnane Benmoussa
- University of Mohamed VI of Sciences and Health, Morocco; Laboratory of toxicology, toxicogenomics and ecotoxicology, University of Mohamed VI of Sciences and Health, Morocco.
| | - Salsabil Hamdi
- Environmental Health Laboratory, Institut Pasteur du Maroc, Morocco.
| |
Collapse
|
3
|
Xie W, Zhang L, Wang J, Wang Y. Association of HHEX and SLC30A8 Gene Polymorphisms with Gestational Diabetes Mellitus Susceptibility: A Meta-analysis. Biochem Genet 2023; 61:2203-2221. [PMID: 37103601 DOI: 10.1007/s10528-023-10385-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 04/14/2023] [Indexed: 04/28/2023]
Abstract
Genetics plays a role in the development of gestational diabetes mellitus (GDM), which poses serious risks to pregnant women and their children. Several studies have demonstrated a link between GDM susceptibility and rs13266634 C/T polymorphism in SLC30A8 gene and rs1111875 C/T and rs5015480 C/T, which are located near the linkage disequilibrium block containing the IDE, HHEX, and KIF11 genes. However, the results are conflicting. Therefore, we aimed to investigate the association between susceptibility to GDM and HHEX and SLC30A8 gene polymorphisms. PubMed, Web of Science, EBSCO, CNKI, Wanfang Data, VIP, and SCOPUS were used to search for research articles. The quality of the selected literature was evaluated using the Newcastle-Ottawa scale. A meta-analysis was performed using Stata 15.1. Allelic, dominant, recessive, homozygote, and heterozygote models were used for the analysis. Nine articles with 15 studies were included. (1) Four studies about HHEX rs1111875 showed that the C allele was associated with the susceptibility to GDM; (2) three studies on HHEX rs5015480 indicated that the C allele in rs5015480 was significantly associated with GDM; (3) eight studies about SLC30A8 rs13266634 showed that the C allele was significantly associated with the susceptibility to GDM; and (4) a subgroup analysis showed that the rs5015480 polymorphism in HHEX and rs13266634 polymorphism in SLC30A8 gene were associated with GDM susceptibility in Asians. The meta-analysis provided evidence that the C allele in rs1111875 and rs5015480 in HHEX and rs13266634 in SLC30A8 can increase the risk of GDM.PROSPERO registration number CRD42022342280.
Collapse
Affiliation(s)
- Wanting Xie
- Department of Physical Fitness and Health, School of Sport Science, Beijing Sport University, No.48, Xinxi Road, Haidian District, Beijing, 100084, China
| | - Liuwei Zhang
- Department of Physical Fitness and Health, School of Sport Science, Beijing Sport University, No.48, Xinxi Road, Haidian District, Beijing, 100084, China.
- Key Laboratory of Exercise and Physical Fitness, Ministry of Education, Beijing Sport University, Beijing, 100084, China.
| | - Jiawei Wang
- Department of Physical Fitness and Health, School of Sport Science, Beijing Sport University, No.48, Xinxi Road, Haidian District, Beijing, 100084, China
| | - Yirui Wang
- Department of Physical Fitness and Health, School of Sport Science, Beijing Sport University, No.48, Xinxi Road, Haidian District, Beijing, 100084, China
| |
Collapse
|
4
|
RNA-Binding Proteins in the Regulation of Adipogenesis and Adipose Function. Cells 2022; 11:cells11152357. [PMID: 35954201 PMCID: PMC9367552 DOI: 10.3390/cells11152357] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 01/27/2023] Open
Abstract
The obesity epidemic represents a critical public health issue worldwide, as it is a vital risk factor for many diseases, including type 2 diabetes (T2D) and cardiovascular disease. Obesity is a complex disease involving excessive fat accumulation. Proper adipose tissue accumulation and function are highly transcriptional and regulated by many genes. Recent studies have discovered that post-transcriptional regulation, mainly mediated by RNA-binding proteins (RBPs), also plays a crucial role. In the lifetime of RNA, it is bound by various RBPs that determine every step of RNA metabolism, from RNA processing to alternative splicing, nucleus export, rate of translation, and finally decay. In humans, it is predicted that RBPs account for more than 10% of proteins based on the presence of RNA-binding domains. However, only very few RBPs have been studied in adipose tissue. The primary aim of this paper is to provide an overview of RBPs in adipogenesis and adipose function. Specifically, the following best-characterized RBPs will be discussed, including HuR, PSPC1, Sam68, RBM4, Ybx1, Ybx2, IGF2BP2, and KSRP. Characterization of these proteins will increase our understanding of the regulatory mechanisms of RBPs in adipogenesis and provide clues for the etiology and pathology of adipose-tissue-related diseases.
Collapse
|
5
|
Charalampous P, Pallari E, Tyrovolas S, Middleton N, Economou M, Devleesschauwer B, Haagsma JA. Burden of non-communicable diseases in Cyprus, 1990-2017: findings from the Global Burden of Disease 2017 study. Arch Public Health 2021; 79:138. [PMID: 34325736 PMCID: PMC8320095 DOI: 10.1186/s13690-021-00655-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 07/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Non-communicable diseases (NCDs) accounted for over 90% of all deaths in the Cypriot population, in 2018. However, a detailed and comprehensive overview of the impact of NCDs on population health of Cyprus over the period of 1990 to 2017, expressed in disability-adjusted life years (DALYs), is currently not available. Knowledge about the drivers of changes in NCD DALYs over time is paramount to identify priorities for the prevention of NCDs in Cyprus and guide evidence-based decision making. The objectives of this paper were to: 1) assess the burden of NCDs in terms of years of life lost (YLLs), years lived with disability (YLDs), and DALYs in Cyprus in 2017, and 2) identify changes in the burden of NCDs in Cyprus over the 28-year period and assess the main drivers of these changes. METHODS We performed a secondary database descriptive study using the Global Burden of Disease (GBD) 2017 results on NCDs for Cyprus from 1990 to 2017. We calculated the percentage change of age-standardized DALY rates between 1990 and 2017 and decomposed these time trends to assess the causes of death and disability that were the main drivers of change. RESULTS In Cyprus in 2017, 83% (15,129 DALYs per 100,000; 12,809 to 17,707 95%UI) of total DALYs were due to NCDs. The major contributors to NCD DALYs were cardiovascular diseases (16.5%), neoplasms (16.3%), and musculoskeletal disorders (15.6%). Between 1990 and 2017, age-standardized NCD DALY rates decreased by 23%. For both males and females, the largest decreases in DALY rates were observed in ischemic heart disease and stroke. For Cypriot males, the largest increases in DALY rates were observed for pancreatic cancer, drug use disorders, and acne vulgaris, whereas for Cypriot females these were for acne vulgaris, psoriasis and eating disorders. CONCLUSION Despite a decrease in the burden of NCDs over the period from 1990 to 2017, NCDs are still a major public health challenge. Implementation of interventions and early detection screening programmes of modifiable NCD risk factors are needed to reduce occurrence and exacerbation of leading causes of NCDs in the Cypriot population.
Collapse
Affiliation(s)
- Periklis Charalampous
- Department of Public Health, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
| | - Elena Pallari
- Medical Research Council Clinical Trials Unit, Institute of Clinical Trials and Methodology, University College London, London, UK
- Health Services Research Center, Strovolos, Nicosia, Cyprus
| | - Stefanos Tyrovolas
- Parc Sanitari Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Madrid, Spain
- School of Nursing, Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Nicos Middleton
- Department of Nursing, School of Health Sciences, Cyprus University of Technology, Limassol, Cyprus
| | - Mary Economou
- Department of Nursing, School of Health Sciences, Cyprus University of Technology, Limassol, Cyprus
| | - Brecht Devleesschauwer
- Department of Epidemiology and Public Health, Sciensano, Brussels, Belgium
- Department of Veterinary Public Health and Food Safety, Ghent University, Merelbeke, Belgium
| | - Juanita A Haagsma
- Department of Public Health, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
6
|
Influence of IGF2BP2, HMG20A, and HNF1B genetic polymorphisms on the susceptibility to Type 2 diabetes mellitus in Chinese Han population. Biosci Rep 2021; 40:222767. [PMID: 32329795 PMCID: PMC7256674 DOI: 10.1042/bsr20193955] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/31/2020] [Accepted: 04/21/2020] [Indexed: 12/19/2022] Open
Abstract
Background: The present study aimed to investigate the roles of insulin related gene IGF2BP2, HMG20A, and HNF1B variants in the susceptibility of Type 2 diabetes mellitus (T2DM), and to identify their association with age, gender, BMI, and smoking and alcohol drinking behavior among the Han Chinese population. Methods: About 508 patients with T2DM and 503 healthy controls were enrolled. Rs11927381 and rs7640539 in IGF2BP2, rs7178572 in HMG20A, rs4430796, and rs11651052 in HNF1B were genotyped by using the Agena MassARRAY. Odds ratio (OR) and 95% confidence intervals (CI) were calculated by logistic regression. Results: We found that HMG20A rs7178572 (OR = 1.25, P = 0.015) and HNF1B rs11651052 (OR = 1.26, P = 0.019) increased the risk of T2DM. Rs7178572, rs4430796, and rs11651052 might be related to the higher T2DM susceptibility not only by itself but also by interacting with age, gender smoking, and alcohol drinking. Rs11927381 also conferred the higher T2DM susceptibility at age ≤ 59 years. Besides, rs7178572-AA (P = 0.032) genotype and rs11651052 GG (P = 0.018) genotype were related to higher glycated hemoglobin and insulin level, respectively. Conclusion: Specifically, we first found that rs11927381, rs7640539, and rs11651052 were associated with risk of T2DM among the Han Chinese population. We also provide evidence that age, gender, BMI, smoking, and drinking status have an interactive effect with these variants on T2DM susceptibility.
Collapse
|
7
|
Regué L, Zhao L, Ji F, Wang H, Avruch J, Dai N. RNA m6A reader IMP2/IGF2BP2 promotes pancreatic β-cell proliferation and insulin secretion by enhancing PDX1 expression. Mol Metab 2021; 48:101209. [PMID: 33705986 PMCID: PMC8076713 DOI: 10.1016/j.molmet.2021.101209] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/23/2021] [Accepted: 03/05/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Type 2 diabetes (T2D) is a common metabolic disease. Variants in human IGF2 mRNA binding protein 2 (IMP2/IGF2BP2) are associated with increased risk of T2D. IMP2 contributes to T2D susceptibility primarily through effects on insulin secretion. However, the underlying mechanism is not known. METHODS To understand the role of IMP2 in insulin secretion and T2D pathophysiology, we generated Imp2 pancreatic β-cell specific knockout mice (βIMP2KO) by recombining the Imp2flox allele with Cre recombinase driven by the rat insulin 2 promoter. We further characterized metabolic phenotypes of βIMP2KO mice and assessed their β-cell functions. RESULTS The deletion of IMP2 in pancreatic β-cells leads to reduced compensatory β-cell proliferation and function. Mechanically, IMP2 directly binds to Pdx1 mRNA and stimulates its translation in an m6A dependent manner. Moreover, IMP2 orchestrates IGF2-AKT-GSK3β-PDX1 signaling to stable PDX1 polypeptides. In human EndoC-βH1 cells, the over-expression of IMP2 is capable to enhance cell proliferation, PDX1 protein level and insulin secretion. CONCLUSION Our work therefore reveals IMP2 as a critical regulator of pancreatic β-cell proliferation and function; highlights the importance of posttranscriptional gene expression in T2D pathology.
Collapse
MESH Headings
- Adenosine/analogs & derivatives
- Adenosine/metabolism
- Animals
- Cell Line
- Cell Proliferation/genetics
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diet, High-Fat/adverse effects
- Disease Models, Animal
- Gene Knockout Techniques
- Homeodomain Proteins/metabolism
- Humans
- Insulin Secretion/genetics
- Insulin, Regular, Human/administration & dosage
- Insulin, Regular, Human/genetics
- Insulin, Regular, Human/metabolism
- Insulin-Secreting Cells/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Middle Aged
- Promoter Regions, Genetic
- RNA, Messenger/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Rats
- Signal Transduction/genetics
- Trans-Activators/metabolism
- Transfection
Collapse
Affiliation(s)
- Laura Regué
- Department of Molecular Biology and Diabetes Unit of the Medical Services, Massachusetts General Hospital, Boston, 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Liping Zhao
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Fei Ji
- Department of Molecular Biology and Diabetes Unit of the Medical Services, Massachusetts General Hospital, Boston, 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Hua Wang
- The Lundquist Institute, Harbor-UCLA, Torrance, CA, 90502, USA
| | - Joseph Avruch
- Department of Molecular Biology and Diabetes Unit of the Medical Services, Massachusetts General Hospital, Boston, 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Ning Dai
- Department of Molecular Biology and Diabetes Unit of the Medical Services, Massachusetts General Hospital, Boston, 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
8
|
Wang J, Chen L, Qiang P. The role of IGF2BP2, an m6A reader gene, in human metabolic diseases and cancers. Cancer Cell Int 2021; 21:99. [PMID: 33568150 PMCID: PMC7876817 DOI: 10.1186/s12935-021-01799-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 02/03/2021] [Indexed: 02/07/2023] Open
Abstract
The human insulin-like growth factor 2 (IGF2) mRNA binding proteins 2 (IGF2BP2/IMP2) is an RNA-binding protein that regulates multiple biological processes. Previously, IGF2BP2 was thought to be a type 2 diabetes (T2D)-associated gene. Indeed IGF2BP2 modulates cellular metabolism in human metabolic diseases such as diabetes, obesity and fatty liver through post-transcriptional regulation of numerous genes in multiple cell types. Emerging evidence shows that IGF2BP2 is an N6-methyladenosine (m6A) reader that participates in the development and progression of cancers by communicating with different RNAs such as microRNAs (miRNAs), messenger RNAs (mRNAs) and long non-coding RNAs (lncRNAs). Additionally, IGF2BP2 is an independent prognostic factor for multiple cancer types. In this review, we summarize the current knowledge on IGF2BP2 with regard to diverse human metabolic diseases and its potential for cancer prognosis.
Collapse
Affiliation(s)
- Jinyan Wang
- Department of Oncology, Zhangjiagang First People's Hospital, Zhangjiagang Affiliated Hospital of Soochow University, Zhangjiagang, China.,The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Lijuan Chen
- Department of Gynecology, Zhangjiagang First People's Hospital, Zhangjiagang Affiliated Hospital of Soochow University, Zhangjiagang, 215600, Jiangsu, People's Republic of China.
| | - Ping Qiang
- Department of Gynecology, Zhangjiagang First People's Hospital, Zhangjiagang Affiliated Hospital of Soochow University, Zhangjiagang, 215600, Jiangsu, People's Republic of China.
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Obesity and diabetes have already become the second largest risk factor for cardiovascular disease. During the last decade, remarkable advances have been made in understanding the human genome's contribution to glucose homeostasis disorders and obesity. A few studies on rare mutations of candidate genes provide potential genetic targets for the treatment of diabetes and obesity. In this review, we discussed the detailed findings of these studies and the possible causalities between specific genetic variations and dysfunctions in energy or glucose homeostasis. We are optimistic that novel therapeutic strategies targeting these specific mutants for treating and preventing diabetes and obesity will be developed in the near future. RECENT FINDINGS Studies on rare genetic mutation-caused obesity or diabetes have identified potential genetic targets to decrease body weight or reduce the risk of diabetes. Rare mutations observed in lipodystrophy, obese, or diabetic human patients are promising targets in the treatment of diabetes and obesity.
Collapse
Affiliation(s)
- Bing Feng
- Pennington Biomedical Research Center, Brain Glycemic And Metabolism Control Department, Louisiana State University, 6400 Perkins Rd, Basic Science Building L2024, Baton Rouge, LA, 70808, USA
| | - Pingwen Xu
- The Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Yanlin He
- Pennington Biomedical Research Center, Brain Glycemic And Metabolism Control Department, Louisiana State University, 6400 Perkins Rd, Basic Science Building L2024, Baton Rouge, LA, 70808, USA.
| |
Collapse
|
10
|
Banihashemi P, Aghaei Meybodi HR, Afshari M, Sarhangi N, Hasanzad M. Association analysis of HHEX gene variant with type 2 diabetes risk. Int J Diabetes Dev Ctries 2020. [DOI: 10.1007/s13410-020-00870-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
11
|
Dai N. The Diverse Functions of IMP2/IGF2BP2 in Metabolism. Trends Endocrinol Metab 2020; 31:670-679. [PMID: 32586768 DOI: 10.1016/j.tem.2020.05.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/28/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022]
Abstract
The human insulin-like growth factor 2 (IGF2) mRNA binding protein family (IMPs/IGF2BPs) is involved in a spectrum of biological processes, including development, tumorigenesis, and stemness. IMPs play a major role in post-transcriptional regulation of RNAs through the ribonucleoprotein complex (RNP). They have emerged as direct mammalian target of rapamycin (mTOR) substrates that coordinate nutrient stimulation and RNA life cycle control. IMP2 is a human type 2 diabetes (T2D) gene associated with impaired insulin secretion. Recently, using murine models, the substantial progress in understanding disease mechanisms has highlighted the significance of IMP2 in metabolism. This new knowledge may have the potential for therapeutic benefit.
Collapse
Affiliation(s)
- Ning Dai
- Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
12
|
IGF2BP2 polymorphisms as genetic biomarkers for either schizophrenia or type 2 diabetes mellitus: A case-control study. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100680] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Deeba E, Koptides D, Lambrianides A, Pantzaris M, Krashias G, Christodoulou C. Complete sequence analysis of human toll-like receptor 3 gene in natural killer cells of multiple sclerosis patients. Mult Scler Relat Disord 2019; 33:100-106. [PMID: 31177052 DOI: 10.1016/j.msard.2019.05.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/20/2019] [Accepted: 05/29/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) is a chronic demyelinating disease of the central nervous system (CNS) where both environmental and genetic risk factors play a role. Among the environmental risk factors, EBV and HSV infections have been suggested as strong candidates contributing to MS pathology/progression. Viral recognition and control is largely tasked to the NK cells via TLR recognition and various cytotoxic and immunoregulatory functions. The present work aimed to characterize NK cells isolated from MS patients for genetic polymorphisms in the gene encoding for TLR3, as TLR3 in NK cells is important in herpesvirus recognition. METHODS Highly purified NK cells isolated from peripheral blood of MS patients (n = 27) and healthy controls (n = 30) were used to sequence all five exons of the TLR3 gene using sanger sequencing. Alignment of the obtained sequences with the wild-type TLR3 sequence was used to identify genetic polymorphisms within the TLR3 gene. RESULTS The alignment identified multiple substitution mutations across the five exons of the TLR3 gene (rs116729895, rs3775296, rs377529, rs3775290, rs3775291, rs376735334 and rs73873710). A significant difference was observed in the allele distribution of rs3775291 (Leu412Phe) between MS patients and HC, whereby the minor allele was detected in 38.9% of MS patients versus 11% of HC (Fisher's exact test, p = 0.021). CONCLUSION There appears to be a possible association between the TLR3 missense mutation rs3775291 and multiple sclerosis, which might be attributed to changes in the TLR3 functional properties.
Collapse
Affiliation(s)
- Elie Deeba
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Dana Koptides
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus; Department of Molecular Virology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Anastasia Lambrianides
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus; Neurology Clinic C, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Marios Pantzaris
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus; Neurology Clinic C, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - George Krashias
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus; Department of Molecular Virology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.
| | - Christina Christodoulou
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus; Department of Molecular Virology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| |
Collapse
|
14
|
Association of FTO Gene Variant (rs8050136) with Type 2 Diabetes and Markers of Obesity, Glycaemic Control and Inflammation. J Med Biochem 2019; 38:153-163. [PMID: 30867643 PMCID: PMC6410997 DOI: 10.2478/jomb-2018-0023] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/04/2018] [Indexed: 01/03/2023] Open
Abstract
Background FTO, a gene recently discovered in genomewide associated studies for type 2 diabetes mellitus (T2D), play an important role in the management of energy homeostasis, nucleic acid demethylation and regulation of body fat mass by lipolysis. The aim of this study was to analyze the association of FTO rs8050136 A>C genetic variant with clinical and biochemical parameters of T2D in the population of West Balkan region (Bosnians and Herzegovinians and Kosovars). Methods The study included 638 patients with T2D and prediabetes and 360 healthy controls of both genders, aged from 40 to 65 years. Patients were recruited at the Clinical Centre University of Sarajevo, University Hospital of Clinical Centre in Banja Luka, General Hospital in Tešanj and Health Centre in Prizren. Genotyping of analyzed FTO polymorphism rs8050136 A>C was performed by qPCR allelic discrimination. Results Genotype frequencies of the analyzed polymorphism were comparable between patients with T2D, prediabetic patients, and healthy population. Logistic regression analyses didn’t show significant association of FTO rs8050136 A allele with increased risk of T2D. However, risk A allele was significantly associated with higher levels of HbA1c, insulin, HOMA-IR index, diastolic blood pressure, and inflammatory markers (fibrinogen and leukocytes) as well as showed tendency of association with increased values of obesity markers (BMI, waist and hip circumference). Conclusions Results of our study showed a significant association of FTO genetic variant rs8050136 A>C with the major markers of insulin resistance, obesity and inflammation, opening new avenues for solving many unclear questions in the pathogenesis of T2D.
Collapse
|
15
|
Zhao T, Huang Q, Su Y, Sun W, Huang Q, Wei W. Zinc and its regulators in pancreas. Inflammopharmacology 2019; 27:453-464. [PMID: 30756223 DOI: 10.1007/s10787-019-00573-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/02/2019] [Indexed: 12/12/2022]
Abstract
Studies have demonstrated that susceptibility to type 2 diabetes (T2D) is influenced by common polymorphism in the zinc transporter 8 gene SLC30A8, providing novel insight into the role of zinc in diabetes. Intriguingly, zinc participates in every step of the process, including insulin synthesis, crystallization, storage, secretion and signaling. Zinc deficiency or overload is associated with various disorders, such as diabetes, cardiovascular disease and obesity. Zinc supplementation is considered as an effective means of treating or preventing T2D in people with certain SLC30A8 genotypes. Three important protein families-zinc transporters (ZnTs), zinc importers (ZiPs) and metallothionein (MT)-participate in maintaining zinc homeostasis. Here, we review research on the physiological characteristics of zinc and its role in the pancreas and homeostasis regulation mechanisms, along with the latest research on the structure and function of ZnT/ZiP and MT. In addition, we summarize the advancements in research on SLC30A8 gene polymorphism in search of a mechanism to explain the relationship between the R risk allele and zinc transporter activity.
Collapse
Affiliation(s)
- Tianjiao Zhao
- Key Laboratory of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, 230032, China
| | - Qiongfang Huang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, 230032, China
| | - Yangni Su
- Key Laboratory of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, 230032, China
| | - Wuyi Sun
- Key Laboratory of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, 230032, China
| | - Qiong Huang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, 230032, China.
| | - Wei Wei
- Key Laboratory of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, 230032, China.
| |
Collapse
|
16
|
Huang Q, Du J, Merriman C, Gong Z. Genetic, Functional, and Immunological Study of ZnT8 in Diabetes. Int J Endocrinol 2019; 2019:1524905. [PMID: 30936916 PMCID: PMC6413397 DOI: 10.1155/2019/1524905] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/14/2018] [Accepted: 12/05/2018] [Indexed: 12/11/2022] Open
Abstract
Zinc level in the body is finely regulated to maintain cellular function. Dysregulation of zinc metabolism may induce a variety of diseases, e.g., diabetes. Zinc participates in insulin synthesis, storage, and secretion by functioning as a "cellular second messenger" in the insulin signaling pathway and glucose homeostasis. The highest zinc concentration is in the pancreas islets. Zinc accumulation in cell granules is manipulated by ZnT8, a zinc transporter expressed predominately in pancreatic α and β cells. A common ZnT8 gene (SLC30A8) polymorphism increases the risk of type 2 diabetes mellitus (T2DM), and rare mutations may present protective effects. In type 1 diabetes mellitus (T1DM), autoantibodies show specificity for binding two variants of ZnT8 (R or W at amino acid 325) dictated by a polymorphism in SLC30A8. In this review, we summarize the structure, feature, functions, and polymorphisms of ZnT8 along with its association with diabetes and explore future study directions.
Collapse
Affiliation(s)
- Qiong Huang
- Department of Pharmacy, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Jie Du
- Department of Pharmacy, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Chengfeng Merriman
- Department of Physiology, Johns Hopkins School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Zhicheng Gong
- Department of Pharmacy, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| |
Collapse
|
17
|
Sull JW, Lee TY, Jee SH. Effect of smoking on the association of HHEX (rs5015480) with diabetes among Korean women and heavy smoking men. BMC MEDICAL GENETICS 2018; 19:68. [PMID: 29720110 PMCID: PMC5930756 DOI: 10.1186/s12881-018-0582-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/19/2018] [Indexed: 01/04/2023]
Abstract
Background Several genome-wide association studies (GWAS) for serum fasting glucose levels have reported HHEX as possibly causal. The objective of this study was to examine the joint effect of smoking on the association of diabetes with the HHEX rs5015480 polymorphism among Korean subjects. Methods This replication study included a total of 4240 individuals, and multivariate linear regression and multiple logistic regression models were used. We examined the combined effect of smoking on the relationship between HHEX rs5015480 and diabetes. Results The rs5015480 SNP in the HHEX gene was related to the mean FBS level (effect per allele, 1.572 mg/dL, p = 0.0122). Females with the CC genotype had a 2.68 times higher (range, 1.05–6.82 times) risk of diabetes than those with the TT/TC genotype. Although the association was stronger in female subjects (OR, 4.46; 95% CI, 1.15–17.3, p = 0.0304) among healthy individuals (N = 2461), the association between HHEX and diabetes was much stronger in male heavy smokers (OR, 4.03; 95% CI, 1.19–13.6, p = 0.0247) than in nonsmokers (p = 0.9709) and ex-smokers (p = 0.2399). The interaction of smoking was also statistically significant (P for interaction =0.0182). Conclusions This study clearly demonstrates that a genetic variant in HHEX influences fasting glucose levels in Korean women and male heavy smokers.
Collapse
Affiliation(s)
- Jae Woong Sull
- Department of Biomedical Laboratory Science, College of Health Sciences, Eulji University, Seongnam, South Korea.
| | - Tae Yong Lee
- Department of Preventive Medicine and Public Health, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Sun Ha Jee
- Department of Epidemiology and Health Promotion, Institute for Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, South Korea
| |
Collapse
|
18
|
Association between FTO gene polymorphisms and type 2 diabetes mellitus, serum levels of apelin and androgen hormones among Iranian obese women. Gene 2017; 641:361-366. [PMID: 29101069 DOI: 10.1016/j.gene.2017.10.082] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 10/15/2017] [Accepted: 10/30/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Recent studies show that FTO single nucleotide polymorphisms (SNPs) are associated with obesity and type 2 diabetes mellitus (T2DM). On the other hand, many animal models and clinical studies have demonstrated that apelin, an adipocytokine, is related to the obesity and T2DM. Additionally, obese women are at risk of Hyperandrogenemia. So, the aim of this study was to investigate the relationship between FTO variants (rs763967273, rs759031579, rs141115189, rs9926289, rs76804286 and rs9939609) with T2DM, serum apelin and androgenic hormones in Iranian obese women. SUBJECTS AND METHODS 197 obese women (123 women with T2DM and 74 women as healthy control) were participated in this study. Anthropometrical and biochemical characteristics were measured. Serum apelin and androgen hormones levels were determined in 66 subjects consisting of 33 cases and 33 controls. PCR were carried out and subsequently, the PCR production was genotyped by Sanger sequencing assay. RESULTS Our observations showed that all SNPs are related to T2DM. The rs9926289 FTO variant had a strong association with serum apelin and dehydroepiandrosterone-sulfate levels (P=0.04 and P=0.03, respectively) among SNPs. In addition, apelin and androgenic hormones were correlated with T2DM. Two polymorphisms including rs9939609 and rs9926289 had a strong Linkage disequilibrium (r2=1). CONCLUSION FTO variants not only were associated with T2DM, but also some variants had a strong association with apelin and androgenic hormones profile.
Collapse
|
19
|
Chen CP, Ko TM, Chern SR, Wu PS, Chen SW, Lai ST, Yang CW, Pan CW, Wang W. Prenatal diagnosis and molecular cytogenetic characterization of mosaicism for a small supernumerary marker chromosome derived from chromosome 16. Taiwan J Obstet Gynecol 2017; 56:545-549. [DOI: 10.1016/j.tjog.2017.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2017] [Indexed: 10/19/2022] Open
|