1
|
Gandini A, Taieb J, Blons H, Netter J, Laurent-Puig P, Gallois C. Early-Onset colorectal Cancer: From the laboratory to the clinic. Cancer Treat Rev 2024; 130:102821. [PMID: 39236404 DOI: 10.1016/j.ctrv.2024.102821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024]
Abstract
Colorectal cancer that occurs before age of 50 is defined as Early-Onset Colorectal Cancer (EOCRC). Its incidence has worryingly increased since the late 90 s and is expected to keep rising in the next future, despite Late-Onset CRC (LOCRC) is decreasing worldwide. Because of this, there is an urgent need to better understand this subset of patients in order to give them the best treatment possible. However, most of the literature is retrospective and often discordant. In this review, we aim to provide a general overview of the issue, endeavoring to highlight the current available knowledge. We decided to move from the beginning, investigating risk factors and inheritance, passing through diagnosis and clinical aspects, and to conclude with the translational part, focusing on the biology of the tumor. However, lot of questions remain open, including screening age and prognosis. Indeed, young patients tend to be treated more aggressively, even if a survival benefit has not been proven yet. Every clinician should be aware of the best practice for young people, and more translational studies are awaited in order to clarify is EOCRC represents a distinct biological entity.
Collapse
Affiliation(s)
- Annalice Gandini
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Personalized Medicine, Phamacogenomics and Therapeutic Optimization, Paris, France; Institut du Cancer Paris CARPEM, AP-HP Centre, Department of Gastroenterology and Digestive Oncology, Hôpital Européen Georges Pompidou, Paris, France
| | - Julien Taieb
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Personalized Medicine, Phamacogenomics and Therapeutic Optimization, Paris, France; Institut du Cancer Paris CARPEM, AP-HP Centre, Department of Gastroenterology and Digestive Oncology, Hôpital Européen Georges Pompidou, Paris, France
| | - Hélène Blons
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Personalized Medicine, Phamacogenomics and Therapeutic Optimization, Paris, France; Assistance Publique-Hôpitaux de Paris, Department of Biochemistry, Pharmacogenetics and Molecular Oncology, European Georges Pompidou Hospital, Paris Cancer Institute CARPEM, 20 Rue Leblanc, 75015, Paris, France; Department of Genetics and Molecular Medicine, Georges Pompidou European Hospital, APHP Centre, Paris, France
| | - Jeanne Netter
- Institut du Cancer Paris CARPEM, AP-HP Centre, Department of Gastroenterology and Digestive Oncology, Hôpital Européen Georges Pompidou, Paris, France
| | - Pierre Laurent-Puig
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Personalized Medicine, Phamacogenomics and Therapeutic Optimization, Paris, France; Institut du Cancer Paris CARPEM, APHP. Centre, Department of Biology, Hôpital Européen Georges Pompidou, Paris, France
| | - Claire Gallois
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Personalized Medicine, Phamacogenomics and Therapeutic Optimization, Paris, France; Institut du Cancer Paris CARPEM, AP-HP Centre, Department of Gastroenterology and Digestive Oncology, Hôpital Européen Georges Pompidou, Paris, France.
| |
Collapse
|
2
|
Chahine JJ, Davis SS, Culfaci S, Kallakury BV, Tuma PL. Chromosome 8q24 amplification associated with human hepatocellular carcinoma predicts MYC/ZEB1/MIZ1 transcriptional regulation. Sci Rep 2024; 14:24488. [PMID: 39424877 PMCID: PMC11489779 DOI: 10.1038/s41598-024-75219-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 10/03/2024] [Indexed: 10/21/2024] Open
Abstract
Genomic instability is associated with late stage carcinomas and the epithelial mesenchymal transition (EMT). Of note is chromosome 8q24 amplification that has been documented in many epithelial-derived carcinomas. On this amplified region is the potent oncogene, c-myc. Not only does MYC overexpression activate targets that promote cell proliferation, it also activates transcription factors that drive EMT, including ZEB1. Further reinforcing EMT, overexpressed MYC also represses tumor suppressors involved in promoting the epithelial phenotype, including MIZ1. We predict that as carcinomas progress, chromosome 8q24 is amplified leading to high MYC levels that leads to ZEB1 expression and MIZ1 repression driving cells through EMT. To interrogate this clinically, limited cohorts of human epithelial-derived carcinomas were examined for MYC/ZEB1/MIZ1 expression patterns across increasing carcinoma grades. Interestingly, the predicted temporal patterns were only observed in hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinomas. Yet MIZ1 proved to be an excellent marker to assess carcinoma progression across types. We expanded the HCC cohort and determined that c-myc amplification was restricted to grade III/IV HCC that also exhibited increased MYC and ZEB1 nuclear expression whereas cytosolic MIZ1 expression was lost and only nuclear expression retained. These same resections were obtained from only individuals who had histories of alcohol consumption that were also diagnosed with cirrhosis, metastasis and had viral hepatitis suggesting etiology-specific mechanisms of cancer progression. Finally, analysis performed in Hep3B cells determined that alterations in MYC expression promoted the predicted changes in ZEB1 and MIZ1 expression and/or distributions and in markers for EMT further suggesting a relationship among these three transcription factors in HCC and their correlation to driving EMT.
Collapse
Affiliation(s)
- Joeffrey J Chahine
- Department of Pathology, MedStar Georgetown University Hospital, 20007, Washington, DC, USA
| | - Saniya S Davis
- Department of Biology, The Catholic University of America, 620 Michigan Avenue, NE, 103 McCort-Ward, 20064, Washington, DC, USA
| | - Sumeyye Culfaci
- Department of Pathology, MedStar Georgetown University Hospital, 20007, Washington, DC, USA
| | - Bhaskar V Kallakury
- Department of Pathology, MedStar Georgetown University Hospital, 20007, Washington, DC, USA
| | - Pamela L Tuma
- Department of Biology, The Catholic University of America, 620 Michigan Avenue, NE, 103 McCort-Ward, 20064, Washington, DC, USA.
| |
Collapse
|
3
|
Igarashi T, Yano K, Endo S, Shiotani B. Tolerance of Oncogene-Induced Replication Stress: A Fuel for Genomic Instability. Cancers (Basel) 2024; 16:3507. [PMID: 39456601 PMCID: PMC11506635 DOI: 10.3390/cancers16203507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Activation of oncogenes disturbs a wide variety of cellular processes and induces physiological dysregulation of DNA replication, widely referred to as replication stress (RS). Oncogene-induced RS can cause replication forks to stall or collapse, thereby leading to DNA damage. While the DNA damage response (DDR) can provoke an anti-tumor barrier to prevent the development of cancer, a small subset of cells triggers replication stress tolerance (RST), allowing precancerous cells to survive, thereby promoting clonal expansion and genomic instability (GIN). Genomic instability (GIN) is a hallmark of cancer, driving genetic alterations ranging from nucleotide changes to aneuploidy. These alterations increase the probability of oncogenic events and create a heterogeneous cell population with an enhanced ability to evolve. This review explores how major oncogenes such as RAS, cyclin E, and MYC induce RS through diverse mechanisms. Additionally, we delve into the strategies employed by normal and cancer cells to tolerate RS and promote GIN. Understanding the intricate relationship between oncogene activation, RS, and GIN is crucial to better understand how cancer cells emerge and to develop potential cancer therapies that target these vulnerabilities.
Collapse
Affiliation(s)
- Taichi Igarashi
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan; (T.I.); (K.Y.); (S.E.)
- Department of Biosciences, School of Science, Kitasato University, Minami-ku, Sagamihara-city, Kanagawa 252-0373, Japan
| | - Kimiyoshi Yano
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan; (T.I.); (K.Y.); (S.E.)
| | - Syoju Endo
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan; (T.I.); (K.Y.); (S.E.)
- Department of NCC Cancer Science, Division of Integrative Molecular Biomedicine, Biomedical Sciences and Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Bunsyo Shiotani
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan; (T.I.); (K.Y.); (S.E.)
- Department of Genome Stress Signaling, Institute of Medical Science, Tokyo Medical University, Shinjuku-ku, Tokyo 160-0023, Japan
| |
Collapse
|
4
|
Kalaimani K, Balachandran S, Boopathy LK, Roy A, Jayachandran B, Sankaranarayanan S, Arumugam MK. Recent advancements in small interfering RNA based therapeutic approach on breast cancer. Eur J Pharmacol 2024; 981:176877. [PMID: 39128807 DOI: 10.1016/j.ejphar.2024.176877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 07/23/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Breast cancer (BC) is the most common and malignant tumor diagnosed in women, with 2.9 million cases in 2023 and the fifth highest cancer-causing mortality worldwide. Recent developments in targeted therapy options for BC have demonstrated the promising potential of small interfering RNA (siRNA)-based cancer therapeutic approaches. As BC continues to be a global burden, siRNA therapy emerges as a potential treatment strategy to regulate disease-related genes in other types of cancers, including BC. siRNAs are tiny RNA molecules that, by preventing their expression, can specifically silence genes linked to the development of cancer. In order to increase the stability and effectiveness of siRNA delivery to BC cells, minimize off-target effects, and improve treatment efficacy, advanced delivery technologies such as lipid nanoparticles and nanocarriers have been created. Additionally, combination therapies, such as siRNAs that target multiple pathways are used in conjunction with conventional chemotherapy agents, have shown synergistic effects in various preclinical studies, opening up new treatment options for breast cancer that are personalized and precision medicine-oriented. Targeting important genes linked to BC growth, metastasis, and chemo-resistance has been reported in BC research using siRNA-based therapies. This study reviews recent reports on therapeutic approaches to siRNA for advanced treatment of BC. Furthermore, this review evaluates the role and mechanisms of siRNA in BC and demonstrates the potential of exploiting siRNA as a novel target for BC therapy.
Collapse
Affiliation(s)
- Kathirvel Kalaimani
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| | - Shana Balachandran
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| | - Lokesh Kumar Boopathy
- Centre for Laboratory Animal Technology and Research, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| | - Anitha Roy
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, Tamil Nadu, India
| | - Bhuvaneshwari Jayachandran
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| | - Sangamithra Sankaranarayanan
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| | - Madan Kumar Arumugam
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India.
| |
Collapse
|
5
|
Heshmatpour N, Kazemi SM, Schmidt ND, Patnaik SR, Korus P, Wilkens BGC, Macarrón Palacios A. Targeting DLBCL by mutation-specific disruption of cancer-driving oncogenes. Front Genome Ed 2024; 6:1427322. [PMID: 39469218 PMCID: PMC11513324 DOI: 10.3389/fgeed.2024.1427322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/12/2024] [Indexed: 10/30/2024] Open
Abstract
Diffuse large B cell lymphomas (DLBCL) are highly aggressive tumors. Their genetic complexity and heterogeneity have hampered the development of novel approaches for precision medicine. Our study aimed to develop a personalized therapy for DLBCL by utilizing the CRISPR/Cas system to induce knockouts (KO) of driver genes, thereby causing cancer cell death while minimizing side effects. We focused on OCI-LY3 cells, modeling DLBCL, and compared them with BJAB cells as controls. Analysis of whole exome sequencing revealed significant mutations in genes like PAX5, CD79B, and MYC in OCI-LY3 cells. CRISPR/Cas9-mediated KO of these genes resulted in reduced cancer cell viability. Subsequent single and dual gRNA targeting of PAX5 mutations inhibited proliferation specifically in OCI-LY3 cells. Moreover, dual gRNA targeting of PAX5 and MYC induced chromosomal rearrangements, reducing cell proliferation substantially. However, targeting single intronic mutations did not affect cell viability, highlighting the importance of disrupting protein function. Targeting multiple mutations simultaneously addresses intra-tumoral heterogeneity, and the transient delivery of CRISPR/Cas9 allows for permanent gene disruption. While challenges such as incomplete editing efficiency and delivery limitations exist, further optimization may enhance therapeutic efficacy. Overall, our findings demonstrate the efficacy of CRISPR/Cas9 in targeting oncogenic mutations, opening avenues for precision medicine in DLBCL treatment.
Collapse
|
6
|
Scott AF, Mohr DW, Littrell WA, Babu R, Kokosinski M, Stinnett V, Madhiwala J, Anderson J, Zou YS, Gabrielson KL. Characterization of the Rat Osteosarcoma Cell Line UMR-106 by Long-Read Technologies Identifies a Large Block of Amplified Genes Associated with Human Disease. Genes (Basel) 2024; 15:1254. [PMID: 39457378 PMCID: PMC11507229 DOI: 10.3390/genes15101254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES The rat osteosarcoma cell line UMR-106 is widely used for the study of bone cancer biology but it has not been well characterized with modern genomic methods. METHODS To better understand the biology of UMR-106 cells we used a combination of optical genome mapping (OGM), long-read sequencing nanopore sequencing and RNA sequencing.The UMR-106 genome was compared to a strain-matched Sprague-Dawley rat for variants associated with human osteosarcoma while expression data were contrasted with a public osteoblast dataset. RESULTS Using the COSMIC database to identify the most affected genes in human osteosarcomas we found somatic mutations in Tp53 and H3f3a. OGM identified a relatively small number of differences between the cell line and a strain-matched control animal but did detect a ~45 Mb block of amplification that included Myc on chromosome 7 which was confirmed by long-read sequencing. The amplified region showed several blocks of non-contiguous rearranged sequence implying complex rearrangements during their formation and included 14 genes reported as biomarkers in human osteosarcoma, many of which also showed increased transcription. A comparison of 5mC methylation from the nanopore reads of tumor and control samples identified genes with distinct differences including the OS marker Cdkn2a. CONCLUSIONS This dataset illustrates the value of long DNA methods for the characterization of cell lines and how inter-species analysis can inform us about the genetic nature underlying mutations that underpin specific tumor types. The data should be a valuable resource for investigators studying osteosarcoma, in general, and specifically the UMR-106 model.
Collapse
Affiliation(s)
- Alan F. Scott
- Genetic Resources Core Facility, Department of Genetic Medicine, Johns Hopkins University School of Medicine, 600 N. Wolfe St., 1034 Blalock, Baltimore, MD 21287, USA; (D.W.M.)
| | - David W. Mohr
- Genetic Resources Core Facility, Department of Genetic Medicine, Johns Hopkins University School of Medicine, 600 N. Wolfe St., 1034 Blalock, Baltimore, MD 21287, USA; (D.W.M.)
| | - William A. Littrell
- Genetic Resources Core Facility, Department of Genetic Medicine, Johns Hopkins University School of Medicine, 600 N. Wolfe St., 1034 Blalock, Baltimore, MD 21287, USA; (D.W.M.)
| | - Reshma Babu
- Genetic Resources Core Facility, Department of Genetic Medicine, Johns Hopkins University School of Medicine, 600 N. Wolfe St., 1034 Blalock, Baltimore, MD 21287, USA; (D.W.M.)
| | - Michelle Kokosinski
- Department of Genetic Medicine, Johns Hopkins Genomics, Johns Hopkins University School of Medicine, 1812 Ashland Ave., Suite 200, Baltimore, MD 21205, USA
| | - Victoria Stinnett
- Cytogenetic Laboratory, Department of Pathology, Johns Hopkins Genomics, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Halsted 281, Baltimore, MD 21287, USA (Y.S.Z.)
| | - Janvi Madhiwala
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD 21205, USA
| | - John Anderson
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD 21205, USA
| | - Ying S. Zou
- Cytogenetic Laboratory, Department of Pathology, Johns Hopkins Genomics, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Halsted 281, Baltimore, MD 21287, USA (Y.S.Z.)
| | - Kathleen L. Gabrielson
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
7
|
Wang H, Stevens T, Lu J, Roberts A, Van't Land C, Muzumdar R, Gong Z, Vockley J, Prochownik EV. Body-Wide Inactivation of the Myc-Like Mlx Transcription Factor Network Accelerates Aging and Increases the Lifetime Cancer Incidence. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401593. [PMID: 38976573 PMCID: PMC11425880 DOI: 10.1002/advs.202401593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/08/2024] [Indexed: 07/10/2024]
Abstract
The "Mlx" and "Myc" transcription factor networks cross-communicate and share many common gene targets. Myc's activity depends upon its heterodimerization with Max, whereas the Mlx Network requires that the Max-like factor Mlx associate with the Myc-like factors MondoA or ChREBP. The current work demonstrates that body-wide Mlx inactivation, like that of Myc, accelerates numerous aging-related phenotypes pertaining to body habitus and metabolism. The deregulation of numerous aging-related Myc target gene sets is also accelerated. Among other functions, these gene sets often regulate ribosomal and mitochondrial structure and function, genomic stability, and aging. Whereas "MycKO" mice have an extended lifespan because of a lower cancer incidence, "MlxKO" mice have normal lifespans and a higher cancer incidence. Like Myc, the expression of Mlx, MondoA, and ChREBP and their control over their target genes deteriorate with age in both mice and humans. Collectively, these findings underscore the importance of lifelong and balanced cross-talk between the two networks to maintain proper function and regulation of the many factors that can affect normal aging.
Collapse
Affiliation(s)
- Huabo Wang
- Division of Hematology/OncologyUPMC Children's Hospital of PittsburghPittsburghPA15201USA
| | - Taylor Stevens
- Division of Hematology/OncologyUPMC Children's Hospital of PittsburghPittsburghPA15201USA
| | - Jie Lu
- Division of Hematology/OncologyUPMC Children's Hospital of PittsburghPittsburghPA15201USA
| | - Alexander Roberts
- Division of Hematology/OncologyUPMC Children's Hospital of PittsburghPittsburghPA15201USA
| | - Clinton Van't Land
- Division of Medical GeneticsUPMC Children's Hospital of PittsburghPittsburghPA15201USA
| | - Radhika Muzumdar
- Division of EndocrinologyUPMC Children's Hospital of PittsburghPittsburghPA15201USA
| | - Zhenwei Gong
- Division of EndocrinologyUPMC Children's Hospital of PittsburghPittsburghPA15201USA
| | - Jerry Vockley
- Division of Medical GeneticsUPMC Children's Hospital of PittsburghPittsburghPA15201USA
| | - Edward V. Prochownik
- Division of Hematology/OncologyUPMC Children's Hospital of PittsburghPittsburghPA15201USA
- The Department of Microbiology and Molecular GeneticsUPMCPittsburghPA15201USA
- The Hillman Cancer Center of UPMC5115 Centre AvePittsburghPA15232USA
- The Pittsburgh Liver Research CenterUPMCPittsburghPA15224USA
| |
Collapse
|
8
|
Wang H, Sun J, Sun H, Wang Y, Lin B, Wu L, Qin W, Zhu Q, Yi W. The OGT-c-Myc-PDK2 axis rewires the TCA cycle and promotes colorectal tumor growth. Cell Death Differ 2024; 31:1157-1169. [PMID: 38778217 PMCID: PMC11369260 DOI: 10.1038/s41418-024-01315-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Deregulated glucose metabolism termed the "Warburg effect" is a fundamental feature of cancers, including the colorectal cancer. This is typically characterized with an increased rate of glycolysis, and a concomitant reduced rate of the tricarboxylic acid (TCA) cycle metabolism as compared to the normal cells. How the TCA cycle is manipulated in cancer cells remains unknown. Here, we show that O-linked N-acetylglucosamine (O-GlcNAc) regulates the TCA cycle in colorectal cancer cells. Depletion of OGT, the sole transferase of O-GlcNAc, significantly increases the TCA cycle metabolism in colorectal cancer cells. Mechanistically, OGT-catalyzed O-GlcNAc modification of c-Myc at serine 415 (S415) increases c-Myc stability, which transcriptionally upregulates the expression of pyruvate dehydrogenase kinase 2 (PDK2). PDK2 phosphorylates pyruvate dehydrogenase (PDH) to inhibit the activity of mitochondrial pyruvate dehydrogenase complex, which reduces mitochondrial pyruvate metabolism, suppresses reactive oxygen species production, and promotes xenograft tumor growth. Furthermore, c-Myc S415 glycosylation levels positively correlate with PDK2 expression levels in clinical colorectal tumor tissues. This study highlights the OGT-c-Myc-PDK2 axis as a key mechanism linking oncoprotein activation with deregulated glucose metabolism in colorectal cancer.
Collapse
Affiliation(s)
- Huijuan Wang
- Department of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jie Sun
- Department of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Haofan Sun
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 100026, China
| | - Yifei Wang
- Department of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bingyi Lin
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Liming Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Weijie Qin
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 100026, China
| | - Qiang Zhu
- Department of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Wen Yi
- Department of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
- Cancer Center, Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
9
|
Shah K, Ansari M, Saeed S, Wali A, Mushtaq Yasinzai M. Nilotinib: Disrupting the MYC-MAX Heterocomplex. Bioinform Biol Insights 2024; 18:11779322241267056. [PMID: 39081669 PMCID: PMC11287739 DOI: 10.1177/11779322241267056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/11/2024] [Indexed: 08/02/2024] Open
Abstract
MYC is a transcription factor crucial for maintaining cellular homeostasis, and its dysregulation is associated with highly aggressive cancers. Despite being considered "undruggable" due to its unstable protein structure, MYC gains stability through its interaction with its partner protein, MAX. The MYC-MAX heterodimer orchestrates the expression of numerous genes that contribute to an oncogenic phenotype. Previous efforts to develop small molecules, disrupting the MYC-MAX interaction, have shown promise in vitro but none have gained clinical approval. Our current computer-aided study utilizes an approach to explore drug repurposing as a strategy for inhibiting the c-MYC-MAX interaction. We have focused on compounds from DrugBank library, including Food and Drug Administration-approved drugs or those under investigation for other medical conditions. First, we identified a potential druggable site on flat interface of the c-MYC protein, which served as the target for virtual screening. Using both activity-based and structure-based screening, we comprehensively assessed the entire DrugBank library. Structure-based virtual screening was performed on AutoDock Vina and Glide docking tools, while activity-based screening was performed on two independent quantitative structure-activity relationship models. We focused on the top 2% of hit molecules from all screening methods. Ultimately, we selected consensus molecules from these screenings-those that exhibited both a stable interaction with c-MYC and superior inhibitory activity against c-MYC-MAX interaction. Among the evaluated molecules, we identified a protein kinase inhibitor (tyrosine kinase inhibitor [TKI]) known as nilotinib as a promising candidate targeting c-MYC-MAX dimer. Molecular dynamic simulations demonstrated a stable interaction between MYC and nilotinib. The interaction with nilotinib led to the stabilization of a region of the MYC protein that is distorted in apo-MYC and is important for MAX binding. Further analysis of differentially expressed gene revealed that nilotinib, uniquely among the tested TKIs, induced a gene expression program in which half of the genes were known to be responsive to c-MYC. Our findings provide the foundation for subsequent in vitro and in vivo investigations aimed at evaluating the efficacy of nilotinib in managing MYC oncogenic activity.
Collapse
Affiliation(s)
| | | | - Samina Saeed
- Department of Biotechnology, Faculty of Life Sciences & Informatics, Balochistan University of Information Technology, Engineering and Management Sciences (BUITEMS), Quetta, Pakistan
| | - Abdul Wali
- Department of Biotechnology, Faculty of Life Sciences & Informatics, Balochistan University of Information Technology, Engineering and Management Sciences (BUITEMS), Quetta, Pakistan
| | - Muhammad Mushtaq Yasinzai
- Department of Biotechnology, Faculty of Life Sciences & Informatics, Balochistan University of Information Technology, Engineering and Management Sciences (BUITEMS), Quetta, Pakistan
| |
Collapse
|
10
|
Ghasemi N, Azizi H. Exploring Myc puzzle: Insights into cancer, stem cell biology, and PPI networks. Gene 2024; 916:148447. [PMID: 38583818 DOI: 10.1016/j.gene.2024.148447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 03/13/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
"The grand orchestrator," "Universal Amplifier," "double-edged sword," and "Undruggable" are just some of the Myc oncogene so-called names. It has been around 40 years since the discovery of the Myc, and it remains in the mainstream of cancer treatment drugs. Myc is part of basic helix-loop-helix leucine zipper (bHLH-LZ) superfamily proteins, and its dysregulation can be seen in many malignant human tumors. It dysregulates critical pathways in cells that are connected to each other, such as proliferation, growth, cell cycle, and cell adhesion, impacts miRNAs action, intercellular metabolism, DNA replication, differentiation, microenvironment regulation, angiogenesis, and metastasis. Myc, surprisingly, is used in stem cell research too. Its family includes three members, MYC, MYCN, and MYCL, and each dysfunction was observed in different cancer types. This review aims to introduce Myc and its function in the body. Besides, Myc deregulatory mechanisms in cancer cells, their intricate aspects will be discussed. We will look at promising drugs and Myc-based therapies. Finally, Myc and its role in stemness, Myc pathways based on PPI network analysis, and future insights will be explained.
Collapse
Affiliation(s)
- Nima Ghasemi
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Hossein Azizi
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran.
| |
Collapse
|
11
|
Bogale DE. The roles of FGFR3 and c-MYC in urothelial bladder cancer. Discov Oncol 2024; 15:295. [PMID: 39031286 PMCID: PMC11264706 DOI: 10.1007/s12672-024-01173-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/16/2024] [Indexed: 07/22/2024] Open
Abstract
Bladder cancer is one of the most frequently occurring cancers worldwide. At diagnosis, 75% of urothelial bladder cancer cases have non-muscle invasive bladder cancer while 25% have muscle invasive or metastatic disease. Aberrantly activated fibroblast growth factor receptor (FGFR)-3 has been implicated in the pathogenesis of bladder cancer. Activating mutations of FGFR3 are observed in around 70% of NMIBC cases and ~ 15% of MIBCs. Activated FGFR3 leads to ligand-independent receptor dimerization and activation of downstream signaling pathways that promote cell proliferation and survival. FGFR3 is an important therapeutic target in bladder cancer, and clinical studies have shown the benefit of FGFR inhibitors in a subset of bladder cancer patients. c-MYC is a well-known major driver of carcinogenesis and is one of the most commonly deregulated oncogenes identified in human cancers. Studies have shown that the antitumor effects of FGFR inhibition in FGFR3 dependent bladder cancer cells and other FGFR dependent cancers may be mediated through c-MYC, a key downstream effector of activated FGFR that is involved tumorigenesis. This review will summarize the current general understanding of FGFR signaling and MYC alterations in cancer, and the role of FGFR3 and MYC dysregulation in the pathogenesis of urothelial bladder cancer with the possible therapeutic implications.
Collapse
Affiliation(s)
- Dereje E Bogale
- School of Medicine, Department of Oncology, Addis Ababa University, Addis Ababa, Ethiopia.
| |
Collapse
|
12
|
Wang H, Ma B, Stevens T, Knapp J, Lu J, Prochownik EV. MYC Binding Near Transcriptional End Sites Regulates Basal Gene Expression, Read-Through Transcription and Intragenic Contacts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.11.603118. [PMID: 39071289 PMCID: PMC11275772 DOI: 10.1101/2024.07.11.603118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The MYC oncoprotein regulates numerous genes involved in cellular processes such as cell cycle and mitochondrial and ribosomal structure and function. This requires heterodimerization with its partner, MAX, and binding to specific promoter and enhancer elements. Here, we show that MYC and MAX also bind near transcriptional end sites (TESs) of over one-sixth of all annotated genes. These interactions are dose-dependent, evolutionarily conserved, stabilize the normally short-lived MYC protein and regulate expression both in concert with and independent of MYC's binding elsewhere. MYC's TES binding occurs in association with other transcription factors, alters the chromatin landscape, increases nuclease susceptibility and can alter transcriptional read-through, particularly in response to certain stresses. MYC-bound TESs can directly contact promoters and may fine-tune gene expression in response to both physiologic and pathologic stimuli. Collectively, these findings support a previously unrecognized role for MYC in regulating transcription and its read-through via direct intragenic contacts between TESs and promoters.
Collapse
|
13
|
Casanova-Salas I, Aguilar D, Cordoba-Terreros S, Agundez L, Brandariz J, Herranz N, Mas A, Gonzalez M, Morales-Barrera R, Sierra A, Soriano-Navarro M, Cresta P, Mir G, Simonetti S, Rodrigues G, Arce-Gallego S, Delgado-Serrano L, Agustí I, Castellano-Sanz E, Mast R, de Albert M, Celma A, Santamaria A, Gonzalez L, Castro N, Suanes MDM, Hernández-Losa J, Nonell L, Peinado H, Carles J, Mateo J. Circulating tumor extracellular vesicles to monitor metastatic prostate cancer genomics and transcriptomic evolution. Cancer Cell 2024; 42:1301-1312.e7. [PMID: 38981440 DOI: 10.1016/j.ccell.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 04/11/2024] [Accepted: 06/07/2024] [Indexed: 07/11/2024]
Abstract
Extracellular vesicles (EVs) secreted by tumors are abundant in plasma, but their potential for interrogating the molecular features of tumors through multi-omic profiling remains widely unexplored. Genomic and transcriptomic profiling of circulating EV-DNA and EV-RNA isolated from in vitro and in vivo models of metastatic prostate cancer (mPC) reveal a high contribution of tumor material to EV-loaded DNA/RNA, validating the findings in two cohorts of longitudinal plasma samples collected from patients during androgen receptor signaling inhibitor (ARSI) or taxane-based therapy. EV-DNA genomic features recapitulate matched-patient biopsies and circulating tumor DNA (ctDNA) and associate with clinical progression. We develop a novel approach to enable transcriptomic profiling of EV-RNA (RExCuE). We report how the transcriptome of circulating EVs is enriched for tumor-associated transcripts, captures certain patient and tumor features, and reflects on-therapy tumor adaptation changes. Altogether, we show that EV profiling enables longitudinal transcriptomic and genomic profiling of mPC in liquid biopsy.
Collapse
Affiliation(s)
- Irene Casanova-Salas
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Daniel Aguilar
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Sarai Cordoba-Terreros
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Laura Agundez
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Julian Brandariz
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Nicolas Herranz
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Vall d'Hebron Institute of Research (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Alba Mas
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Macarena Gonzalez
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Vall d'Hebron University Hospital, Barcelona, Spain
| | - Rafael Morales-Barrera
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Vall d'Hebron University Hospital, Barcelona, Spain
| | - Alexandre Sierra
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Vall d'Hebron University Hospital, Barcelona, Spain
| | | | - Pablo Cresta
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Gisela Mir
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Sara Simonetti
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Gonçalo Rodrigues
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Sara Arce-Gallego
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Vall d'Hebron Institute of Research (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Luisa Delgado-Serrano
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Irene Agustí
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Elena Castellano-Sanz
- Microenvironment and Metastasis Laboratory, Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Richard Mast
- Vall d'Hebron University Hospital, Barcelona, Spain
| | | | - Ana Celma
- Vall d'Hebron Institute of Research (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Vall d'Hebron University Hospital, Barcelona, Spain
| | - Anna Santamaria
- Vall d'Hebron Institute of Research (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Vall d'Hebron University Hospital, Barcelona, Spain
| | - Lucila Gonzalez
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Natalia Castro
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Maria Del Mar Suanes
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Vall d'Hebron University Hospital, Barcelona, Spain
| | - Javier Hernández-Losa
- Vall d'Hebron Institute of Research (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Vall d'Hebron University Hospital, Barcelona, Spain
| | - Lara Nonell
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Hector Peinado
- Microenvironment and Metastasis Laboratory, Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Joan Carles
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Vall d'Hebron University Hospital, Barcelona, Spain
| | - Joaquin Mateo
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Vall d'Hebron University Hospital, Barcelona, Spain.
| |
Collapse
|
14
|
Norris R, Jones J, Mancini E, Chevassut T, Simoes FA, Pepper C, Pepper A, Mitchell S. Patient-specific computational models predict prognosis in B cell lymphoma by quantifying pro-proliferative and anti-apoptotic signatures from genetic sequencing data. Blood Cancer J 2024; 14:105. [PMID: 38965209 PMCID: PMC11224250 DOI: 10.1038/s41408-024-01090-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024] Open
Abstract
Genetic heterogeneity and co-occurring driver mutations impact clinical outcomes in blood cancers, but predicting the emergent effect of co-occurring mutations that impact multiple complex and interacting signalling networks is challenging. Here, we used mathematical models to predict the impact of co-occurring mutations on cellular signalling and cell fates in diffuse large B cell lymphoma and multiple myeloma. Simulations predicted adverse impact on clinical prognosis when combinations of mutations induced both anti-apoptotic (AA) and pro-proliferative (PP) signalling. We integrated patient-specific mutational profiles into personalised lymphoma models, and identified patients characterised by simultaneous upregulation of anti-apoptotic and pro-proliferative (AAPP) signalling in all genomic and cell-of-origin classifications (8-25% of patients). In a discovery cohort and two validation cohorts, patients with upregulation of neither, one (AA or PP), or both (AAPP) signalling states had good, intermediate and poor prognosis respectively. Combining AAPP signalling with genetic or clinical prognostic predictors reliably stratified patients into striking prognostic categories. AAPP patients in poor prognosis genetic clusters had 7.8 months median overall survival, while patients lacking both features had 90% overall survival at 120 months in a validation cohort. Personalised computational models enable identification of novel risk-stratified patient subgroups, providing a valuable tool for future risk-adapted clinical trials.
Collapse
Affiliation(s)
- Richard Norris
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Brighton, UK
| | - John Jones
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Brighton, UK
| | - Erika Mancini
- School of Life Sciences, University of Sussex, Brighton, UK
| | - Timothy Chevassut
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Brighton, UK
| | - Fabio A Simoes
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Brighton, UK
| | - Chris Pepper
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Brighton, UK
| | - Andrea Pepper
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Brighton, UK
| | - Simon Mitchell
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Brighton, UK.
| |
Collapse
|
15
|
Malard F, Neri P, Bahlis NJ, Terpos E, Moukalled N, Hungria VTM, Manier S, Mohty M. Multiple myeloma. Nat Rev Dis Primers 2024; 10:45. [PMID: 38937492 DOI: 10.1038/s41572-024-00529-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/16/2024] [Indexed: 06/29/2024]
Abstract
Multiple myeloma (MM) is a haematological lymphoid malignancy involving tumoural plasma cells and is usually characterized by the presence of a monoclonal immunoglobulin protein. MM is the second most common haematological malignancy, with an increasing global incidence. It remains incurable because most patients relapse or become refractory to treatments. MM is a genetically complex disease with high heterogeneity that develops as a multistep process, involving acquisition of genetic alterations in the tumour cells and changes in the bone marrow microenvironment. Symptomatic MM is diagnosed using the International Myeloma Working Group criteria as a bone marrow infiltration of ≥10% clonal plasma cells, and the presence of at least one myeloma-defining event, either standard CRAB features (hypercalcaemia, renal failure, anaemia and/or lytic bone lesions) or biomarkers of imminent organ damage. Younger and fit patients are considered eligible for transplant. They receive an induction, followed by consolidation with high-dose melphalan and autologous haematopoietic cell transplantation, and maintenance therapy. In older adults (ineligible for transplant), the combination of daratumumab, lenalidomide and dexamethasone is the preferred option. If relapse occurs and requires further therapy, the choice of therapy will be based on previous treatment and response and now includes immunotherapies, such as bi-specific monoclonal antibodies and chimeric antigen receptor T cell therapy.
Collapse
Affiliation(s)
- Florent Malard
- Sorbonne Université, Centre de Recherche Saint-Antoine INSERM UMRs938, Service d'Hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint Antoine, AP-HP, Paris, France.
| | - Paola Neri
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada
| | - Nizar J Bahlis
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada
| | - Evangelos Terpos
- Department of Clinical Therapeutics, Alexandra General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Nour Moukalled
- Bone Marrow Transplantation Program, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | | | - Salomon Manier
- Department of Hematology, Lille University Hospital and INSERM UMR-S1277 and CNRS UMR9020, Lille, France
| | - Mohamad Mohty
- Sorbonne Université, Centre de Recherche Saint-Antoine INSERM UMRs938, Service d'Hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint Antoine, AP-HP, Paris, France.
| |
Collapse
|
16
|
Nithun RV, Yao YM, Harel O, Habiballah S, Afek A, Jbara M. Site-Specific Acetylation of the Transcription Factor Protein Max Modulates Its DNA Binding Activity. ACS CENTRAL SCIENCE 2024; 10:1295-1303. [PMID: 38947213 PMCID: PMC11212134 DOI: 10.1021/acscentsci.4c00686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 07/02/2024]
Abstract
Chemical protein synthesis provides a powerful means to prepare novel modified proteins with precision down to the atomic level, enabling an unprecedented opportunity to understand fundamental biological processes. Of particular interest is the process of gene expression, orchestrated through the interactions between transcription factors (TFs) and DNA. Here, we combined chemical protein synthesis and high-throughput screening technology to decipher the role of post-translational modifications (PTMs), e.g., Lys-acetylation on the DNA binding activity of Max TF. We synthesized a focused library of singly, doubly, and triply modified Max variants including site-specifically acetylated and fluorescently tagged analogs. The resulting synthetic analogs were employed to decipher the molecular role of Lys-acetylation on the DNA binding activity and sequence specificity of Max. We provide evidence that the acetylation sites at Lys-31 and Lys-57 significantly inhibit the DNA binding activity of Max. Furthermore, by utilizing high-throughput binding measurements, we assessed the binding activities of the modified Max variants across diverse DNA sequences. Our results indicate that acetylation marks can alter the binding specificities of Max toward certain sequences flanking its consensus binding sites. Our work provides insight into the hidden molecular code of PTM-TFs and DNA interactions, paving the way to interpret gene expression regulation programs.
Collapse
Affiliation(s)
- Raj V. Nithun
- School
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978 Israel
| | - Yumi Minyi Yao
- Department
of Chemical and Structural Biology, Weizmann
Institute of Science, Rehovot, 7610001, Israel
| | - Omer Harel
- School
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978 Israel
| | - Shaimaa Habiballah
- School
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978 Israel
| | - Ariel Afek
- Department
of Chemical and Structural Biology, Weizmann
Institute of Science, Rehovot, 7610001, Israel
| | - Muhammad Jbara
- School
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978 Israel
| |
Collapse
|
17
|
Thompson PE, Shortt J. Defeating MYC with drug combinations or dual-targeting drugs. Trends Pharmacol Sci 2024; 45:490-502. [PMID: 38782688 DOI: 10.1016/j.tips.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024]
Abstract
Members of the MYC family of proteins are a major target for cancer drug discovery, but the development of drugs that block MYC-driven cancers has not yet been successful. Approaches to achieve success may include the development of combination therapies or dual-acting drugs that target MYC at multiple nodes. Such treatments hold the possibility of additive or synergistic activity, potentially reducing side effect profiles and the emergence of resistance. In this review, we examine the prominent MYC-related targets and highlight those that have been targeted in combination and/or dual-target approaches. Finally, we explore the challenges of combination and dual-target approaches from a drug development perspective.
Collapse
Affiliation(s)
- Philip E Thompson
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
| | - Jake Shortt
- Blood Cancer Therapeutics Laboratory, School of Clinical Sciences at Monash Health, Faculty of Medicine Nursing and Health Sciences, Monash University, Melbourne, Victoria 3168, Australia; Monash Hematology, Monash Health, Melbourne, Victoria 3168, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria 3000, Australia
| |
Collapse
|
18
|
Jin X, Li H, Zhang D, Liu S, Song Y, Zhang F, Li Z, Zhuang J. Myc rearrangement redefines the stratification of high-risk multiple myeloma. Cancer Med 2024; 13:e7194. [PMID: 38845529 PMCID: PMC11157166 DOI: 10.1002/cam4.7194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND Myc rearrangement (Myc-R) is a controversial factor linked to adverse outcomes in newly diagnosed multiple myeloma (NDMM). AIMS This study aimed to evaluate the impact of Myc-R on the prognosis of NDMM patients and its role in risk stratification compared with traditional high-risk cytogenetic abnormalities (HRCAs). MATERIALS & METHODS A total of 417 NDMM patients enrolled from May 2009 to September 2022 were included. Fluorescence in situ hybridization (FISH) was used to detect Myc-R and other Myc abnormalities (Myc-OA). Median progression-free survival (PFS) and overall survival (OS) were analyzed using Kaplan-Meier methods and log-rank tests. Multivariate Cox regression analysis was used to identify independent risk factors. RESULTS Myc-R was identified in 13.7% of patients, while 14.6% had Myc-OA. Patients with Myc-R had significantly shorter median PFS (15.9 months) and OS (25.1 months) compared with those with Myc-OA (24.5 months PFS; 29.8 months OS) and Myc-negative (Myc-N) status (29.8 months PFS, 29.8 months OS). Myc-R was independently associated with worse PFS and OS compared to Myc-OA. Patients with Myc-R alone had inferior median PFS (15.9 months vs. 28.1 months, p = 0.032) and OS (25.1 months vs. 61.2 months, p = 0.04) compared to those with traditional single HRCA. DISCUSSION The study suggests that traditional single HRCA may not significantly impact survival in NDMM patients. However, incorporating Myc rearrangement or traditional double/triple-hit HRCAs into the risk stratification model improves its predictive value, highlighting the importance of Myc rearrangement in risk assessment. CONCLUSION Myc rearrangement is an independent adverse prognostic factor in NDMM. The incorporation of Myc rearrangement or multiple HRCAs into risk stratification models improves their prognostic value, providing a novel perspective on high-risk factors in NDMM.
Collapse
Affiliation(s)
- Xianghong Jin
- Department of Hematology, Peking Union Medical College HospitalChinese Academy of Medical SciencesBeijingChina
- Department of Rare DiseasesPeking Union Medical College Hospital, Chinese Academy of Medical SciencesBeijingChina
| | - Hui Li
- Department of Hematology, Peking Union Medical College HospitalChinese Academy of Medical SciencesBeijingChina
| | - Dingding Zhang
- Medical Research Center, State Key laboratory of Complex Severe and Rare Diseases, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Shuangjiao Liu
- Department of Hematology, Peking Union Medical College HospitalChinese Academy of Medical SciencesBeijingChina
| | - Yuhang Song
- Department of Hematology, Peking Union Medical College HospitalChinese Academy of Medical SciencesBeijingChina
| | - Fujing Zhang
- Department of Hematology, Peking Union Medical College HospitalChinese Academy of Medical SciencesBeijingChina
| | - Ziping Li
- Department of Hematology, Peking Union Medical College HospitalChinese Academy of Medical SciencesBeijingChina
| | - Junling Zhuang
- Department of Hematology, Peking Union Medical College HospitalChinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
19
|
Cyberski TF, Singh A, Korzinkin M, Mishra V, Pun F, Shen L, Wing C, Cheng X, Baird B, Miao Y, Elkabets M, Kochanny S, Guo W, Dyer E, Pearson AT, Juloori A, Lingen M, Cole G, Zhavoronkov A, Agrawal N, Izumchenko E, Rosenberg AJ. Acquired resistance to immunotherapy and chemoradiation in MYC amplified head and neck cancer. NPJ Precis Oncol 2024; 8:114. [PMID: 38783041 PMCID: PMC11116544 DOI: 10.1038/s41698-024-00606-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
The proto-oncogene MYC encodes a nuclear transcription factor that has an important role in a variety of cellular processes, such as cell cycle progression, proliferation, metabolism, adhesion, apoptosis, and therapeutic resistance. MYC amplification is consistently observed in aggressive forms of several solid malignancies and correlates with poor prognosis and distant metastases. While the tumorigenic effects of MYC in patients with head and neck squamous cell carcinoma (HNSCC) are well known, the molecular mechanisms by which the amplification of this gene may confer treatment resistance, especially to immune checkpoint inhibitors, remains under-investigated. Here we present a unique case of a patient with recurrent/metastatic (R/M) HNSCC who, despite initial response to nivolumab-based treatment, developed rapidly progressive metastatic disease after the acquisition of MYC amplification. We conducted comparative transcriptomic analysis of this patient's tumor at baseline and upon progression to interrogate potential molecular processes through which MYC may confer resistance to immunotherapy and/or chemoradiation and used TCGA-HNSC dataset and an institutional cohort to further explore clinicopathologic features and key molecular networks associated with MYC amplification in HNSCC. This study highlights MYC amplification as a potential mechanism of immune checkpoint inhibitor resistance and suggest its use as a predictive biomarker and potential therapeutic target in R/M HNSCC.
Collapse
Affiliation(s)
- Thomas F Cyberski
- Pritzker School of Medicine, University of Chicago, Chicago, IL, USA
| | - Alka Singh
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, USA
| | | | - Vasudha Mishra
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, USA
| | - Frank Pun
- Insilico Medicine, Pak Shek Kok, Hong Kong
| | - Le Shen
- Department of Surgery, University of Chicago, Chicago, IL, USA
| | - Claudia Wing
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, USA
| | - Xiangying Cheng
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, USA
| | - Brandon Baird
- Department of Surgery, University of Chicago, Chicago, IL, USA
| | - Yuxuan Miao
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Moshe Elkabets
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Ben-Gurion University, Beer Sheva, Israel
| | - Sara Kochanny
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, USA
| | - Wenji Guo
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, USA
| | - Emma Dyer
- Harvard T.H. Chan School of Public Health, Cambridge, MA, USA
| | - Alexander T Pearson
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, USA
| | - Aditya Juloori
- Department of Radiation Oncology, University of Chicago, Chicago, IL, USA
| | - Mark Lingen
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Grayson Cole
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | | | - Nishant Agrawal
- Department of Surgery, University of Chicago, Chicago, IL, USA
| | - Evgeny Izumchenko
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, USA.
| | - Ari J Rosenberg
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
20
|
Jang GM, Annan Sudarsan AK, Shayeganmehr A, Prando Munhoz E, Lao R, Gaba A, Granadillo Rodríguez M, Love RP, Polacco BJ, Zhou Y, Krogan NJ, Kaake RM, Chelico L. Protein Interaction Map of APOBEC3 Enzyme Family Reveals Deamination-Independent Role in Cellular Function. Mol Cell Proteomics 2024; 23:100755. [PMID: 38548018 PMCID: PMC11070599 DOI: 10.1016/j.mcpro.2024.100755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 03/13/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024] Open
Abstract
Human APOBEC3 enzymes are a family of single-stranded (ss)DNA and RNA cytidine deaminases that act as part of the intrinsic immunity against viruses and retroelements. These enzymes deaminate cytosine to form uracil which can functionally inactivate or cause degradation of viral or retroelement genomes. In addition, APOBEC3s have deamination-independent antiviral activity through protein and nucleic acid interactions. If expression levels are misregulated, some APOBEC3 enzymes can access the human genome leading to deamination and mutagenesis, contributing to cancer initiation and evolution. While APOBEC3 enzymes are known to interact with large ribonucleoprotein complexes, the function and RNA dependence are not entirely understood. To further understand their cellular roles, we determined by affinity purification mass spectrometry (AP-MS) the protein interaction network for the human APOBEC3 enzymes and mapped a diverse set of protein-protein and protein-RNA mediated interactions. Our analysis identified novel RNA-mediated interactions between APOBEC3C, APOBEC3H Haplotype I and II, and APOBEC3G with spliceosome proteins, and APOBEC3G and APOBEC3H Haplotype I with proteins involved in tRNA methylation and ncRNA export from the nucleus. In addition, we identified RNA-independent protein-protein interactions with APOBEC3B, APOBEC3D, and APOBEC3F and the prefoldin family of protein-folding chaperones. Interaction between prefoldin 5 (PFD5) and APOBEC3B disrupted the ability of PFD5 to induce degradation of the oncogene cMyc, implicating the APOBEC3B protein interaction network in cancer. Altogether, the results uncover novel functions and interactions of the APOBEC3 family and suggest they may have fundamental roles in cellular RNA biology, their protein-protein interactions are not redundant, and there are protein-protein interactions with tumor suppressors, suggesting a role in cancer biology. Data are available via ProteomeXchange with the identifier PXD044275.
Collapse
Affiliation(s)
- Gwendolyn M Jang
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, California, USA; J. David Gladstone Institutes, Gladstone Institute for Data Science and Biotechnology, San Francisco, California, USA
| | - Arun Kumar Annan Sudarsan
- College of Medicine, Biochemistry, Microbiology & Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Arzhang Shayeganmehr
- College of Medicine, Biochemistry, Microbiology & Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Erika Prando Munhoz
- College of Medicine, Biochemistry, Microbiology & Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Reanna Lao
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, California, USA; J. David Gladstone Institutes, Gladstone Institute for Data Science and Biotechnology, San Francisco, California, USA
| | - Amit Gaba
- College of Medicine, Biochemistry, Microbiology & Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Milaid Granadillo Rodríguez
- College of Medicine, Biochemistry, Microbiology & Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Robin P Love
- College of Medicine, Biochemistry, Microbiology & Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Benjamin J Polacco
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, California, USA
| | - Yuan Zhou
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA; J. David Gladstone Institutes, Gladstone Institute for Data Science and Biotechnology, San Francisco, California, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, California, USA; J. David Gladstone Institutes, Gladstone Institute for Data Science and Biotechnology, San Francisco, California, USA
| | - Robyn M Kaake
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, California, USA; J. David Gladstone Institutes, Gladstone Institute for Data Science and Biotechnology, San Francisco, California, USA.
| | - Linda Chelico
- College of Medicine, Biochemistry, Microbiology & Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
21
|
Song X, Fang C, Dai Y, Sun Y, Qiu C, Lin X, Xu R. Cyclin-dependent kinase 7 (CDK7) inhibitors as a novel therapeutic strategy for different molecular types of breast cancer. Br J Cancer 2024; 130:1239-1248. [PMID: 38355840 PMCID: PMC11014910 DOI: 10.1038/s41416-024-02589-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/06/2024] [Accepted: 01/16/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Cyclin-dependent kinase (CDK) 7 is aberrantly overexpressed in many types of cancer and is an attractive target for cancer therapy due to its dual role in transcription and cell cycle progression. Moreover, CDK7 can directly modulate the activities of estrogen receptor (ER), which is a major driver in breast cancer. Breast cancer cells have exhibited high sensitivity to CDK7 inhibition in pre-clinical studies. METHODS In this review, we provide a comprehensive summary of the latest insights into CDK7 biology and recent advancements in CDK7 inhibitor development for breast cancer treatment. We also discuss the current application of CDK7 inhibitors in different molecular types of breast cancer to provide potential strategies for the treatment of breast cancer. RESULTS Significant progress has been made in the development of selective CDK7 inhibitors, which show efficacy in both triple-negative breast cancer (TNBC) and hormone receptor-positive breast cancer (HR+). Moreover, combined with other agents, CDK7 inhibitors may provide synergistic effects for endocrine therapy and chemotherapy. Thus, high-quality studies for developing potent CDK7 inhibitors and investigating their applications in breast cancer therapy are rapidly emerging. CONCLUSION CDK7 inhibitors have emerged as a promising therapeutic strategy and have demonstrated significant anti-cancer activity in different subtypes of breast cancer, especially those that have been resistant to current therapies.
Collapse
Affiliation(s)
- Xue Song
- Department of Breast Cancer, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Chen Fang
- Department of Breast Cancer, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Yan Dai
- Department of Breast Cancer, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Yang Sun
- Department of Breast Cancer, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Chang Qiu
- Department of Breast Cancer, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Xiaojie Lin
- Department of Breast Cancer, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Rui Xu
- Department of Breast Cancer, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China.
| |
Collapse
|
22
|
Zhang Y, Shan L, Tang W, Ge Y, Li C, Zhang J. Recent Discovery and Development of Inhibitors that Target CDK9 and Their Therapeutic Indications. J Med Chem 2024; 67:5185-5215. [PMID: 38564299 DOI: 10.1021/acs.jmedchem.4c00312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
CDK9 is a cyclin-dependent kinase that plays pivotal roles in multiple cellular functions including gene transcription, cell cycle regulation, DNA damage repair, and cellular differentiation. Targeting CDK9 is considered an attractive strategy for antitumor therapy, especially for leukemia and lymphoma. Several potent small molecule inhibitors, exemplified by TG02 (4), have progressed to clinical trials. However, many of them face challenges such as low clinical efficacy and multiple adverse reactions and may necessitate the exploration of novel strategies to lead to success in the clinic. In this perspective, we present a comprehensive overview of the structural characteristics, biological functions, and preclinical status of CDK9 inhibitors. Our focus extends to various types of inhibitors, including pan-inhibitors, selective inhibitors, dual-target inhibitors, degraders, PPI inhibitors, and natural products. The discussion encompasses chemical structures, structure-activity relationships (SARs), biological activities, selectivity, and therapeutic potential, providing detailed insight into the diverse landscape of CDK9 inhibitors.
Collapse
Affiliation(s)
- Yuming Zhang
- Department of Neurology, Neuro-system and Multimorbidity Laboratory and State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
- West China College of Medicine, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Lianhai Shan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031 Sichuan, China
| | - Wentao Tang
- Department of Neurology, Neuro-system and Multimorbidity Laboratory and State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Yating Ge
- Department of Neurology, Neuro-system and Multimorbidity Laboratory and State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - ChengXian Li
- Department of Neurology, Neuro-system and Multimorbidity Laboratory and State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Jifa Zhang
- Department of Neurology, Neuro-system and Multimorbidity Laboratory and State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| |
Collapse
|
23
|
Wang X, Cornish AE, Do MH, Brunner JS, Hsu TW, Xu Z, Malik I, Edwards C, Capistrano KJ, Zhang X, Ginsberg MH, Finley LWS, Lim MS, Horwitz SM, Li MO. Onco-Circuit Addiction and Onco-Nutrient mTORC1 Signaling Vulnerability in a Model of Aggressive T Cell Malignancy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.03.587917. [PMID: 38617314 PMCID: PMC11014592 DOI: 10.1101/2024.04.03.587917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
How genetic lesions drive cell transformation and whether they can be circumvented without compromising function of non-transformed cells are enduring questions in oncology. Here we show that in mature T cells-in which physiologic clonal proliferation is a cardinal feature- constitutive MYC transcription and Tsc1 loss in mice modeled aggressive human malignancy by reinforcing each other's oncogenic programs. This cooperation was supported by MYC-induced large neutral amino acid transporter chaperone SLC3A2 and dietary leucine, which in synergy with Tsc1 deletion overstimulated mTORC1 to promote mitochondrial fitness and MYC protein overexpression in a positive feedback circuit. A low leucine diet was therapeutic even in late-stage disease but did not hinder T cell immunity to infectious challenge, nor impede T cell transformation driven by constitutive nutrient mTORC1 signaling via Depdc5 loss. Thus, mTORC1 signaling hypersensitivity to leucine as an onco-nutrient enables an onco-circuit, decoupling pathologic from physiologic utilization of nutrient acquisition pathways.
Collapse
|
24
|
Maura F, Bergsagel PL. Molecular Pathogenesis of Multiple Myeloma: Clinical Implications. Hematol Oncol Clin North Am 2024; 38:267-279. [PMID: 38199896 DOI: 10.1016/j.hoc.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Multiple myeloma is a malignancy of bone-marrow-localized, isotype-switched plasma cells that secrete a monoclonal immunoglobulin and cause hyperCalcemia, Anemia, Renal failure, and lytic Bone disease. It is preceded, often for decades, by a relatively stable monoclonal gammopathy lacking these clinical and malignant features. Both conditions are characterized by the presence of types of immunoglobulin heavy gene translocations that dysregulate a cyclin D family gene on 11q13 (CCND1), 6p21 (CCND3), or 12q11 (CCND2), a maf family gene on 16q23 (MAF), 20q11 (MAFB), or 8q24 (MAFA), or NSD2/FGFR3 on 4p16, or the presence of hyperdiploidy. Subsequent loss of function of tumor suppressor genes and mutations activating MYC, RAS, NFkB, and cell cycle pathways are associated with the progression to malignant disease.
Collapse
Affiliation(s)
- Francesco Maura
- University of Miami, 1120 Northwest 14th Street, Miami, FL 33136, USA.
| | | |
Collapse
|
25
|
Chatterjee S, Prashanth P, Rawat V, Ghosh Roy S. Regulation of lipid and serine metabolism by the oncogene c-Myc. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 389:236-256. [PMID: 39396848 DOI: 10.1016/bs.ircmb.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Tumor formation is supported by metabolic reprogramming, characterized by increase nutrient uptake, glycolysis and glutaminolysis. The c-Myc proto-oncogene is a transcription factor, upregulated in most cancers and several reports showed the role of c-Myc in other metabolic pathways such as glucose, amino acid, and nucleotide metabolism. In this short report, we tried to summarize the existing takeaway points from studies conducted in different cancer types with respect to c-Myc and lipid and serine metabolism. Here, we report that c-Myc can activate both lipid and serine metabolism against the backdrop of tumor formation, and different therapies like aspirin and lomitapide target the links between c-Myc and metabolism to slow down tumor progression and invasion. We also report diverse upstream regulators that influence c-Myc in different cancers, and interestingly components of the lipid metabolism (like lipid phosphate phosphatase and leptin) and serine metabolism can also act upstream of c-Myc in certain occasions. Finally, we also summarize the existing knowledge on the involvement of epigenetic pathways and non-coding RNAs in regulating lipid and serine metabolism and c-Myc in tumor cells. Identification of non-coding factors and epigenetic mechanisms present a promising avenue of study that could empower researchers with novel anticancer treatment targeting c-Myc and lipid and serine metabolism pathways!
Collapse
Affiliation(s)
- Subhajit Chatterjee
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Prarthana Prashanth
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, IL, United States
| | - Vipin Rawat
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, IL, United States.
| | - Sounak Ghosh Roy
- Henry M Jackson Foundation for the Advancement of Military Medicine (In Support of Agile Vaccines & Therapeutics, Directorate for Defense Infectious Diseases Research, Naval Medical Research Command, Silver Spring, MD, United States.
| |
Collapse
|
26
|
Jablonowski CM, Quarni W, Singh S, Tan H, Bostanthirige DH, Jin H, Fang J, Chang TC, Finkelstein D, Cho JH, Hu D, Pagala V, Sakurada SM, Pruett-Miller SM, Wang R, Murphy A, Freeman K, Peng J, Davidoff AM, Wu G, Yang J. Metabolic reprogramming of cancer cells by JMJD6-mediated pre-mRNA splicing associated with therapeutic response to splicing inhibitor. eLife 2024; 12:RP90993. [PMID: 38488852 PMCID: PMC10942784 DOI: 10.7554/elife.90993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024] Open
Abstract
Dysregulated pre-mRNA splicing and metabolism are two hallmarks of MYC-driven cancers. Pharmacological inhibition of both processes has been extensively investigated as potential therapeutic avenues in preclinical and clinical studies. However, how pre-mRNA splicing and metabolism are orchestrated in response to oncogenic stress and therapies is poorly understood. Here, we demonstrate that jumonji domain containing 6, arginine demethylase, and lysine hydroxylase, JMJD6, acts as a hub connecting splicing and metabolism in MYC-driven human neuroblastoma. JMJD6 cooperates with MYC in cellular transformation of murine neural crest cells by physically interacting with RNA binding proteins involved in pre-mRNA splicing and protein homeostasis. Notably, JMJD6 controls the alternative splicing of two isoforms of glutaminase (GLS), namely kidney-type glutaminase (KGA) and glutaminase C (GAC), which are rate-limiting enzymes of glutaminolysis in the central carbon metabolism in neuroblastoma. Further, we show that JMJD6 is correlated with the anti-cancer activity of indisulam, a 'molecular glue' that degrades splicing factor RBM39, which complexes with JMJD6. The indisulam-mediated cancer cell killing is at least partly dependent on the glutamine-related metabolic pathway mediated by JMJD6. Our findings reveal a cancer-promoting metabolic program is associated with alternative pre-mRNA splicing through JMJD6, providing a rationale to target JMJD6 as a therapeutic avenue for treating MYC-driven cancers.
Collapse
Affiliation(s)
| | - Waise Quarni
- Department of Surgery, St Jude Children’s Research HospitalMemphisUnited States
| | - Shivendra Singh
- Department of Surgery, St Jude Children’s Research HospitalMemphisUnited States
| | - Haiyan Tan
- Center for Proteomics and Metabolomics, St Jude Children's Research HospitalMemphisUnited States
| | | | - Hongjian Jin
- Center for Applied Bioinformatics, St Jude Children’s Research HospitalMemphisUnited States
| | - Jie Fang
- Department of Surgery, St Jude Children’s Research HospitalMemphisUnited States
| | - Ti-Cheng Chang
- Center for Applied Bioinformatics, St Jude Children’s Research HospitalMemphisUnited States
| | - David Finkelstein
- Center for Applied Bioinformatics, St Jude Children’s Research HospitalMemphisUnited States
| | - Ji-Hoon Cho
- Center for Proteomics and Metabolomics, St Jude Children's Research HospitalMemphisUnited States
| | - Dongli Hu
- Department of Surgery, St Jude Children’s Research HospitalMemphisUnited States
| | - Vishwajeeth Pagala
- Center for Proteomics and Metabolomics, St Jude Children's Research HospitalMemphisUnited States
| | - Sadie Miki Sakurada
- Department of Cell and Molecular Biology, St Jude Children's Research HospitalMemphisUnited States
| | - Shondra M Pruett-Miller
- Department of Cell and Molecular Biology, St Jude Children's Research HospitalMemphisUnited States
| | - Ruoning Wang
- Center for Childhood Cancer and Blood Disease, Abigail Wexner Research Institute, Nationwide Children’s HospitalColumbusUnited States
| | - Andrew Murphy
- Department of Surgery, St Jude Children’s Research HospitalMemphisUnited States
| | - Kevin Freeman
- Genetics, Genomics & Informatics, The University of Tennessee Health Science Center (UTHSC)MemphisUnited States
| | - Junmin Peng
- Department of Structural Biology, St Jude Children’s Research HospitalMemphisUnited States
| | - Andrew M Davidoff
- Department of Surgery, St Jude Children’s Research HospitalMemphisUnited States
- St Jude Graduate School of Biomedical Sciences, St Jude Children’s Research HospitalMemphisUnited States
- Department of Pathology and Laboratory Medicine, College of Medicine, The University of Tennessee Health Science CenterMemphisUnited States
| | - Gang Wu
- Center for Applied Bioinformatics, St Jude Children’s Research HospitalMemphisUnited States
| | - Jun Yang
- Department of Surgery, St Jude Children’s Research HospitalMemphisUnited States
- St Jude Graduate School of Biomedical Sciences, St Jude Children’s Research HospitalMemphisUnited States
- Department of Pathology and Laboratory Medicine, College of Medicine, The University of Tennessee Health Science CenterMemphisUnited States
- College of Graduate Health Sciences, University of Tennessee Health Science CenterMemphisUnited States
| |
Collapse
|
27
|
Papadimitropoulou A, Makri M, Zoidis G. MYC the oncogene from hell: Novel opportunities for cancer therapy. Eur J Med Chem 2024; 267:116194. [PMID: 38340508 DOI: 10.1016/j.ejmech.2024.116194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024]
Abstract
Cancer comprises a heterogeneous disease, characterized by diverse features such as constitutive expression of oncogenes and/or downregulation of tumor suppressor genes. MYC constitutes a master transcriptional regulator, involved in many cellular functions and is aberrantly expressed in more than 70 % of human cancers. The Myc protein belongs to a family of transcription factors whose structural pattern is referred to as basic helix-loop-helix-leucine zipper. Myc binds to its partner, a smaller protein called Max, forming an Myc:Max heterodimeric complex that interacts with specific DNA recognition sequences (E-boxes) and regulates the expression of downstream target genes. Myc protein plays a fundamental role for the life of a cell, as it is involved in many physiological functions such as proliferation, growth and development since it controls the expression of a very large percentage of genes (∼15 %). However, despite the strict control of MYC expression in normal cells, MYC is often deregulated in cancer, exhibiting a key role in stimulating oncogenic process affecting features such as aberrant proliferation, differentiation, angiogenesis, genomic instability and oncogenic transformation. In this review we aim to meticulously describe the fundamental role of MYC in tumorigenesis and highlight its importance as an anticancer drug target. We focus mainly on the different categories of novel small molecules that act as inhibitors of Myc function in diverse ways hence offering great opportunities for an efficient cancer therapy. This knowledge will provide significant information for the development of novel Myc inhibitors and assist to the design of treatments that would effectively act against Myc-dependent cancers.
Collapse
Affiliation(s)
- Adriana Papadimitropoulou
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, 11527, Greece
| | - Maria Makri
- Division of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, GR-15771, Athens, Greece
| | - Grigoris Zoidis
- Division of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, GR-15771, Athens, Greece.
| |
Collapse
|
28
|
Lama D, Vosselman T, Sahin C, Liaño-Pons J, Cerrato CP, Nilsson L, Teilum K, Lane DP, Landreh M, Arsenian Henriksson M. A druggable conformational switch in the c-MYC transactivation domain. Nat Commun 2024; 15:1865. [PMID: 38424045 PMCID: PMC10904854 DOI: 10.1038/s41467-024-45826-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024] Open
Abstract
The c-MYC oncogene is activated in over 70% of all human cancers. The intrinsic disorder of the c-MYC transcription factor facilitates molecular interactions that regulate numerous biological pathways, but severely limits efforts to target its function for cancer therapy. Here, we use a reductionist strategy to characterize the dynamic and structural heterogeneity of the c-MYC protein. Using probe-based Molecular Dynamics (MD) simulations and machine learning, we identify a conformational switch in the c-MYC amino-terminal transactivation domain (termed coreMYC) that cycles between a closed, inactive, and an open, active conformation. Using the polyphenol epigallocatechin gallate (EGCG) to modulate the conformational landscape of coreMYC, we show through biophysical and cellular assays that the induction of a closed conformation impedes its interactions with the transformation/transcription domain-associated protein (TRRAP) and the TATA-box binding protein (TBP) which are essential for the transcriptional and oncogenic activities of c-MYC. Together, these findings provide insights into structure-activity relationships of c-MYC, which open avenues towards the development of shape-shifting compounds to target c-MYC as well as other disordered transcription factors for cancer treatment.
Collapse
Affiliation(s)
- Dilraj Lama
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Biomedicum, SE-17165, Stockholm, Sweden.
| | - Thibault Vosselman
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Biomedicum, SE-17165, Stockholm, Sweden
| | - Cagla Sahin
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Biomedicum, SE-17165, Stockholm, Sweden
- Department of Biology, Structural Biology and NMR Laboratory and the Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Judit Liaño-Pons
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Biomedicum, SE-17165, Stockholm, Sweden
| | - Carmine P Cerrato
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Biomedicum, SE-17165, Stockholm, Sweden
| | - Lennart Nilsson
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-14813, Huddinge, Sweden
| | - Kaare Teilum
- Department of Biology, Structural Biology and NMR Laboratory and the Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - David P Lane
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Biomedicum, SE-17165, Stockholm, Sweden
| | - Michael Landreh
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Biomedicum, SE-17165, Stockholm, Sweden.
- Department of Cell- and Molecular Biology, Uppsala University, SE-751 24, Uppsala, Sweden.
| | - Marie Arsenian Henriksson
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Biomedicum, SE-17165, Stockholm, Sweden.
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, SE-221 00, Lund, Sweden.
| |
Collapse
|
29
|
Jang GM, Sudarsan AKA, Shayeganmehr A, Munhoz EP, Lao R, Gaba A, Rodríguez MG, Love RP, Polacco BJ, Zhou Y, Krogan NJ, Kaake RM, Chelico L. Protein interaction map of APOBEC3 enzyme family reveals deamination-independent role in cellular function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579137. [PMID: 38370690 PMCID: PMC10871184 DOI: 10.1101/2024.02.06.579137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Human APOBEC3 enzymes are a family of single-stranded (ss)DNA and RNA cytidine deaminases that act as part of the intrinsic immunity against viruses and retroelements. These enzymes deaminate cytosine to form uracil which can functionally inactivate or cause degradation of viral or retroelement genomes. In addition, APOBEC3s have deamination independent antiviral activity through protein and nucleic acid interactions. If expression levels are misregulated, some APOBEC3 enzymes can access the human genome leading to deamination and mutagenesis, contributing to cancer initiation and evolution. While APOBEC3 enzymes are known to interact with large ribonucleoprotein complexes, the function and RNA dependence is not entirely understood. To further understand their cellular roles, we determined by affinity purification mass spectrometry (AP-MS) the protein interaction network for the human APOBEC3 enzymes and map a diverse set of protein-protein and protein-RNA mediated interactions. Our analysis identified novel RNA-mediated interactions between APOBEC3C, APOBEC3H Haplotype I and II, and APOBEC3G with spliceosome proteins, and APOBEC3G and APOBEC3H Haplotype I with proteins involved in tRNA methylation and ncRNA export from the nucleus. In addition, we identified RNA-independent protein-protein interactions with APOBEC3B, APOBEC3D, and APOBEC3F and the prefoldin family of protein folding chaperones. Interaction between prefoldin 5 (PFD5) and APOBEC3B disrupted the ability of PFD5 to induce degradation of the oncogene cMyc, implicating the APOBEC3B protein interaction network in cancer. Altogether, the results uncover novel functions and interactions of the APOBEC3 family and suggest they may have fundamental roles in cellular RNA biology, their protein-protein interactions are not redundant, and there are protein-protein interactions with tumor suppressors, suggesting a role in cancer biology.
Collapse
Affiliation(s)
- Gwendolyn M. Jang
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Arun Kumar Annan Sudarsan
- University of Saskatchewan, College of Medicine, Biochemistry, Microbiology & Immunology, Saskatoon, Saskatchewan, Canada
- Current Address: Centre for Commercialization of Regenerative Medicine (CCRM), 661 University Ave #1002, Toronto, ON M5G 1M1
| | - Arzhang Shayeganmehr
- University of Saskatchewan, College of Medicine, Biochemistry, Microbiology & Immunology, Saskatoon, Saskatchewan, Canada
| | - Erika Prando Munhoz
- University of Saskatchewan, College of Medicine, Biochemistry, Microbiology & Immunology, Saskatoon, Saskatchewan, Canada
- Current Address: Department of Medicine, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW Calgary, AB T2N 4N1
| | - Reanna Lao
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Amit Gaba
- University of Saskatchewan, College of Medicine, Biochemistry, Microbiology & Immunology, Saskatoon, Saskatchewan, Canada
| | - Milaid Granadillo Rodríguez
- University of Saskatchewan, College of Medicine, Biochemistry, Microbiology & Immunology, Saskatoon, Saskatchewan, Canada
| | - Robin P. Love
- University of Saskatchewan, College of Medicine, Biochemistry, Microbiology & Immunology, Saskatoon, Saskatchewan, Canada
- Current Address: Faculty of Medicine & Dentistry, Department of Medicine, TB Program Evaluation & Research Unit, University of Alberta, 11402 University Avenue NW, Edmonton, AB, T6G 2J3
| | - Benjamin J. Polacco
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
| | - Yuan Zhou
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Nevan J. Krogan
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Robyn M. Kaake
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Linda Chelico
- University of Saskatchewan, College of Medicine, Biochemistry, Microbiology & Immunology, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
30
|
Jari M, Abdoli S, Bazi Z, Shamsabadi FT, Roshanmehr F, Shahbazi M. Enhancing protein production and growth in chinese hamster ovary cells through miR-107 overexpression. AMB Express 2024; 14:16. [PMID: 38302631 PMCID: PMC10834913 DOI: 10.1186/s13568-024-01670-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/16/2024] [Indexed: 02/03/2024] Open
Abstract
Chinese Hamster Ovary (CHO) cells are widely employed as host cells for biopharmaceutical production. The manufacturing of biopharmaceuticals poses several challenges, including restricted growth potential and inadequate productivity of the host cells. MicroRNAs play a crucial role in regulating gene expression and are considered highly promising tools for cell engineering to enhance protein production. Our study aimed to evaluate the effects of miR-107, which is recognized as an onco-miR, on erythropoietin-producing CHO cells (CHO-hEPO). To assess the impact of miR-107 on CHO cells, a DNA plasmid containing miR-107 was introduced to CHO-hEPO cells through transfection. Cell proliferation and viability were assessed using the trypan blue dye exclusion method. Cell cycle analysis was conducted by utilizing propidium iodide (PI) staining. The quantification of EPO was determined using an immunoassay test. Moreover, the impact of miR-107 on the expression of downstream target genes was evaluated using qRT-PCR. Our findings highlight and underscore the substantial impact of transient miR-107 overexpression, which led to a remarkable 2.7-fold increase in EPO titers and a significant 1.6-fold increase in the specific productivity of CHO cells (p < 0.01). Furthermore, this intervention resulted in significant enhancements in cell viability and growth rate (p < 0.05). Intriguingly, the overexpression of miR‑107 was linked to the downregulation of LATS2, PTEN, and TSC1 genes while concurrently driving upregulation in transcript levels of MYC, YAP, mTOR, and S6K genes within transgenic CHO cells. In conclusion, this study collectively underscores the feasibility of utilizing cancer-associated miRNAs as a powerful tool for CHO cell engineering. However, more in-depth exploration is warranted to unravel the precise molecular intricacies of miR-107's effects in the context of CHO cells.
Collapse
Affiliation(s)
- Maryam Jari
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Shastkola Road, Falsafi Complex, Gorgan, Zip code: 4934174611, Iran
- Department of Medical Biotechnology School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Shahriyar Abdoli
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Shastkola Road, Falsafi Complex, Gorgan, Zip code: 4934174611, Iran
- Department of Medical Biotechnology School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Zahra Bazi
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Shastkola Road, Falsafi Complex, Gorgan, Zip code: 4934174611, Iran
- Department of Medical Biotechnology School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Fatemeh Tash Shamsabadi
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Shastkola Road, Falsafi Complex, Gorgan, Zip code: 4934174611, Iran
- Department of Medical Biotechnology School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Farnaz Roshanmehr
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Shastkola Road, Falsafi Complex, Gorgan, Zip code: 4934174611, Iran
- Department of Medical Biotechnology School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Majid Shahbazi
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Shastkola Road, Falsafi Complex, Gorgan, Zip code: 4934174611, Iran.
- AryaTina Gene (ATG) Biopharmaceutical Company Gorgan, Gorgan, Iran.
| |
Collapse
|
31
|
Lin X, Harel O, Jbara M. Chemical Engineering of Artificial Transcription Factors by Orthogonal Palladium(II)-Mediated S-Arylation Reactions. Angew Chem Int Ed Engl 2024; 63:e202317511. [PMID: 38085105 DOI: 10.1002/anie.202317511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Indexed: 12/23/2023]
Abstract
Site-selective functionalization strategies are in high demand to prepare well-defined homogeneous proteins for basic research and biomedical applications. In this regard, cysteine-based reactions have enabled a broad set of transformations to produce modified proteins for various applications. However, these approaches were mainly employed to modify a single reactive site with a specific transformation. Achieving site selectivity or multiple transformations, essential for preparing complex biomolecules, remains challenging. Herein we demonstrate the power of combining palladium(II)-mediated C-S bond formation and C-S bond cleavage reactions to selectively edit desired cysteine sites in complex and uniquely modified proteins. We developed an orthogonal palladium(II) strategy for rapid and effective diversification of multiple cysteine sites (3-6 residues) with various transformations. Importantly, we employed our approach to prepare 10 complex analogues, including modified, stapled, and multimeric proteins on a milligram scale. Furthermore, we also synthesized a focused library of stabilized artificial transcription factors that displayed enhanced stability and potent DNA binding activity. Our approach enables rapid and effective protein editing and opens new avenues to engineer new biomolecules for fundamental research and therapeutic applications.
Collapse
Affiliation(s)
- Xiaoxi Lin
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Omer Harel
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Muhammad Jbara
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| |
Collapse
|
32
|
Zhang E, Chen Z, Liu W, Lin L, Wu L, Guan J, Wang J, Kong C, Bi J, Zhang M. NCAPG2 promotes prostate cancer malignancy and stemness via STAT3/c-MYC signaling. J Transl Med 2024; 22:12. [PMID: 38166947 PMCID: PMC10763290 DOI: 10.1186/s12967-023-04834-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Prostate cancer (PCa) is the second leading cause of cancer-related mortality among men worldwide, and its incidence has risen substantially in recent years. Therefore, there is an urgent need to identify novel biomarkers and precise therapeutic targets for managing PCa progression and recurrence. METHODS We investigated the clinical significance of NCAPG2 in PCa by exploring public datasets and our tissue microarray. Receiver operating characteristic (ROC) curve and survival analyses were performed to evaluate the correlation between NCAPG2 and PCa progression. Cell proliferation, wound healing, transwell, flow cytometry, cell cycle, tumor sphere formation, immunofluorescence (IF), co-immunoprecipitation (co-IP), and chromatin immunoprecipitation (ChIP) assays were conducted to further elucidate the molecular mechanism of NCAPG2 in PCa. Subcutaneous and orthotopic xenograft models were applied to investigate the effects of NCAPG2 on PCa proliferation in vivo. Tandem mass tag (TMT) quantitative proteomics was utilized to detect proteomic changes under NCAPG2 overexpression. RESULTS NCAPG2 was significantly upregulated in PCa, and its overexpression was associated with PCa progression and unfavorable prognosis. Knockdown of NCAPG2 inhibited the malignant behavior of PCa cells, whereas its overexpression promoted PCa aggressiveness. NCAPG2 depletion attenuated the development and growth of PCa in vivo. TMT quantitative proteomics analyses indicated that c-MYC activity was strongly correlated with NCAPG2 expression. The malignancy-promoting effect of NCAPG2 in PCa was mediated via c-MYC. NCAPG2 could directly bind to STAT3 and induce STAT3 occupancy on the MYC promoter, thus to transcriptionally activate c-MYC expression. Finally, we identified that NCAPG2 was positively correlated with cancer stem cell (CSC) markers and enhanced self-renewal capacity of PCa cells. CONCLUSIONS NCAPG2 is highly expressed in PCa, and its level is significantly associated with PCa prognosis. NCAPG2 promotes PCa malignancy and drives cancer stemness via the STAT3/c-MYC signaling axis, highlighting its potential as a therapeutic target for PCa.
Collapse
Affiliation(s)
- Enchong Zhang
- Department of Urology, Shenjing Hospital of China Medical University, Shenyang, China
| | - Zhengjie Chen
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
- Institute of Urology, China Medical University, Shenyang, China
| | - Wangmin Liu
- Department of Urology, Shenjing Hospital of China Medical University, Shenyang, China
| | - Lin Lin
- Department of Urology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Lina Wu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Johnny Guan
- Department of Urology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jianfeng Wang
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
- Institute of Urology, China Medical University, Shenyang, China
| | - Chuize Kong
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
- Institute of Urology, China Medical University, Shenyang, China
| | - Jianbin Bi
- Department of Urology, The First Hospital of China Medical University, Shenyang, China.
- Institute of Urology, China Medical University, Shenyang, China.
| | - Mo Zhang
- Department of Urology, The First Hospital of China Medical University, Shenyang, China.
- Institute of Urology, China Medical University, Shenyang, China.
| |
Collapse
|
33
|
Zak T, Santana-Santos L, Gao J, Behdad A, Aqil B, Wolniak K, Lu X, Ji P, Chen Q, Chen YH, Karmali R, Sukhanova M. Prognostic significance of copy number gains of MYC detected by fluorescence in situ hybridization in large B-cell lymphoma. Leuk Lymphoma 2024; 65:26-36. [PMID: 37794791 DOI: 10.1080/10428194.2023.2264429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/20/2023] [Indexed: 10/06/2023]
Abstract
The MYC protooncogene plays a critical role in many cellular processes. MYC translocations are recurrent in large B-cell lymphomas (LBCLs) where they exhibit a negative effect on survival. Gain of MYC copies is also frequently identified; however, there is no consensus on the frequency and prognostic significance of MYC copy gains. We collected FISH data for MYC with reflex testing for BCL2 and BCL6 and IHC results at diagnosis for a cohort of 396 de novo and transformed LBCL cases and compared progression-free (PFS) and overall survival (OS) to determine the prognostic impact of extra MYC copies. The prevalence of cases with MYC copy number gain was 20.9%. PFS was shorter for patients with ≥5 MYC copies compared to controls (p = 0.0005, HR = 2.25). .MYC gain trended towards worse OS; patients with ≥7MYC copies had worse OS (p = 0.013), similar to patients with MYC translocations. We propose that MYC gain represents a dose-dependent prognostic factor for LBCLs.
Collapse
Affiliation(s)
- Taylor Zak
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Lucas Santana-Santos
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Juehua Gao
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Amir Behdad
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Barina Aqil
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Kristy Wolniak
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Xinyan Lu
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Peng Ji
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Qing Chen
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yi-Hua Chen
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Reem Karmali
- Department of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Madina Sukhanova
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
34
|
Hamilton G, Stickler S, Rath B. Bromodomain Protein-directed Agents and MYC in Small Cell Lung Cancer. Curr Cancer Drug Targets 2024; 24:930-940. [PMID: 38275056 DOI: 10.2174/0115680096272757231211113206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/17/2023] [Accepted: 11/13/2023] [Indexed: 01/27/2024]
Abstract
Small cell lung cancer (SCLC) has a dismal prognosis. In addition to the inactivation of the tumor suppressors TP53 and RB1, tumor-promoting MYC and paralogs are frequently overexpressed in this neuroendocrine carcinoma. SCLC exhibits high resistance to second-line chemotherapy and all attempts of novel drugs and targeted therapy have failed so far to achieve superior survival. MYC and paralogs have key roles in the oncogenic process, orchestrating proliferation, apoptosis, differentiation, and metabolism. In SCLC, MYC-L and MYC regulate the neuroendocrine dedifferentiation of SCLC cells from Type A (ASCL1 expression) to the other SCLC subtypes. Targeting MYC to suppress tumor growth is difficult due to the lack of suitable binding pockets and the most advanced miniprotein inhibitor Omomyc exhibits limited efficacy. MYC may be targeted indirectly via the bromodomain (BET) protein BRD4, which activates MYC transcription, by specific BET inhibitors that reduce the expression of this oncogenic driver. Here, novel BET-directed Proteolysis Targeting Chimeras (PROTACs) are discussed that show high antiproliferative activity in SCLC. Particularly, ARV-825, targeting specifically BRD4, exhibits superior cytotoxic effects on SCLC cell lines and may become a valuable adjunct to SCLC combination chemotherapy.
Collapse
Affiliation(s)
- Gerhard Hamilton
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Sandra Stickler
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Barbara Rath
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
35
|
Knutsen E, Das Sajib S, Fiskaa T, Lorens J, Gudjonsson T, Mælandsmo GM, Johansen SD, Seternes OM, Perander M. Identification of a core EMT signature that separates basal-like breast cancers into partial- and post-EMT subtypes. Front Oncol 2023; 13:1249895. [PMID: 38111531 PMCID: PMC10726128 DOI: 10.3389/fonc.2023.1249895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/13/2023] [Indexed: 12/20/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a cellular plasticity program critical for embryonic development and tissue regeneration, and aberrant EMT is associated with disease including cancer. The high degree of plasticity in the mammary epithelium is reflected in extensive heterogeneity among breast cancers. Here, we have analyzed RNA-sequencing data from three different mammary epithelial cell line-derived EMT models and identified a robust mammary EMT gene expression signature that separates breast cancers into distinct subgroups. Most strikingly, the basal-like breast cancers form two subgroups displaying partial-EMT and post-EMT gene expression patterns. We present evidence that key EMT-associated transcription factors play distinct roles at different stages of EMT in mammary epithelial cells.
Collapse
Affiliation(s)
- Erik Knutsen
- Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
- Centre for Clinical Research and Education, University Hospital of North Norway, Tromsø, Norway
| | - Saikat Das Sajib
- Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
| | - Tonje Fiskaa
- Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
| | - James Lorens
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Thorarinn Gudjonsson
- Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Hematology, Landspitali, University Hospital, Reykjavik, Iceland
| | - Gunhild M. Mælandsmo
- Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Steinar Daae Johansen
- Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
- Genomics Division, Faculty of Bioscience and Aquaculture, Nord University, Bodø, Norway
| | - Ole-Morten Seternes
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Maria Perander
- Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
- Centre for Clinical Research and Education, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|
36
|
Wang H, Stevens T, Lu J, Roberts A, Land CV, Muzumdar R, Gong Z, Vockley J, Prochownik EV. The Myc-Like Mlx Network Impacts Aging and Metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.26.568749. [PMID: 38076995 PMCID: PMC10705233 DOI: 10.1101/2023.11.26.568749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The "Mlx" and "Myc" Networks share many common gene targets. Just as Myc's activity depends upon its heterodimerization with Max, the Mlx Network requires that the Max-like factor Mlx associate with the Myc-like factors MondoA or ChREBP. We show here that body-wide Mlx inactivation, like that of Myc, accelerates numerous aging-related phenotypes pertaining to body habitus and metabolism. The deregulation of numerous aging-related Myc target gene sets is also accelerated. Among other functions, these gene sets often regulate ribosomal and mitochondrial structure and function, genomic stability and aging. Whereas "MycKO" mice have an extended lifespan because of a lower cancer incidence, "MlxKO" mice have normal lifespans and a somewhat higher cancer incidence. Like Myc, Mlx, MondoA and ChREBP expression and that of their target genes, deteriorate with age in both mice and humans, underscoring the importance of life-long and balanced cross-talk between the two Networks to maintain normal aging.
Collapse
Affiliation(s)
- Huabo Wang
- Division of Hematology/Oncology, UPMC Children’s Hospital of Pittsburgh
| | - Taylor Stevens
- Division of Hematology/Oncology, UPMC Children’s Hospital of Pittsburgh
| | - Jie Lu
- Division of Hematology/Oncology, UPMC Children’s Hospital of Pittsburgh
| | - Alexander Roberts
- Division of Hematology/Oncology, UPMC Children’s Hospital of Pittsburgh
| | | | - Radhika Muzumdar
- Division of Endocrinology, UPMC Children’s Hospital of Pittsburgh
| | - Zhenwei Gong
- Division of Endocrinology, UPMC Children’s Hospital of Pittsburgh
| | - Jerry Vockley
- Division of Medical Genetics, UPMC Children’s Hospital of Pittsburgh
| | - Edward V. Prochownik
- Division of Hematology/Oncology, UPMC Children’s Hospital of Pittsburgh
- The Department of Microbiology and Molecular Genetics, UPMC
- The Hillman Cancer Center of UPMC
- The Pittsburgh Liver Research Center, UPMC, Pittsburgh, PA. 15224
| |
Collapse
|
37
|
Jablonowski C, Quarni W, Singh S, Tan H, Bostanthirige DH, Jin H, Fang J, Chang TC, Finkelstein D, Cho JH, Hu D, Pagala V, Sakurada SM, Pruett-Miller SM, Wang R, Murphy A, Freeman K, Peng J, Davidoff AM, Wu G, Yang J. Metabolic reprogramming of cancer cells by JMJD6-mediated pre-mRNA splicing is associated with therapeutic response to splicing inhibitor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.26.546606. [PMID: 37425900 PMCID: PMC10327027 DOI: 10.1101/2023.06.26.546606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Dysregulated pre-mRNA splicing and metabolism are two hallmarks of MYC-driven cancers. Pharmacological inhibition of both processes has been extensively investigated as potential therapeutic avenues in preclinical and clinical studies. However, how pre-mRNA splicing and metabolism are orchestrated in response to oncogenic stress and therapies is poorly understood. Here, we demonstrate that Jumonji Domain Containing 6, Arginine Demethylase and Lysine Hydroxylase, JMJD6, acts as a hub connecting splicing and metabolism in MYC-driven neuroblastoma. JMJD6 cooperates with MYC in cellular transformation by physically interacting with RNA binding proteins involved in pre-mRNA splicing and protein homeostasis. Notably, JMJD6 controls the alternative splicing of two isoforms of glutaminase (GLS), namely kidney-type glutaminase (KGA) and glutaminase C (GAC), which are rate-limiting enzymes of glutaminolysis in the central carbon metabolism in neuroblastoma. Further, we show that JMJD6 is correlated with the anti-cancer activity of indisulam, a "molecular glue" that degrades splicing factor RBM39, which complexes with JMJD6. The indisulam-mediated cancer cell killing is at least partly dependent on the glutamine-related metabolic pathway mediated by JMJD6. Our findings reveal a cancer-promoting metabolic program is associated with alternative pre-mRNA splicing through JMJD6, providing a rationale to target JMJD6 as a therapeutic avenue for treating MYC-driven cancers.
Collapse
|
38
|
Nithun RV, Yao YM, Lin X, Habiballah S, Afek A, Jbara M. Deciphering the Role of the Ser-Phosphorylation Pattern on the DNA-Binding Activity of Max Transcription Factor Using Chemical Protein Synthesis. Angew Chem Int Ed Engl 2023; 62:e202310913. [PMID: 37642402 DOI: 10.1002/anie.202310913] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 08/31/2023]
Abstract
The chemical synthesis of site-specifically modified transcription factors (TFs) is a powerful method to investigate how post-translational modifications (PTMs) influence TF-DNA interactions and impact gene expression. Among these TFs, Max plays a pivotal role in controlling the expression of 15 % of the genome. The activity of Max is regulated by PTMs; Ser-phosphorylation at the N-terminus is considered one of the key regulatory mechanisms. In this study, we developed a practical synthetic strategy to prepare homogeneous full-length Max for the first time, to explore the impact of Max phosphorylation. We prepared a focused library of eight Max variants, with distinct modification patterns, including mono-phosphorylated, and doubly phosphorylated analogues at Ser2/Ser11 as well as fluorescently labeled variants through native chemical ligation. Through comprehensive DNA binding analyses, we discovered that the phosphorylation position plays a crucial role in the DNA-binding activity of Max. Furthermore, in vitro high-throughput analysis using DNA microarrays revealed that the N-terminus phosphorylation pattern does not interfere with the DNA sequence specificity of Max. Our work provides insights into the regulatory role of Max's phosphorylation on the DNA interactions and sequence specificity, shedding light on how PTMs influence TF function.
Collapse
Affiliation(s)
- Raj V Nithun
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Yumi Minyi Yao
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Xiaoxi Lin
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Shaimaa Habiballah
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Ariel Afek
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Muhammad Jbara
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| |
Collapse
|
39
|
Molina E, García-Gutiérrez L, Junco V, Perez-Olivares M, de Yébenes VG, Blanco R, Quevedo L, Acosta JC, Marín AV, Ulgiati D, Merino R, Delgado MD, Varela I, Regueiro JR, Moreno de Alborán I, Ramiro AR, León J. MYC directly transactivates CR2/CD21, the receptor of the Epstein-Barr virus, enhancing the viral infection of Burkitt lymphoma cells. Oncogene 2023; 42:3358-3370. [PMID: 37773203 DOI: 10.1038/s41388-023-02846-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 10/01/2023]
Abstract
MYC is an oncogenic transcription factor dysregulated in about half of total human tumors. While transcriptomic studies reveal more than 1000 genes regulated by MYC, a much smaller fraction of genes is directly transactivated by MYC. Virtually all Burkitt lymphoma (BL) carry chromosomal translocations involving MYC oncogene. Most endemic BL and a fraction of sporadic BL are associated with Epstein-Barr virus (EBV) infection. The currently accepted mechanism is that EBV is the BL-causing agent inducing MYC translocation. Herein we show that the EBV receptor, CR2 (also called CD21), is a direct MYC target gene. This is based on several pieces of evidence: MYC induces CR2 expression in both proliferating and arrested cells and in the absence of protein synthesis, binds the CR2 promoter and transactivates CR2 in an E-box-dependent manner. Moreover, using mice with conditional MYC ablation we show that MYC induces CR2 in primary B cells. Importantly, modulation of MYC levels directly correlates with EBV's ability of infection in BL cells. Altogether, in contrast to the widely accepted hypothesis for the correlation between EBV and BL, we propose an alternative hypothesis in which MYC dysregulation could be the first event leading to the subsequent EBV infection.
Collapse
Affiliation(s)
- Ester Molina
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
- Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Lucía García-Gutiérrez
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
- Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | - Vanessa Junco
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
- Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | - Mercedes Perez-Olivares
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
| | - Virginia G de Yébenes
- Centro Nacional de Investigaciones Cardiovasculares-CNIC Carlos III, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Universidad Complutense, School of Medicine and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Rosa Blanco
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
- Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | - Laura Quevedo
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
- Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | - Juan C Acosta
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
- Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | - Ana V Marín
- Department of Immunology, Ophthalmology and ENT, Universidad Complutense, School of Medicine and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Daniela Ulgiati
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Ramon Merino
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
- Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | - M Dolores Delgado
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
- Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | - Ignacio Varela
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
- Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | - José R Regueiro
- Department of Immunology, Ophthalmology and ENT, Universidad Complutense, School of Medicine and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | | | - Almudena R Ramiro
- Centro Nacional de Investigaciones Cardiovasculares-CNIC Carlos III, Madrid, Spain
| | - Javier León
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain.
- Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain.
| |
Collapse
|
40
|
Kazimierska M, Podralska M, Żurawek M, Woźniak T, Kasprzyk ME, Sura W, Łosiewski W, Ziółkowska‐Suchanek I, Kluiver J, van den Berg A, Rozwadowska N, Dzikiewicz‐Krawczyk A. CRISPR/Cas9 screen for genome-wide interrogation of essential MYC-bound E-boxes in cancer cells. Mol Oncol 2023; 17:2295-2313. [PMID: 37519063 PMCID: PMC10620128 DOI: 10.1002/1878-0261.13493] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/28/2023] [Accepted: 07/21/2023] [Indexed: 08/01/2023] Open
Abstract
The transcription factor MYC is a proto-oncogene with a well-documented essential role in the pathogenesis and maintenance of several types of cancer. MYC binds to specific E-box sequences in the genome to regulate gene expression in a cell-type- and developmental-stage-specific manner. To date, a combined analysis of essential MYC-bound E-boxes and their downstream target genes important for growth of different types of cancer is missing. In this study, we designed a CRISPR/Cas9 library to destroy E-box sequences in a genome-wide fashion. In parallel, we used the Brunello library to knock out protein-coding genes. We performed high-throughput screens with these libraries in four MYC-dependent cancer cell lines-K562, ST486, HepG2, and MCF7-which revealed several essential E-boxes and genes. Among them, we pinpointed crucial common and cell-type-specific MYC-regulated genes involved in pathways associated with cancer development. Extensive validation of our approach confirmed that E-box disruption affects MYC binding, target-gene expression, and cell proliferation in vitro as well as tumor growth in vivo. Our unique, well-validated tool opens new possibilities to gain novel insights into MYC-dependent vulnerabilities in cancer cells.
Collapse
Affiliation(s)
- Marta Kazimierska
- Institute of Human GeneticsPolish Academy of SciencesPoznańPoland
- Institute of Bioorganic ChemistryPolish Academy of SciencesPoznańPoland
| | - Marta Podralska
- Institute of Human GeneticsPolish Academy of SciencesPoznańPoland
| | | | - Tomasz Woźniak
- Institute of Human GeneticsPolish Academy of SciencesPoznańPoland
| | | | - Weronika Sura
- Institute of Human GeneticsPolish Academy of SciencesPoznańPoland
| | | | | | - Joost Kluiver
- Department of Pathology and Medical BiologyUniversity of Groningen, University Medical Center GroningenThe Netherlands
| | - Anke van den Berg
- Department of Pathology and Medical BiologyUniversity of Groningen, University Medical Center GroningenThe Netherlands
| | | | | |
Collapse
|
41
|
Cox AJ, Crowe WE, Yang Q, Zhang B, Oltvai ZN, Liao X. Clinicopathologic and Molecular Characterization of Anorectal Neuroendocrine Carcinomas Reveals Human Papillomavirus, p53, and c-Myc as Alternative Mechanisms of Carcinogenesis. Mod Pathol 2023; 36:100295. [PMID: 37517480 DOI: 10.1016/j.modpat.2023.100295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023]
Abstract
Poorly differentiated neuroendocrine carcinomas (NECs) are rare malignant neoplasms with aggressive behavior. The diagnosis remains challenging due to ever-changing terminologies and morphologic overlaps with other disease entities. Herein, we seek to better define anorectal NECs by high-risk human papillomavirus (HPV) status and molecular profiling. Fourteen cases, including 3 men and 11 women with a median age of 63 years, were included. High-risk HPV RNA in situ hybridization was diffusely positive (+) in 7 cases, focal rarely positive (+/-) in 2 cases, and completely negative (-) in 5 cases. By morphology, all HPV(-) NECs were large-cell type, 3 mixed with a tubular adenoma/dysplasia or invasive adenocarcinoma. HPV-related (+ or +/-) NECs were mostly small-cell type, 3 mixed with squamous dysplasia and/or squamous cell carcinoma. Immunohistochemically, all NECs were positive for at least 2 neuroendocrine markers. The HPV(-) NECs were also positive for CDX2, whereas all HPV-related NECs were negative or only focally positive for CDX2, p40, and p63. Overexpression of p53 was found in 3 HPV(-) and 2 HPV(+/-) NECs but not in any HPV(+) NECs. Molecular analysis revealed MYC gene amplification in 4 cases: 2 HPV(-), 1 HPV(+/-), and 1 HPV(+). This was confirmed by fluorescence in situ hybridization in all but 1 HPV(-) NEC, which showed polysomy 8 but no true MYC amplification. Interestingly, only 2 of the 4 MYC amplification-bearing cases, both p53 normal/wild-type, expressed c-Myc protein by immunohistochemistry. The other 2 cases, both p53 overexpressed, did not show c-Myc expression despite true MYC amplification. Our study demonstrates that anorectal NECs arise in HPV-dependent or -independent pathways, with heterogeneous expression of other lineage markers and different molecular signatures. Expressions of p53 and c-Myc proteins appear to be mutually exclusive regardless of HPV status, likely mediating alternative mechanisms of NEC carcinogenesis.
Collapse
Affiliation(s)
- Allison J Cox
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York
| | - William E Crowe
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York
| | - Qi Yang
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York
| | - Bin Zhang
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York
| | - Zoltán N Oltvai
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York
| | - Xiaoyan Liao
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York.
| |
Collapse
|
42
|
Lu S, Sun X, Zhou Z, Tang H, Xiao R, Lv Q, Wang B, Qu J, Yu J, Sun F, Deng Z, Tian Y, Li C, Yang Z, Yang P, Rao B. Mechanism of Bazhen decoction in the treatment of colorectal cancer based on network pharmacology, molecular docking, and experimental validation. Front Immunol 2023; 14:1235575. [PMID: 37799727 PMCID: PMC10548240 DOI: 10.3389/fimmu.2023.1235575] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/31/2023] [Indexed: 10/07/2023] Open
Abstract
Objective Bazhen Decoction (BZD) is a common adjuvant therapy drug for colorectal cancer (CRC), although its anti-tumor mechanism is unknown. This study aims to explore the core components, key targets, and potential mechanisms of BZD treatment for CRC. Methods The Traditional Chinese Medicine Systems Pharmacology (TCMSP) was employed to acquire the BZD's active ingredient and targets. Meanwhile, the Drugbank, Therapeutic Target Database (TTD), DisGeNET, and GeneCards databases were used to retrieve pertinent targets for CRC. The Venn plot was used to obtain intersection targets. Cytoscape software was used to construct an "herb-ingredient-target" network and identify core targets. GO and KEGG pathway enrichment analyses were conducted using R language software. Molecular docking of key ingredients and core targets of drugs was accomplished using PyMol and Autodock Vina software. Cell and animal research confirmed Bazhen Decoction efficacy and mechanism in treating colorectal cancer. Results BZD comprises 173 effective active ingredients. Using four databases, 761 targets related to CRC were identified. The intersection of BZD and CRC yielded 98 targets, which were utilized to construct the "herb-ingredient-target" network. The four key effector components with the most targets were quercetin, kaempferol, licochalcone A, and naringenin. Protein-protein interaction (PPI) analysis revealed that the core targets of BZD in treating CRC were AKT1, MYC, CASP3, ESR1, EGFR, HIF-1A, VEGFR, JUN, INS, and STAT3. The findings from molecular docking suggest that the core ingredient exhibits favorable binding potential with the core target. Furthermore, the GO and KEGG enrichment analysis demonstrates that BZD can modulate multiple signaling pathways related to CRC, like the T cell receptor, PI3K-Akt, apoptosis, P53, and VEGF signaling pathway. In vitro, studies have shown that BZD dose-dependently inhibits colon cancer cell growth and invasion and promotes apoptosis. Animal experiments have shown that BZD treatment can reverse abnormal expression of PI3K, AKT, MYC, EGFR, HIF-1A, VEGFR, JUN, STAT3, CASP3, and TP53 genes. BZD also increases the ratio of CD4+ T cells to CD8+ T cells in the spleen and tumor tissues, boosting IFN-γ expression, essential for anti-tumor immunity. Furthermore, BZD has the potential to downregulate the PD-1 expression on T cell surfaces, indicating its ability to effectively restore T cell function by inhibiting immune checkpoints. The results of HE staining suggest that BZD exhibits favorable safety profiles. Conclusion BZD treats CRC through multiple components, targets, and metabolic pathways. BZD can reverse the abnormal expression of genes such as PI3K, AKT, MYC, EGFR, HIF-1A, VEGFR, JUN, STAT3, CASP3, and TP53, and suppresses the progression of colorectal cancer by regulating signaling pathways such as PI3K-AKT, P53, and VEGF. Furthermore, BZD can increase the number of T cells and promote T cell activation in tumor-bearing mice, enhancing the immune function against colorectal cancer. Among them, quercetin, kaempferol, licochalcone A, naringenin, and formaronetin are more highly predictive components related to the T cell activation in colorectal cancer mice. This study is of great significance for the development of novel anti-cancer drugs. It highlights the importance of network pharmacology-based approaches in studying complex traditional Chinese medicine formulations.
Collapse
Affiliation(s)
- Shuai Lu
- Key Laboratory of Cancer Foods for Special Medical Purpose (FSMP) for State Market Regulation, Department of Gastrointestinal Surgery/Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
| | - Xibo Sun
- Key Laboratory of Cancer Foods for Special Medical Purpose (FSMP) for State Market Regulation, Department of Gastrointestinal Surgery/Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
- Department of Breast Surgery, The Second Affiliated Hospital of Shandong First Medical University, Shandong, China
| | - Zhongbao Zhou
- Department of Urology, Beijing TianTan Hospital, Capital Medical University, Beijing, China
| | - Huazhen Tang
- Key Laboratory of Cancer Foods for Special Medical Purpose (FSMP) for State Market Regulation, Department of Gastrointestinal Surgery/Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
| | - Ruixue Xiao
- Key Laboratory of Molecular Pathology, Inner Mongolia Medical University, Hohhot, China
| | - Qingchen Lv
- Medical Laboratory College, Hebei North University, Zhangjiakou, China
| | - Bing Wang
- Key Laboratory of Cancer Foods for Special Medical Purpose (FSMP) for State Market Regulation, Department of Gastrointestinal Surgery/Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
| | - Jinxiu Qu
- Key Laboratory of Cancer Foods for Special Medical Purpose (FSMP) for State Market Regulation, Department of Gastrointestinal Surgery/Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
| | - Jinxuan Yu
- First Clinical Medical College, Binzhou Medical University, Yantai, China
| | - Fang Sun
- Institute of Hepatobiliary Surgery, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Zhuoya Deng
- Institute of Hepatobiliary Surgery, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Yuying Tian
- Key Laboratory of Molecular Pathology, Inner Mongolia Medical University, Hohhot, China
| | - Cong Li
- Key Laboratory of Molecular Pathology, Inner Mongolia Medical University, Hohhot, China
| | - Zhenpeng Yang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Penghui Yang
- Institute of Hepatobiliary Surgery, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Benqiang Rao
- Key Laboratory of Cancer Foods for Special Medical Purpose (FSMP) for State Market Regulation, Department of Gastrointestinal Surgery/Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
| |
Collapse
|
43
|
Liu Z, Ishikawa K, Sanada E, Semba K, Li J, Li X, Osada H, Watanabe N. Identification of antimycin A as a c-Myc degradation accelerator via high-throughput screening. J Biol Chem 2023; 299:105083. [PMID: 37495110 PMCID: PMC10470004 DOI: 10.1016/j.jbc.2023.105083] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 07/08/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023] Open
Abstract
c-Myc is a critical regulator of cell proliferation and growth. Elevated levels of c-Myc cause transcriptional amplification, leading to various types of cancers. Small molecules that specifically inhibit c-Myc-dependent regulation are potentially invaluable for anticancer therapy. Because c-Myc does not have enzymatic activity or targetable pockets, researchers have attempted to obtain small molecules that inhibit c-Myc cofactors, activate c-Myc repressors, or target epigenetic modifications to regulate the chromatin of c-Myc-addicted cancer without any clinical success. In this study, we screened for c-Myc inhibitors using a cell-dependent assay system in which the expression of c-Myc and its transcriptional activity can be inferred from monomeric Keima and enhanced GFP fluorescence, respectively. We identified one mitochondrial inhibitor, antimycin A, as a hit compound. The compound enhanced the c-Myc phosphorylation of threonine-58, consequently increasing the proteasome-mediated c-Myc degradation. The mechanistic analysis of antimycin A revealed that it enhanced the degradation of c-Myc protein through the activation of glycogen synthetic kinase 3 by reactive oxygen species (ROS) from damaged mitochondria. Furthermore, we found that the inhibition of cell growth by antimycin A was caused by both ROS-dependent and ROS-independent pathways. Interestingly, ROS-dependent growth inhibition occurred only in the presence of c-Myc, which may reflect the representative features of cancer cells. Consistently, the antimycin A sensitivity of cells was correlated to the endogenous c-Myc levels in various cancer cells. Overall, our study provides an effective strategy for identifying c-Myc inhibitors and proposes a novel concept for utilizing ROS inducers for cancer therapy.
Collapse
Affiliation(s)
- Ziyu Liu
- Bioprobe Application Research Unit, RIKEN CSRS, Wako, Saitama, Japan; Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Kosuke Ishikawa
- Japan Biological Informatics Consortium (JBiC), Koto-ku, Tokyo, Japan
| | - Emiko Sanada
- Bioprobe Application Research Unit, RIKEN CSRS, Wako, Saitama, Japan; Chemical Biology Research Group, RIKEN CSRS, Wako, Saitama, Japan; Chemical Resource Development Research Unit, RIKEN CSRS, Wako, Saitama, Japan
| | - Kentaro Semba
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan; Medical-Industrial Translational Research Center, Fukushima Medical University, Fukushima, Japan
| | - Jiang Li
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaomeng Li
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hiroyuki Osada
- Chemical Biology Research Group, RIKEN CSRS, Wako, Saitama, Japan; Chemical Resource Development Research Unit, RIKEN CSRS, Wako, Saitama, Japan; Department of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan.
| | - Nobumoto Watanabe
- Bioprobe Application Research Unit, RIKEN CSRS, Wako, Saitama, Japan; Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan; Chemical Resource Development Research Unit, RIKEN CSRS, Wako, Saitama, Japan.
| |
Collapse
|
44
|
García-Caballero D, Hart JR, Vogt PK. Long Non-Coding RNAs as "MYC Facilitators". PATHOPHYSIOLOGY 2023; 30:389-399. [PMID: 37755396 PMCID: PMC10534484 DOI: 10.3390/pathophysiology30030030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 09/28/2023] Open
Abstract
In this article, we discuss a class of MYC-interacting lncRNAs (long non-coding RNAs) that share the following criteria: They are direct transcriptional targets of MYC. Their expression is coordinated with the expression of MYC. They are required for sustained MYC-driven cell proliferation, and they are not essential for cell survival. We refer to these lncRNAs as "MYC facilitators" and discuss two representative members of this class of lncRNAs, SNHG17 (small nuclear RNA host gene) and LNROP (long non-coding regulator of POU2F2). We also present a general hypothesis on the role of lncRNAs in MYC-mediated transcriptional regulation.
Collapse
Affiliation(s)
| | | | - Peter K. Vogt
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
45
|
Wang H, Lu J, Stevens T, Roberts A, Mandel J, Avula R, Ma B, Wu Y, Wang J, Land CV, Finkel T, Vockley JE, Airik M, Airik R, Muzumdar R, Gong Z, Torbenson MS, Prochownik EV. Premature aging and reduced cancer incidence associated with near-complete body-wide Myc inactivation. Cell Rep 2023; 42:112830. [PMID: 37481724 PMCID: PMC10591215 DOI: 10.1016/j.celrep.2023.112830] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/18/2023] [Accepted: 07/03/2023] [Indexed: 07/25/2023] Open
Abstract
MYC proto-oncogene dysregulation alters metabolism, translation, and other functions in ways that support tumor induction and maintenance. Although Myc+/- mice are healthier and longer-lived than control mice, the long-term ramifications of more complete Myc loss remain unknown. We now describe the chronic consequences of body-wide Myc inactivation initiated postnatally. "MycKO" mice acquire numerous features of premature aging, including altered body composition and habitus, metabolic dysfunction, hepatic steatosis, and dysregulation of gene sets involved in functions that normally deteriorate with aging. Yet, MycKO mice have extended lifespans that correlate with a 3- to 4-fold lower lifetime cancer incidence. Aging tissues from normal mice and humans also downregulate Myc and gradually alter many of the same Myc target gene sets seen in MycKO mice. Normal aging and its associated cancer predisposition are thus highly linked via Myc.
Collapse
Affiliation(s)
- Huabo Wang
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Jie Lu
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Taylor Stevens
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Alexander Roberts
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Jordan Mandel
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Raghunandan Avula
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA; The University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Bingwei Ma
- Tongji University School of Medicine, Shanghai, China
| | - Yijen Wu
- Department of Developmental Biology, The University of Pittsburgh, Pittsburgh, PA, USA
| | - Jinglin Wang
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA; Central South University, Xiangya School of Medicine, Changsha, Hunan 410013, P.R. China
| | - Clinton Van't Land
- Division of Medical Genetics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Toren Finkel
- Division of Cardiology, The Department of Internal Medicine and the UPMC Aging Institute, Pittsburgh, PA 15224, USA
| | - Jerry E Vockley
- Division of Medical Genetics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Merlin Airik
- Division of Nephrology, Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Rannar Airik
- Division of Nephrology, Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Radhika Muzumdar
- Division of Endocrinology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Zhenwei Gong
- Division of Endocrinology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Michel S Torbenson
- Division of Laboratory Medicine and Pathology, The Mayo Clinic, Rochester, MN 55905, USA
| | - Edward V Prochownik
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA; Department of Microbiology and Molecular Genetics, UPMC, Pittsburgh, PA 15261, USA; Hillman Cancer Center of UPMC, Pittsburgh, PA 15232, USA; Pittsburgh Liver Research Center, UPMC, Pittsburgh, PA 15261, USA.
| |
Collapse
|
46
|
Thomsen MK, Busk M. Pre-Clinical Models to Study Human Prostate Cancer. Cancers (Basel) 2023; 15:4212. [PMID: 37686488 PMCID: PMC10486646 DOI: 10.3390/cancers15174212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Prostate cancer is a common cancer among men and typically progresses slowly for several decades before becoming aggressive and spreading to other organs, leaving few treatment options. While large animals have been studied, the dog's prostate is anatomically similar to humans and has been used to study spontaneous prostate cancer. However, most research currently focuses on the mouse as a model organism due to the ability to genetically modify their prostatic tissues for molecular analysis. One milestone in this research was the identification of the prostate-specific promoter Probasin, which allowed for the prostate-specific expression of transgenes. This has led to the generation of mice with aggressive prostatic tumors through overexpression of the SV40 oncogene. The Probasin promoter is also used to drive Cre expression and has allowed researchers to generate prostate-specific loss-of-function studies. Another landmark moment in the process of modeling prostate cancer in mice was the orthoptic delivery of viral particles. This technology allows the selective overexpression of oncogenes from lentivirus or the use of CRISPR to generate complex loss-of-function studies. These genetically modified models are complemented by classical xenografts of human prostate tumor cells in immune-deficient mice. Overall, pre-clinical models have provided a portfolio of model systems to study and address complex mechanisms in prostate cancer for improved treatment options. This review will focus on the advances in each technique.
Collapse
Affiliation(s)
| | - Morten Busk
- Department of Experimental Clinical Oncology, Aarhus University Hospital, 8200 Aarhus, Denmark;
- Danish Centre for Particle Therapy, Aarhus University Hospital, 8200 Aarhus, Denmark
| |
Collapse
|
47
|
Torres RM, Turner JA, D’Antonio M, Pelanda R, Kremer KN. Regulation of CD8 T-cell signaling, metabolism, and cytotoxic activity by extracellular lysophosphatidic acid. Immunol Rev 2023; 317:203-222. [PMID: 37096808 PMCID: PMC10523933 DOI: 10.1111/imr.13208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 04/26/2023]
Abstract
Lysophosphatidic acid (LPA) is an endogenous bioactive lipid that is produced extracellularly and signals to cells via cognate LPA receptors, which are G-protein coupled receptors (GPCRs). Mature lymphocytes in mice and humans express three LPA receptors, LPA2 , LPA5, and LPA6 , and work from our group has determined that LPA5 signaling by T lymphocytes inhibits specific antigen-receptor signaling pathways that ultimately impair lymphocyte activation, proliferation, and function. In this review, we discuss previous and ongoing work characterizing the ability of an LPA-LPA5 axis to serve as a peripheral immunological tolerance mechanism that restrains adaptive immunity but is subverted during settings of chronic inflammation. Specifically, LPA-LPA5 signaling is found to regulate effector cytotoxic CD8 T cells by (at least) two mechanisms: (i) regulating the actin-microtubule cytoskeleton in a manner that impairs immunological synapse formation between an effector CD8 T cell and antigen-specific target cell, thus directly impairing cytotoxic activity, and (ii) shifting T-cell metabolism to depend on fatty-acid oxidation for mitochondrial respiration and reducing metabolic efficiency. The in vivo outcome of LPA5 inhibitory activity impairs CD8 T-cell killing and tumor immunity in mouse models providing impetus to consider LPA5 antagonism for the treatment of malignancies and chronic infections.
Collapse
Affiliation(s)
- Raul M. Torres
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora Colorado, 80045
| | - Jacqueline A. Turner
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora Colorado, 80045
| | - Marc D’Antonio
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora Colorado, 80045
| | - Roberta Pelanda
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora Colorado, 80045
| | - Kimberly N. Kremer
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora Colorado, 80045
| |
Collapse
|
48
|
Nirala BK, Patel TD, Kurenbekova L, Shuck R, Dasgupta A, Rainusso N, Coarfa C, Yustein JT. MYC regulates CSF1 expression via microRNA 17/20a to modulate tumor-associated macrophages in osteosarcoma. JCI Insight 2023; 8:e164947. [PMID: 37279073 PMCID: PMC10371352 DOI: 10.1172/jci.insight.164947] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 05/25/2023] [Indexed: 06/07/2023] Open
Abstract
Osteosarcoma (OS) is the most common primary bone tumor of childhood. Approximately 20%-30% of OSs carry amplification of chromosome 8q24, which harbors the oncogene c-MYC and correlates with a poor prognosis. To understand the mechanisms that underlie the ability of MYC to alter both the tumor and its surrounding tumor microenvironment (TME), we generated and molecularly characterized an osteoblast-specific Cre-Lox-Stop-Lox-c-MycT58A p53fl/+ knockin genetically engineered mouse model (GEMM). Phenotypically, the Myc-knockin GEMM had rapid tumor development with a high incidence of metastasis. MYC-dependent gene signatures in our murine model demonstrated significant homology to the human hyperactivated MYC OS. We established that hyperactivation of MYC led to an immune-depleted TME in OS demonstrated by the reduced number of leukocytes, particularly macrophages. MYC hyperactivation led to the downregulation of macrophage colony-stimulating factor 1, through increased microRNA 17/20a expression, causing a reduction of macrophage population in the TME of OS. Furthermore, we developed cell lines from the GEMM tumors, including a degradation tag-MYC model system, which validated our MYC-dependent findings both in vitro and in vivo. Our studies utilized innovative and clinically relevant models to identify a potentially novel molecular mechanism through which MYC regulates the profile and function of the OS immune landscape.
Collapse
Affiliation(s)
- Bikesh K. Nirala
- Texas Children’s Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center
| | - Tajhal D. Patel
- Texas Children’s Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center
| | - Lyazat Kurenbekova
- Texas Children’s Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center
| | - Ryan Shuck
- Texas Children’s Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center
| | - Atreyi Dasgupta
- Texas Children’s Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center
| | - Nino Rainusso
- Texas Children’s Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center
| | - Cristian Coarfa
- Department of Molecular & Human Genetics, and
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Jason T. Yustein
- Texas Children’s Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center
- Aflac Cancer and Blood Disorders Center of Children’s Healthcare of Atlanta, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
49
|
D’Avola A, Kluckova K, Finch AJ, Riches JC. Spotlight on New Therapeutic Opportunities for MYC-Driven Cancers. Onco Targets Ther 2023; 16:371-383. [PMID: 37309471 PMCID: PMC10257908 DOI: 10.2147/ott.s366627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 06/02/2023] [Indexed: 06/14/2023] Open
Abstract
MYC can be considered to be one of the most pressing and important targets for the development of novel anti-cancer therapies. This is due to its frequent dysregulation in tumors and due to the wide-ranging impact this dysregulation has on gene expression and cellular behavior. As a result, there have been numerous attempts to target MYC over the last few decades, both directly and indirectly, with mixed results. This article reviews the biology of MYC in the context of cancers and drug development. It discusses strategies aimed at targeting MYC directly, including those aimed at reducing its expression and blocking its function. In addition, the impact of MYC dysregulation on cellular biology is outlined, and how understanding this can underpin the development of approaches aimed at molecules and pathways regulated by MYC. In particular, the review focuses on the role that MYC plays in the regulation of metabolism, and the therapeutic avenues offered by inhibiting the metabolic pathways that are essential for the survival of MYC-transformed cells.
Collapse
Affiliation(s)
- Annalisa D’Avola
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Katarina Kluckova
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Andrew J Finch
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - John C Riches
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| |
Collapse
|
50
|
Turner JA, Fredrickson MA, D'Antonio M, Katsnelson E, MacBeth M, Van Gulick R, Chimed TS, McCarter M, D'Alessandro A, Robinson WA, Couts KL, Pelanda R, Klarquist J, Tobin RP, Torres RM. Lysophosphatidic acid modulates CD8 T cell immunosurveillance and metabolism to impair anti-tumor immunity. Nat Commun 2023; 14:3214. [PMID: 37270644 PMCID: PMC10239450 DOI: 10.1038/s41467-023-38933-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 05/19/2023] [Indexed: 06/05/2023] Open
Abstract
Lysophosphatidic acid (LPA) is a bioactive lipid which increases in concentration locally and systemically across different cancer types. Yet, the exact mechanism(s) of how LPA affects CD8 T cell immunosurveillance during tumor progression remain unknown. We show LPA receptor (LPAR) signaling by CD8 T cells promotes tolerogenic states via metabolic reprogramming and potentiating exhaustive-like differentiation to modulate anti-tumor immunity. We found LPA levels predict response to immunotherapy and Lpar5 signaling promotes cellular states associated with exhausted phenotypes on CD8 T cells. Importantly, we show that Lpar5 regulates CD8 T cell respiration, proton leak, and reactive oxygen species. Together, our findings reveal that LPA serves as a lipid-regulated immune checkpoint by modulating metabolic efficiency through LPAR5 signaling on CD8 T cells. Our study offers key insights into the mechanisms governing adaptive anti-tumor immunity and demonstrates LPA could be exploited as a T cell directed therapy to improve dysfunctional anti-tumor immunity.
Collapse
Affiliation(s)
- Jacqueline A Turner
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
- Medical Scientist Training Program, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Malia A Fredrickson
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Marc D'Antonio
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Elizabeth Katsnelson
- Division of Surgical Oncology, Department of Surgery, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Morgan MacBeth
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Robert Van Gulick
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Tugs-Saikhan Chimed
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Martin McCarter
- Division of Surgical Oncology, Department of Surgery, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - William A Robinson
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Kasey L Couts
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Roberta Pelanda
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Jared Klarquist
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Richard P Tobin
- Division of Surgical Oncology, Department of Surgery, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Raul M Torres
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|