1
|
Steytler J, Craig C, van der Ryst E, Van Baelen B, Nuttall J, van Niekerk N, Mellors J, Parikh U, Wallis C. Characterization of Viruses in Phase 3 and Phase 3b Trials (the Ring Study and the Dapivirine Ring Extended Access and Monitoring Trial) of the Dapivirine Vaginal Ring for Human Immunodeficiency Virus Type 1 Infection Risk Reduction. Clin Infect Dis 2023; 76:996-1002. [PMID: 36345569 DOI: 10.1093/cid/ciac875] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/25/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The Ring Study demonstrated 35.1% human immunodeficiency virus type 1 (HIV-1) infection risk reduction among participants who used the Dapivirine vaginal ring-004 (DVR), whereas the Dapivirine Ring Extended Access and Monitoring (DREAM) trial, approximated a 62% risk reduction. The observed non-nucleoside reverse-transcriptase inhibitor (NNRTI) resistance-associated mutations (RAMs) and effects on viral susceptibility are described here. METHODS Population-based genotyping on plasma samples collected longitudinally, and next-generation sequencing (NGS) and phenotypic susceptibility testing were done on plasma collected at seroconversion. Retrospective HIV-1 RNA testing was used to more accurately establish the time of infection. RESULTS In the Ring Study, NNRTI RAMs were not observed in most viruses at seroconversion (population-based genotyping: DVR: 71 of 84, 84.5%; placebo: 50 of 58, 86.2%). However, more E138A was found in the DVR group (E138A DVR: 9 of 84, 10.7%; placebo: 2 of 58, 3.4%; P = .2, Fisher exact test). NGS detected 1 additional mutation in each group (DVR: G190A; placebo: G190A and G190E). Marginal dapivirine susceptibility reduction was found with NNRTI RAMs at seroconversion (geometric mean fold-change, range: DVR, 3.1, 1.3-5.1; placebo, 5.8, 0.9-120). NNRTI RAMs were not emergent between first detectable HIV-1 RNA and seroconversion when these visits differed (paired samples, mean ring use: DVR, n = 52, 35 days; placebo, n = 26, 31 days). After stopping DVR, 2 of 63 viruses had emergent G190G/A or K103K/N with V106V/M at final study visit. Resistance profiles from the DREAM trial were consistent with the Ring Study. CONCLUSIONS DVR showed little potential for selection of NNRTI-resistant variants. CLINICAL TRIALS REGISTRATION NCT01539226 and NCT02862171.
Collapse
Affiliation(s)
- John Steytler
- International Partnership for Microbicides South Africa NPC, Johannesburg, South Africa
| | - Charles Craig
- Research Virology Consulting Ltd, Cambridgeshire, United Kingdom
| | | | | | - Jeremy Nuttall
- International Partnership for Microbicides, Silver Spring, Maryland, USA
| | - Neliëtte van Niekerk
- International Partnership for Microbicides South Africa NPC, Johannesburg, South Africa
| | - John Mellors
- Microbicide Trials Network Virology Core Laboratory, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Urvi Parikh
- Microbicide Trials Network Virology Core Laboratory, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Carole Wallis
- Bio-Analytical Research Corporation Laboratory and Lancet Laboratories, Johannesburg, South Africa
| |
Collapse
|
2
|
HIV-1 subtype B spread through cross-border clusters in the Balkans: a molecular analysis in view of incidence trends. AIDS 2023; 37:125-135. [PMID: 36129113 DOI: 10.1097/qad.0000000000003394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES To analyze phylogenetic relations and assess the role of cross-border clusters in the spread of HIV-1 subtype B across the Balkans, given the general trends of new HIV diagnoses in seven Balkan countries. DESIGN Retrospective phylogenetic and trend analysis. METHODS In-depth phylogenetic, phylodynamic and phylogeographic analysis performed on 2415 HIV-1 subtype B sequences from 1999 to 2019 using maximal likelihood and Bayesian methods. The joinpoint regression analysis of new HIV diagnoses by country and modes of transmission using 2004-2019 ECDC data. RESULTS Ninety-three HIV-1 Subtype B transmission clusters (68% of studied sequences) were detected of which four cross-border clusters (11% of studied sequences). Phylodynamic analysis showed activity of cross-border clusters up until the mid-2000s, with a subsequent stationary growth phase. Phylogeography analyses revealed reciprocal spread patterns between Serbia, Slovenia and Montenegro and several introductions to Romania from these countries and Croatia. The joinpoint analysis revealed a reduction in new HIV diagnoses in Romania, Greece and Slovenia, whereas an increase in Serbia, Bulgaria, Croatia and Montenegro, predominantly among MSM. CONCLUSION Differing trends of new HIV diagnoses in the Balkans mirror differences in preventive policies implemented in participating countries. Regional spread of HIV within the countries of former Yugoslavia has continued to play an important role even after country break-up, whereas the spread of subtype B through multiple introductions to Romania suggested the changing pattern of travel and migration linked to European integration of Balkan countries in the early 2000s.
Collapse
|
3
|
Siljic M, Cirkovic V, Jovanovic L, Antonova A, Lebedev A, Ozhmegova E, Kuznetsova A, Vinogradova T, Ermakov A, Monakhov N, Bobkova M, Stanojevic M. Reconstructing the Temporal Origin and the Transmission Dynamics of the HIV Subtype B Epidemic in St. Petersburg, Russia. Viruses 2022; 14:v14122748. [PMID: 36560752 PMCID: PMC9783597 DOI: 10.3390/v14122748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
The HIV/AIDS epidemic in Russia is among the fastest growing in the world. HIV epidemic burden is non-uniform in different Russian regions and diverse key populations. An explosive epidemic has been documented among people who inject drugs (PWID) starting from the mid-1990s, whereas presently, the majority of new infections are linked to sexual transmission. Nationwide, HIV sub-subtype A6 (previously called AFSU) predominates, with the increasing presence of other subtypes, namely subtype B and CRF063_02A. This study explores HIV subtype B sequences from St. Petersburg, collected from 2006 to 2020, in order to phylogenetically investigate and characterize transmission clusters, focusing on their evolutionary dynamics and potential for further growth, along with a socio-demographic analysis of the available metadata. In total, 54% (107/198) of analyzed subtype B sequences were found grouped in 17 clusters, with four transmission clusters with the number of sequences above 10. Using Bayesian MCMC inference, tMRCA of HIV-1 subtype B was estimated to be around 1986 (95% HPD 1984-1991), whereas the estimated temporal origin for the four large clusters was found to be more recent, between 2001 and 2005. The results of our study imply a complex pattern of the epidemic spread of HIV subtype B in St. Petersburg, Russia, still in the exponential growth phase, and in connection to the men who have sex with men (MSM) transmission, providing a useful insight needed for the design of public health priorities and interventions.
Collapse
Affiliation(s)
- Marina Siljic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Valentina Cirkovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Luka Jovanovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Institute for Oncology and Radiology of Serbia, 11000 Belgrade, Serbia
| | - Anastasiia Antonova
- Laboratory of T-Lymphotropic Viruses, N.F. Gamaleya National Research Center of Epidemiology and Microbiology, 123098 Moscow, Russia
| | - Aleksey Lebedev
- Laboratory of T-Lymphotropic Viruses, N.F. Gamaleya National Research Center of Epidemiology and Microbiology, 123098 Moscow, Russia
| | - Ekaterina Ozhmegova
- Laboratory of T-Lymphotropic Viruses, N.F. Gamaleya National Research Center of Epidemiology and Microbiology, 123098 Moscow, Russia
| | - Anna Kuznetsova
- Laboratory of T-Lymphotropic Viruses, N.F. Gamaleya National Research Center of Epidemiology and Microbiology, 123098 Moscow, Russia
| | | | - Aleksei Ermakov
- St. Petersburg City AIDS Center, 190103 St. Petersburg, Russia
| | - Nikita Monakhov
- St. Petersburg City AIDS Center, 190103 St. Petersburg, Russia
| | - Marina Bobkova
- Laboratory of T-Lymphotropic Viruses, N.F. Gamaleya National Research Center of Epidemiology and Microbiology, 123098 Moscow, Russia
| | - Maja Stanojevic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Correspondence:
| |
Collapse
|
4
|
Pingarilho M, Pimentel V, Diogo I, Fernandes S, Miranda M, Pineda-Pena A, Libin P, Theys K, O. Martins MR, Vandamme AM, Camacho R, Gomes P, Abecasis A. Increasing Prevalence of HIV-1 Transmitted Drug Resistance in Portugal: Implications for First Line Treatment Recommendations. Viruses 2020; 12:E1238. [PMID: 33143301 PMCID: PMC7693025 DOI: 10.3390/v12111238] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Treatment for All recommendations have allowed access to antiretroviral (ARV) treatment for an increasing number of patients. This minimizes the transmission of infection but can potentiate the risk of transmitted (TDR) and acquired drug resistance (ADR). OBJECTIVE To study the trends of TDR and ADR in patients followed up in Portuguese hospitals between 2001 and 2017. METHODS In total, 11,911 patients of the Portuguese REGA database were included. TDR was defined as the presence of one or more surveillance drug resistance mutation according to the WHO surveillance list. Genotypic resistance to ARV was evaluated with Stanford HIVdb v7.0. Patterns of TDR, ADR and the prevalence of mutations over time were analyzed using logistic regression. RESULTS AND DISCUSSION The prevalence of TDR increased from 7.9% in 2003 to 13.1% in 2017 (p < 0.001). This was due to a significant increase in both resistance to nucleotide reverse transcriptase inhibitors (NRTIs) and non-nucleotide reverse transcriptase inhibitors (NNRTIs), from 5.6% to 6.7% (p = 0.002) and 2.9% to 8.9% (p < 0.001), respectively. TDR was associated with infection with subtype B, and with lower viral load levels (p < 0.05). The prevalence of ADR declined from 86.6% in 2001 to 51.0% in 2017 (p < 0.001), caused by decreasing drug resistance to all antiretroviral (ARV) classes (p < 0.001). CONCLUSIONS While ADR has been decreasing since 2001, TDR has been increasing, reaching a value of 13.1% by the end of 2017. It is urgently necessary to develop public health programs to monitor the levels and patterns of TDR in newly diagnosed patients.
Collapse
Affiliation(s)
- Marta Pingarilho
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical/Universidade Nova de Lisboa (IHMT/UNL), 1349–028 Lisbon, Portugal; (V.P.); (M.M.); (A.P.-P.); (M.R.O.M.); (A.-M.V.); (A.A.)
| | - Victor Pimentel
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical/Universidade Nova de Lisboa (IHMT/UNL), 1349–028 Lisbon, Portugal; (V.P.); (M.M.); (A.P.-P.); (M.R.O.M.); (A.-M.V.); (A.A.)
| | - Isabel Diogo
- Laboratório de Biologia Molecular (LMCBM, SPC, CHLO-HEM), 1349-019 Lisbon, Portugal; (I.D.); (S.F.); (P.G.)
| | - Sandra Fernandes
- Laboratório de Biologia Molecular (LMCBM, SPC, CHLO-HEM), 1349-019 Lisbon, Portugal; (I.D.); (S.F.); (P.G.)
| | - Mafalda Miranda
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical/Universidade Nova de Lisboa (IHMT/UNL), 1349–028 Lisbon, Portugal; (V.P.); (M.M.); (A.P.-P.); (M.R.O.M.); (A.-M.V.); (A.A.)
| | - Andrea Pineda-Pena
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical/Universidade Nova de Lisboa (IHMT/UNL), 1349–028 Lisbon, Portugal; (V.P.); (M.M.); (A.P.-P.); (M.R.O.M.); (A.-M.V.); (A.A.)
| | - Pieter Libin
- Department of Microbiology and Immunology, KU Leuven, Clinical and Epidemiological Virology, Rega Institute for Medical Research, 3000 Leuven, Belgium; (P.L.); (K.T.); (R.C.)
- Artificial Intelligence Lab, Department of computer science, Vrije Universiteit Brussel, 1000 Brussels, Belgium
- Interuniversity Institute of Biostatistics and statistical Bioinformatics, Data Science Institute, Hasselt University, 3500 Hasselt, Belgium
| | - Kristof Theys
- Department of Microbiology and Immunology, KU Leuven, Clinical and Epidemiological Virology, Rega Institute for Medical Research, 3000 Leuven, Belgium; (P.L.); (K.T.); (R.C.)
| | - M. Rosário O. Martins
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical/Universidade Nova de Lisboa (IHMT/UNL), 1349–028 Lisbon, Portugal; (V.P.); (M.M.); (A.P.-P.); (M.R.O.M.); (A.-M.V.); (A.A.)
| | - Anne-Mieke Vandamme
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical/Universidade Nova de Lisboa (IHMT/UNL), 1349–028 Lisbon, Portugal; (V.P.); (M.M.); (A.P.-P.); (M.R.O.M.); (A.-M.V.); (A.A.)
- Department of Microbiology and Immunology, KU Leuven, Clinical and Epidemiological Virology, Rega Institute for Medical Research, 3000 Leuven, Belgium; (P.L.); (K.T.); (R.C.)
| | - Ricardo Camacho
- Department of Microbiology and Immunology, KU Leuven, Clinical and Epidemiological Virology, Rega Institute for Medical Research, 3000 Leuven, Belgium; (P.L.); (K.T.); (R.C.)
| | - Perpétua Gomes
- Laboratório de Biologia Molecular (LMCBM, SPC, CHLO-HEM), 1349-019 Lisbon, Portugal; (I.D.); (S.F.); (P.G.)
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Superior de Ciências da Saúde Egas Moniz, 2829-511 Caparica, Portugal
| | - Ana Abecasis
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical/Universidade Nova de Lisboa (IHMT/UNL), 1349–028 Lisbon, Portugal; (V.P.); (M.M.); (A.P.-P.); (M.R.O.M.); (A.-M.V.); (A.A.)
| | | |
Collapse
|
5
|
Bokharaei-Salim F, Esghaei M, Khanaliha K, Kalantari S, Marjani A, Fakhim A, Keyvani H. HIV-1 reverse transcriptase and protease mutations for drug-resistance detection among treatment-experienced and naïve HIV-infected individuals. PLoS One 2020; 15:e0229275. [PMID: 32119691 PMCID: PMC7051075 DOI: 10.1371/journal.pone.0229275] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 02/03/2020] [Indexed: 12/03/2022] Open
Abstract
Background The presence of drug resistance mutations (DRMs) against antiretroviral agents is one of the main concerns in the clinical management of individuals with human immunodeficiency virus-1 (HIV-1) infection, especially in regions of the world where treatment options are limited. The current study aimed at assessing the prevalence of HIV-1 DRMs among naïve and treatment-experienced HIV-1-infected patients in Iran. Methods From April 2013 to September 2018, the HIV-1 protease and reverse transcriptase genes were amplified and sequenced in plasma specimens of 60 newly diagnosed antiretroviral-naive individuals and 46 participants receiving antiretroviral therapies (ARTs) for at least six months with an HIV viral load of more than 1000 IU/mL to determine the HIV-1 DRMs and subtypes. Results Among the 60 treatment-naïve HIV-1-infected participants, 8.3% were infected with HIV-1 variants with surveillance DRMs (SDRMs). The SDRMs, D67N and D67E, belonged to the NRTIs class in two patients and K103N and V106A belonged to the NNRTIs class in three patients. The phylogenetic analysis showed that 91.7% of the subjects were infected with subtype CRF35_AD, followed by subtype B (5.0%) and CRF01_AE (3.3%). Among the 46 ART-experienced participants, 33 (71.7%) carried HIV-1 variants with SDRMs (9.1% against PIs, 78.8% against NRTIs, and 100% against NNRTIs). M46I and I47V were the most common mutations for PIs, M184V was the most common mutation for the NRTIs, and K103N/S was the most common mutation for NNRTIs. Phylogenetic analysis of the polymerase region showed that all of the 46 HIV-1-infected patients who failed on ART carried CRF35_AD. Conclusions The moderate prevalence of SDRMs (8.3%) in treatment-naïve and ART-failed (77.1%) Iranian patients with HIV-1-infection emphasizes the need for systematic viral load monitoring, expanding drug resistance testing, carefully surveilling individuals on ART regimens, and facilitating access to new antiretrovirals by health authorities.
Collapse
Affiliation(s)
- Farah Bokharaei-Salim
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- * E-mail: ,
| | - Maryam Esghaei
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Khadijeh Khanaliha
- Research Center of Pediatric Infectious Diseases, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Kalantari
- Departments of Infectious Diseases and Tropical Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Arezoo Marjani
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Atousa Fakhim
- Department of Architectural Engineering, Faculty of Engineering, Islamic Azad University, South Tehran Branch, Tehran, Iran
| | - Hossein Keyvani
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Pimentel V, Pingarilho M, Alves D, Diogo I, Fernandes S, Miranda M, Pineda-Peña AC, Libin P, Martins MRO, Vandamme AM, Camacho R, Gomes P, Abecasis A. Molecular Epidemiology of HIV-1 Infected Migrants Followed up in Portugal: Trends between 2001-2017. Viruses 2020; 12:v12030268. [PMID: 32121161 PMCID: PMC7150888 DOI: 10.3390/v12030268] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 11/16/2022] Open
Abstract
Migration is associated with HIV-1 vulnerability. Objectives: To identify long-term trends in HIV-1 molecular epidemiology and antiretroviral drug resistance (ARV) among migrants followed up in Portugal Methods: 5177 patients were included between 2001 and 2017. Rega, Scuel, Comet, and jPHMM algorithms were used for subtyping. Transmitted drug resistance (TDR) and Acquired drug resistance (ADR) were defined as the presence of surveillance drug resistance mutations (SDRMs) and as mutations of the IAS-USA 2015 algorithm, respectively. Statistical analyses were performed. Results: HIV-1 subtypes infecting migrants were consistent with the ones prevailing in their countries of origin. Over time, overall TDR significantly increased and specifically for Non-nucleoside reverse transcriptase inhibitor (NNRTIs) and Nucleoside reverse transcriptase inhibitor (NRTIs). TDR was higher in patients from Mozambique. Country of origin Mozambique and subtype B were independently associated with TDR. Overall, ADR significantly decreased over time and specifically for NRTIs and Protease Inhibitors (PIs). Age, subtype B, and viral load were independently associated with ADR. Conclusions: HIV-1 molecular epidemiology in migrants suggests high levels of connectivity with their country of origin. The increasing levels of TDR in migrants could indicate an increase also in their countries of origin, where more efficient surveillance should occur.
Collapse
Affiliation(s)
- Victor Pimentel
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical/Universidade Nova de Lisboa (IHMT/UNL), 1349-008 Lisboa, Portugal; (V.P.); (M.P.); (D.A.); (M.M.); (A.-C.P.-P.); (M.R.O.M.); (A.-M.V.)
| | - Marta Pingarilho
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical/Universidade Nova de Lisboa (IHMT/UNL), 1349-008 Lisboa, Portugal; (V.P.); (M.P.); (D.A.); (M.M.); (A.-C.P.-P.); (M.R.O.M.); (A.-M.V.)
| | - Daniela Alves
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical/Universidade Nova de Lisboa (IHMT/UNL), 1349-008 Lisboa, Portugal; (V.P.); (M.P.); (D.A.); (M.M.); (A.-C.P.-P.); (M.R.O.M.); (A.-M.V.)
| | - Isabel Diogo
- Laboratório de Biologia Molecular (LMCBM, SPC, CHLO-HEM), 1349-019 Lisboa, Portugal; (I.D.); (S.F.); (P.G.)
| | - Sandra Fernandes
- Laboratório de Biologia Molecular (LMCBM, SPC, CHLO-HEM), 1349-019 Lisboa, Portugal; (I.D.); (S.F.); (P.G.)
| | - Mafalda Miranda
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical/Universidade Nova de Lisboa (IHMT/UNL), 1349-008 Lisboa, Portugal; (V.P.); (M.P.); (D.A.); (M.M.); (A.-C.P.-P.); (M.R.O.M.); (A.-M.V.)
| | - Andrea-Clemencia Pineda-Peña
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical/Universidade Nova de Lisboa (IHMT/UNL), 1349-008 Lisboa, Portugal; (V.P.); (M.P.); (D.A.); (M.M.); (A.-C.P.-P.); (M.R.O.M.); (A.-M.V.)
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia, Basic Sciences Department, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111321, Colombia
| | - Pieter Libin
- KU Leuven, Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, 3000 Leuven, Belgium; (P.L.); (R.C.)
- Artificial Intelligence lab, Department of computer science, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - M. Rosário O. Martins
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical/Universidade Nova de Lisboa (IHMT/UNL), 1349-008 Lisboa, Portugal; (V.P.); (M.P.); (D.A.); (M.M.); (A.-C.P.-P.); (M.R.O.M.); (A.-M.V.)
| | - Anne-Mieke Vandamme
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical/Universidade Nova de Lisboa (IHMT/UNL), 1349-008 Lisboa, Portugal; (V.P.); (M.P.); (D.A.); (M.M.); (A.-C.P.-P.); (M.R.O.M.); (A.-M.V.)
- KU Leuven, Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, 3000 Leuven, Belgium; (P.L.); (R.C.)
| | - Ricardo Camacho
- KU Leuven, Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, 3000 Leuven, Belgium; (P.L.); (R.C.)
| | - Perpétua Gomes
- Laboratório de Biologia Molecular (LMCBM, SPC, CHLO-HEM), 1349-019 Lisboa, Portugal; (I.D.); (S.F.); (P.G.)
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Superior de Ciências da Saúde Egas Moniz, 2829-511 Caparica, Portugal
| | - Ana Abecasis
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical/Universidade Nova de Lisboa (IHMT/UNL), 1349-008 Lisboa, Portugal; (V.P.); (M.P.); (D.A.); (M.M.); (A.-C.P.-P.); (M.R.O.M.); (A.-M.V.)
- Correspondence:
| |
Collapse
|
7
|
Jovanović L, Šiljić M, Ćirković V, Salemović D, Pešić-Pavlović I, Todorović M, Ranin J, Jevtović D, Stanojević M. Exploring Evolutionary and Transmission Dynamics of HIV Epidemic in Serbia: Bridging Socio-Demographic With Phylogenetic Approach. Front Microbiol 2019; 10:287. [PMID: 30858834 PMCID: PMC6397891 DOI: 10.3389/fmicb.2019.00287] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 02/04/2019] [Indexed: 12/04/2022] Open
Abstract
Previous molecular studies of Serbian HIV epidemic identified the dominance of subtype B and presence of clusters related HIV-1 transmission, in particular among men who have sex with men (MSM). In order to get a deeper understanding of the complexities of HIV sub-epidemics in Serbia, epidemic trends, temporal origin and phylodynamic characteristics in general population and subpopulations were analyzed by means of mathematical modeling, phylogenetic analysis and latent class analysis (LCA). Fitting of the logistic curve of trends for a cumulative annual number of new HIV cases in 1984–2016, in general population and MSM transmission group, was performed. Both datasets fitted the logistic growth model, showing the early exponential phase of the growth curve. According to the suggested model, in the year 2030, the number of newly diagnosed HIV cases in Serbia will continue to grow, in particular in the MSM transmission group. Further, a detailed phylogenetic analysis was performed on 385 sequences from the period 1997–2015. Identification of transmission clusters, estimation of population growth (Ne), of the effective reproductive number (Re) and time of the most recent common ancestor (tMRCA) were estimated employing Bayesian and maximum likelihood methods. A substantial proportion of 53% of subtype B sequences was found within transmission clusters/network. Phylodynamic analysis revealed Re over one during the whole period investigated, with the steepest slopes and a recent tMRCA for MSM transmission group subtype B clades, in line with a growing trend in the number of transmissions in years approaching the end of the study period. Contrary, heterosexual clades in both studied subtypes – B and C – showed modest growth and stagnation. LCA analysis identified five latent classes, with transmission clusters dominantly present in 2/5 classes, linked to MSM transmission living in the capital city and with the high prevalence of co-infection with HBV and/or other STIs.Presented findings imply that HIV epidemic in Serbia is still in the exponential growth phase, in particular, related to the MSM transmission, with estimated steep growth curve until 2030. The obtained results imply that an average new HIV patient in Serbia is a young man with concomitant sexually transmitted infection.
Collapse
Affiliation(s)
- Luka Jovanović
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Marina Šiljić
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Valentina Ćirković
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Dubravka Salemović
- Infectious and Tropical Diseases University Hospital, Clinical Centre of Serbia, Belgrade, Serbia
| | - Ivana Pešić-Pavlović
- Virology Laboratory, Microbiology Department, Clinical Centre of Serbia, Belgrade, Serbia
| | - Marija Todorović
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jovan Ranin
- Infectious and Tropical Diseases University Hospital, Clinical Centre of Serbia, Belgrade, Serbia
| | - Djordje Jevtović
- Infectious and Tropical Diseases University Hospital, Clinical Centre of Serbia, Belgrade, Serbia
| | - Maja Stanojević
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
8
|
Increasing proportions of HIV-1 non-B subtypes and of NNRTI resistance between 2013 and 2016 in Germany: Results from the national molecular surveillance of new HIV-diagnoses. PLoS One 2018; 13:e0206234. [PMID: 30408827 PMCID: PMC6224275 DOI: 10.1371/journal.pone.0206234] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 10/09/2018] [Indexed: 12/12/2022] Open
Abstract
Background Molecular surveillance of newly diagnosed HIV-infections is important for tracking trends in circulating HIV-variants, including those with transmitted drug resistances (TDR) to sustain ART efficacy. Methods Dried serum spots (DSS) are received together with the statutory notification of a new diagnosis. 'Recent infections' (<155 days) classified by a 'recent infection test algorithm' (BED-CEIA and clinical data) are genotyped in HIV-protease (PR), reverse transcriptase (RT) and integrase (INT) to determine the HIV-1 subtype, to calculate prevalence and trends of TDR, to predict baseline susceptibility and to identify potential transmission clusters for resistant variants. Results Between January 2013 and December 2016, 1,885 recent infections were analysed regarding the PR/RT genomic region, with 43.5% of these also being subjected to the analysis of INT. The proportion of HIV-1 non-B viruses (31.3%; 591/1,885) increased from 21.6% to 36.0%, particularly the subtypes A (5.0% to 8.3%) and C (3.2% to 7.7%; all ptrends < 0.01). The subtype A increment is mainly due to transmissions within men who have sex with men (MSM) while subtype C transmissions are associated with heterosexuals and people who inject drugs. The prevalence of TDR was stable at 11.0% (208/1,885) over the study period. Resistances to nucleotide RT inhibitors (NRTI) and PR inhibitors (PI) were 4.5% and 3.2%, respectively, without identifiable trends. In contrast, resistances to non-NRTIs (NNRTI, 4.7%) doubled between 2014 and 2016 from 3.2% to 6.4% (ptrend = 0.02) mainly due to the K103N mutation (from 1.7% to 4.1%; ptrend = 0.03) predominantly detected in recently infected German MSM not linked to transmission clusters. Transmitted INSTI mutations were present in only one case (T66I) and resistance to dolutegravir was not identified at all. Reduced susceptibility to recommended first-line therapies was low with 1.0% for PIs, 1.3% for NRTIs and 0.7% for INSTIs, but high for the NNRTIs efavirence (4.9%) and rilpivirine (6.0%) due to the K103N mutation and the polymorphic mutation E138A. These trends in therapy-naïve individuals impact current first-line regimens and require awareness and vigilant surveillance.
Collapse
|
9
|
Rossetti B, Di Giambenedetto S, Torti C, Postorino MC, Punzi G, Saladini F, Gennari W, Borghi V, Monno L, Pignataro AR, Polilli E, Colafigli M, Poggi A, Tini S, Zazzi M, De Luca A. Evolution of transmitted HIV-1 drug resistance and viral subtypes circulation in Italy from 2006 to 2016. HIV Med 2018; 19:619-628. [PMID: 29932313 DOI: 10.1111/hiv.12640] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2018] [Indexed: 12/13/2022]
Abstract
OBJECTIVES The aim was to evaluate the evolution of transmitted HIV-1 drug resistance (TDR) prevalence in antiretroviral therapy (ART)-naïve patients from 2006 to 2016. METHODS HIV-1 sequences were retrieved from the Antiviral Response Cohort Analysis (ARCA) database and TDR was defined as detection of at least one mutation from the World Health Organization (WHO) surveillance list. RESULTS We included protease/reverse transcriptase sequences from 3573 patients; 455 had also integrase sequences. Overall, 68.1% of the patients were Italian, the median CD4 count was 348 cells/μL [interquartile range (IQR) 169-521 cells/μL], and the median viral load was 4.7 log10 HIV-1 RNA copies/mL (IQR 4.1-5.3 log10 copies/mL). TDR was detected in 10.3% of patients: 6% carried mutations to nucleos(t)ide reverse transcriptase inhibitors (NRTIs), 4.4% to nonnucleos(t)ide reverse transcriptase inhibitors (NNRTIs), 2.3% to protease inhibitors (PIs), 0.2% to integrase strand transfer inhibitors (INSTIs) and 2.1% to at least two drug classes. TDR declined from 14.5% in 2006 to 7.3% in 2016 (P = 0.003): TDR to NRTIs from 9.9 to 2.9% (P = 0.003) and TDR to NNRTIs from 5.1 to 3.7% (P = 0.028); PI TDR remained stable. The proportion carrying subtype B virus declined from 76.5 to 50% (P < 0.001). The prevalence of TDR was higher in subtype B vs. non-B (12.6 vs. 4.9%, respectively; P < 0.001) and declined significantly in subtype B (from 17.1 to 8.8%; P = 0.04) but not in non-B subtypes (from 6.1 to 5.8%; P = 0.44). Adjusting for country of origin, predictors of TDR were subtype B [adjusted odds ratio (AOR) for subtype B vs. non-B 2.91; 95% confidence interval (CI) 1.93-4.39; P < 0.001], lower viral load (per log10 higher: AOR 0.86; 95% CI 0.75-0.99; P = 0.03), site in northern Italy (AOR for southern Italy/island vs. northern Italy, 0.61; 95% CI 0.40-0.91; P = 0.01), and earlier calendar year (per 1 year more recent: AOR 0.95; 95% CI 0.91-0.99; P = 0.02). CONCLUSIONS The prevalence of HIV-1 TDR has declined during the last 10 years in Italy.
Collapse
Affiliation(s)
- B Rossetti
- Infectious Diseases Unit, University Hospital of Siena, Siena, Italy
| | - S Di Giambenedetto
- Clinic of Infectious Diseases, Catholic University of Sacred Heart, Rome, Italy
| | - C Torti
- Infectious Diseases Unit, Catanzaro, Italy
| | | | - G Punzi
- Virology, Bari Hospital, Bari, Italy
| | - F Saladini
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - W Gennari
- Virology, Modena Hospital, Modena, Italy
| | - V Borghi
- Infectious Diseases Unit, Modena Hospital, Modena, Italy
| | - L Monno
- Infectious Diseases Unit, Bari Hospital, Bari, Italy
| | | | - E Polilli
- Virology, Pescara Hospital, Pescara, Italy
| | - M Colafigli
- Clinic of Infectious Diseases, Catholic University of Sacred Heart, Rome, Italy
| | - A Poggi
- Infectious Diseases Unit, S. Maria Annunziata Hospital, Firenze, Italy
| | - S Tini
- Medicine Department, Città di Castello, Italy
| | - M Zazzi
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - A De Luca
- Infectious Diseases Unit, University Hospital of Siena, Siena, Italy.,Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | | |
Collapse
|
10
|
Phylogenetic analysis of the Belgian HIV-1 epidemic reveals that local transmission is almost exclusively driven by men having sex with men despite presence of large African migrant communities. INFECTION GENETICS AND EVOLUTION 2018. [PMID: 29522828 DOI: 10.1016/j.meegid.2018.03.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
To improve insight in the drivers of local HIV-1 transmission in Belgium, phylogenetic, demographic, epidemiological and laboratory data from patients newly diagnosed between 2013 and 2015 were combined and analyzed. Characteristics of clustered patients, paired patients and patients on isolated branches in the phylogenetic tree were compared. The results revealed an overall high level of clustering despite the short time frame of sampling, with 47.6% of all patients having at least one close genetic counterpart and 36.6% belonging to a cluster of 3 or more individuals. Compared to patients on isolated branches, patients in clusters more frequently reported being infected in Belgium (95.1% vs. 47.6%; p < 0.001), were more frequently men having sex with men (MSM) (77.9% vs. 42.8%; p < 0.001), of Belgian origin (68.2% vs. 32.9%; p < 0.001), male gender (92.6% vs. 65.8%; p < 0.001), infected with subtype B or F (87.8% vs. 43.4%; p < 0.001) and diagnosed early after infection (55.4% vs. 29.0%; p < 0.001). Strikingly, Sub-Saharan Africans (SSA), overall representing 27.1% of the population were significantly less frequently found in clusters than on individual branches (6.0% vs. 41.8%; p < 0.001). Of the SSA that participated in clustered transmission, 66.7% were MSM and this contrasts sharply with the overall 12.0% of SSA reporting MSM. Transmission clusters with SSA were more frequently non-B clusters than transmission clusters without SSA (44.4% versus 18.2%). MSM-driven clusters with patients of mixed origin may account, at least in part, for the increasing spread of non-B subtypes to the native MSM population, a cross-over that has been particularly successful for subtype F and CRF02_AG. The main conclusions from this study are that clustered transmission in Belgium remains almost exclusively MSM-driven with very limited contribution of SSA. There were no indications for local ongoing clustered transmission of HIV-1 among SSA.
Collapse
|