1
|
Gorelov R, Hochedlinger K. A cellular identity crisis? Plasticity changes during aging and rejuvenation. Genes Dev 2024; 38:823-842. [PMID: 39293862 PMCID: PMC11535162 DOI: 10.1101/gad.351728.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Cellular plasticity in adult multicellular organisms is a protective mechanism that allows certain tissues to regenerate in response to injury. Considering that aging involves exposure to repeated injuries over a lifetime, it is conceivable that cell identity itself is more malleable-and potentially erroneous-with age. In this review, we summarize and critically discuss the available evidence that cells undergo age-related shifts in identity, with an emphasis on those that contribute to age-associated pathologies, including neurodegeneration and cancer. Specifically, we focus on reported instances of programs associated with dedifferentiation, biased differentiation, acquisition of features from alternative lineages, and entry into a preneoplastic state. As some of the most promising approaches to rejuvenate cells reportedly also elicit transient changes to cell identity, we further discuss whether cell state change and rejuvenation can be uncoupled to yield more tractable therapeutic strategies.
Collapse
Affiliation(s)
- Rebecca Gorelov
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts 02138, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Konrad Hochedlinger
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA;
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts 02138, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
2
|
Rajabian N, Choudhury D, Ikhapoh I, Saha S, Kalyankar AS, Mehrotra P, Shahini A, Breed K, Andreadis ST. Reversine ameliorates hallmarks of cellular senescence in human skeletal myoblasts via reactivation of autophagy. Aging Cell 2023; 22:e13764. [PMID: 36625257 PMCID: PMC10014065 DOI: 10.1111/acel.13764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 10/20/2022] [Accepted: 12/08/2022] [Indexed: 01/11/2023] Open
Abstract
Cellular senescence leads to the depletion of myogenic progenitors and decreased regenerative capacity. We show that the small molecule 2,6-disubstituted purine, reversine, can improve some well-known hallmarks of cellular aging in senescent myoblast cells. Reversine reactivated autophagy and insulin signaling pathway via upregulation of Adenosine Monophosphate-activated protein kinase (AMPK) and Akt2, restoring insulin sensitivity and glucose uptake in senescent cells. Reversine also restored the loss of connectivity of glycolysis to the TCA cycle, thus restoring dysfunctional mitochondria and the impaired myogenic differentiation potential of senescent myoblasts. Altogether, our data suggest that cellular senescence can be reversed by treatment with a single small molecule without employing genetic reprogramming technologies.
Collapse
Affiliation(s)
- Nika Rajabian
- Department of Chemical and Biological EngineeringUniversity at Buffalo, State University of New YorkAmherstNew YorkUSA
| | - Debanik Choudhury
- Department of Chemical and Biological EngineeringUniversity at Buffalo, State University of New YorkAmherstNew YorkUSA
| | - Izuagie Ikhapoh
- Department of Chemical and Biological EngineeringUniversity at Buffalo, State University of New YorkAmherstNew YorkUSA
| | - Shilpashree Saha
- Department of Biomedical EngineeringUniversity at Buffalo, State University of New YorkAmherstNew YorkUSA
| | - Aishwarya S. Kalyankar
- Department of Biomedical EngineeringUniversity at Buffalo, State University of New YorkAmherstNew YorkUSA
| | - Pihu Mehrotra
- Department of Chemical and Biological EngineeringUniversity at Buffalo, State University of New YorkAmherstNew YorkUSA
| | - Aref Shahini
- Department of Chemical and Biological EngineeringUniversity at Buffalo, State University of New YorkAmherstNew YorkUSA
| | - Kendall Breed
- Department of Chemical and Biological EngineeringUniversity at Buffalo, State University of New YorkAmherstNew YorkUSA
| | - Stelios T. Andreadis
- Department of Chemical and Biological EngineeringUniversity at Buffalo, State University of New YorkAmherstNew YorkUSA
- Department of Biomedical EngineeringUniversity at Buffalo, State University of New YorkAmherstNew YorkUSA
- Center of Excellence in Bioinformatics and Life SciencesUniversity at Buffalo, State University of New YorkAmherstNew YorkUSA
- Cell, Gene and Tissue Engineering (CGTE) Center, School of Engineering and Applied SciencesUniversity at Buffalo, State University of New YorkAmherstNew YorkUSA
| |
Collapse
|
3
|
Sattarov R, Toresson H, Orbjörn C, Mattsson-Carlgren N. Direct Conversion of Fibroblast into Neurons for Alzheimer's Disease Research: A Systematic Review. J Alzheimers Dis 2023; 95:805-828. [PMID: 37661882 PMCID: PMC10578293 DOI: 10.3233/jad-230119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a prevalent neurodegenerative disorder without a cure. Innovative disease models, such as induced neurons (iNs), could enhance our understanding of AD mechanisms and accelerate treatment development. However, a review of AD human iN studies is necessary to consolidate knowledge. OBJECTIVE The objective of this review is to examine the current body of literature on AD human iN cells and provide an overview of the findings to date. METHODS We searched two databases for relevant studies published between 2010 and 2023, identifying nine studies meeting our criteria. RESULTS Reviewed studies indicate the feasibility of generating iNs directly from AD patients' fibroblasts using chemical induction or viral vectors. These cells express mature neuronal markers, including MAP-2, NeuN, synapsin, and tau. However, most studies were limited in sample size and primarily focused on autosomal dominant familial AD (FAD) rather than the more common sporadic forms of AD. Several studies indicated that iNs derived from FAD fibroblasts exhibited abnormal amyloid-β metabolism, a characteristic feature of AD in humans. Additionally, elevated levels of hyperphosphorylated tau, another hallmark of AD, were reported in some studies. CONCLUSION Although only a limited number of small-scale studies are currently available, AD patient-derived iNs hold promise as a valuable model for investigating AD pathogenesis. Future research should aim to conduct larger studies, particularly focusing on sporadic AD cases, to enhance the clinical relevance of the findings for the broader AD patient population. Moreover, these cells can be utilized in screening potential novel treatments for AD.
Collapse
Affiliation(s)
- Roman Sattarov
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Håkan Toresson
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Camilla Orbjörn
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Niklas Mattsson-Carlgren
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Lund, Sweden
- Department of Neurology, Skåne University Hospital, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
4
|
Cuní-López C, Stewart R, Quek H, White AR. Recent Advances in Microglia Modelling to Address Translational Outcomes in Neurodegenerative Diseases. Cells 2022; 11:cells11101662. [PMID: 35626698 PMCID: PMC9140031 DOI: 10.3390/cells11101662] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases are deteriorating conditions of the nervous system that are rapidly increasing in the aging population. Increasing evidence suggests that neuroinflammation, largely mediated by microglia, the resident immune cells of the brain, contributes to the onset and progression of neurodegenerative diseases. Hence, microglia are considered a major therapeutic target that could potentially yield effective disease-modifying treatments for neurodegenerative diseases. Despite the interest in studying microglia as drug targets, the availability of cost-effective, flexible, and patient-specific microglia cellular models is limited. Importantly, the current model systems do not accurately recapitulate important pathological features or disease processes, leading to the failure of many therapeutic drugs. Here, we review the key roles of microglia in neurodegenerative diseases and provide an update on the current microglia platforms utilised in neurodegenerative diseases, with a focus on human microglia-like cells derived from peripheral blood mononuclear cells as well as human-induced pluripotent stem cells. The described microglial platforms can serve as tools for investigating disease biomarkers and improving the clinical translatability of the drug development process in neurodegenerative diseases.
Collapse
Affiliation(s)
- Carla Cuní-López
- Cell & Molecular Biology Department, Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (C.C.-L.); (R.S.)
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4006, Australia
| | - Romal Stewart
- Cell & Molecular Biology Department, Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (C.C.-L.); (R.S.)
- UQ Centre for Clinical Research, The University of Queensland, Royal Brisbane & Women’s Hospital, Brisbane, QLD 4006, Australia
| | - Hazel Quek
- Cell & Molecular Biology Department, Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (C.C.-L.); (R.S.)
- Correspondence: (H.Q.); (A.R.W.)
| | - Anthony R. White
- Cell & Molecular Biology Department, Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (C.C.-L.); (R.S.)
- Correspondence: (H.Q.); (A.R.W.)
| |
Collapse
|
5
|
Mahboubi M, Talebi R, Mehrabi R, Mohammad Naji A, Maccaferri M, Kema GHJ. Genetic analysis of novel resistance sources and genome-wide association mapping identified novel QTLs for resistance to Zymoseptoria tritici, the causal agent of septoria tritici blotch in wheat. J Appl Genet 2022; 63:429-445. [PMID: 35482212 DOI: 10.1007/s13353-022-00696-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/11/2022] [Accepted: 04/20/2022] [Indexed: 11/29/2022]
Abstract
Septoria tritici blotch (STB) caused by Zymoseptoria tritici is one of the most important foliar diseases of wheat causing significant yield losses worldwide. In this study, a panel of bread wheat genotypes comprised 185 globally diverse genotypes were tested against 10 Z. tritici isolates at the seedling stage. Genome-wide association study (GWAS) using high-throughput DArTseq markers was performed and further gene expression analysis of significant markers trait association (MTAs) associated with resistance to STB was analyzed. Disease severity level showed significant differences among wheat genotypes for resistance to different Z. tritici isolates. We found novel landrace genotypes that showed highly resistance spectra to all tested isolates. GWAS analysis resulted in 19 quantitative trait loci (QTLs) for resistance to STB that were located on 14 chromosomes. Overall, 14 QTLs were overlapped with previously known QTLs or resistance genes, as well as five potentially novel QTLs on chromosomes 1A, 4A, 5B, 5D, and 6D. Identified novel resistance sources and also novel QTLs for resistance to different Z. tritici isolates can be used for gene pyramiding and development of durable resistance cultivars in future wheat breeding programs.
Collapse
Affiliation(s)
- Mozghan Mahboubi
- Department of Agronomy and Plant Breeding, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Reza Talebi
- Department of Agronomy and Plant Breeding, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran. .,Keygene N.V, P.O. Box 216, 6700 AE, Wageningen, Netherlands.
| | - Rahim Mehrabi
- Keygene N.V, P.O. Box 216, 6700 AE, Wageningen, Netherlands. .,Department of Biotechnology, College of Agriculture, Isfahan University of Technology, POBox 8415683111, Isfahan, Iran.
| | - Amir Mohammad Naji
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Shahed University, Tehran, Iran
| | - Marco Maccaferri
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Gert H J Kema
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
6
|
Verkerke M, Hol EM, Middeldorp J. Physiological and Pathological Ageing of Astrocytes in the Human Brain. Neurochem Res 2021; 46:2662-2675. [PMID: 33559106 PMCID: PMC8437874 DOI: 10.1007/s11064-021-03256-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 12/13/2022]
Abstract
Ageing is the greatest risk factor for dementia, although physiological ageing by itself does not lead to cognitive decline. In addition to ageing, APOE ε4 is genetically the strongest risk factor for Alzheimer's disease and is highly expressed in astrocytes. There are indications that human astrocytes change with age and upon expression of APOE4. As these glial cells maintain water and ion homeostasis in the brain and regulate neuronal transmission, it is likely that age- and APOE4-related changes in astrocytes have a major impact on brain functioning and play a role in age-related diseases. In this review, we will discuss the molecular and morphological changes of human astrocytes in ageing and the contribution of APOE4. We conclude this review with a discussion on technical issues, innovations, and future perspectives on how to gain more knowledge on astrocytes in the human ageing brain.
Collapse
Affiliation(s)
- Marloes Verkerke
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Elly M Hol
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands.
| | - Jinte Middeldorp
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
- Department of Immunobiology, Biomedical Primate Research Centre (BPRC), P.O. Box 3306, 2280 GH, Rijswijk, The Netherlands
| |
Collapse
|
7
|
Liu Y, Wang H. Modeling Sporadic Alzheimer's Disease by Efficient Direct Reprogramming of the Elderly Derived Disease Dermal Fibroblasts into Neural Stem Cells. J Alzheimers Dis 2021; 73:919-933. [PMID: 31884463 DOI: 10.3233/jad-190614] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder, neuropathologically characterized by hyperphosphorylation of tau and formation of amyloid plaques. Most AD cases are sporadic with no clear cause. Cell models play an important role in understanding the pathogenesis of sporadic AD, and the cell reprogramming and epigenetic techniques have provided new avenue to model the disorder. However, since most sporadic AD patients are late-onset, it poses a challenge to reprogram elderly somatic cells into stem cells. Here, we report that combination of overexpressing a single transcription factor, hSOX, with nine small molecules, was able to directly reprogram elderly (55-75 years of age) sporadic AD and the age-matched healthy individual dermal fibroblasts into the induced neural stem cells (iNSCs). These cells possessed the typical neural stem cell properties and were able to be further differentiated into neurons and glia in vitro and in vivo. More importantly, AD iNSC-derived neurons showed hyperphosphorylation at several sites of tau and increased release of Aβ into culture medium, indicating the replication of the major neuropathological hallmarks. Thus, we described a new technique to directly convert elderly AD dermal fibroblasts into iNSCs that may serve as a useful tool for studying the pathogenesis of sporadic AD and for drug discovery to treat the disorder.
Collapse
Affiliation(s)
- Yanying Liu
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, University of South Dakota Sanford School of Medicine, Vermillion, SD, USA
| | - Hongmin Wang
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, University of South Dakota Sanford School of Medicine, Vermillion, SD, USA
| |
Collapse
|
8
|
Pirazzini C, Azevedo T, Baldelli L, Bartoletti-Stella A, Calandra-Buonaura G, Dal Molin A, Dimitri GM, Doykov I, Gómez-Garre P, Hägg S, Hällqvist J, Halsband C, Heywood W, Jesús S, Jylhävä J, Kwiatkowska KM, Labrador-Espinosa MA, Licari C, Maturo MG, Mengozzi G, Meoni G, Milazzo M, Periñán-Tocino MT, Ravaioli F, Sala C, Sambati L, Schade S, Schreglmann S, Spasov S, Tenori L, Williams D, Xumerle L, Zago E, Bhatia KP, Capellari S, Cortelli P, Garagnani P, Houlden H, Liò P, Luchinat C, Delledonne M, Mills K, Mir P, Mollenhauer B, Nardini C, Pedersen NL, Provini F, Strom S, Trenkwalder C, Turano P, Bacalini MG, Franceschi C. A geroscience approach for Parkinson's disease: Conceptual framework and design of PROPAG-AGEING project. Mech Ageing Dev 2021; 194:111426. [PMID: 33385396 DOI: 10.1016/j.mad.2020.111426] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/07/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022]
Abstract
Advanced age is the major risk factor for idiopathic Parkinson's disease (PD), but to date the biological relationship between PD and ageing remains elusive. Here we describe the rationale and the design of the H2020 funded project "PROPAG-AGEING", whose aim is to characterize the contribution of the ageing process to PD development. We summarize current evidences that support the existence of a continuum between ageing and PD and justify the use of a Geroscience approach to study PD. We focus in particular on the role of inflammaging, the chronic, low-grade inflammation characteristic of elderly physiology, which can propagate and transmit both locally and systemically. We then describe PROPAG-AGEING design, which is based on the multi-omic characterization of peripheral samples from clinically characterized drug-naïve and advanced PD, PD discordant twins, healthy controls and "super-controls", i.e. centenarians, who never showed clinical signs of motor disability, and their offspring. Omic results are then validated in a large number of samples, including in vitro models of dopaminergic neurons and healthy siblings of PD patients, who are at higher risk of developing PD, with the final aim of identifying the molecular perturbations that can deviate the trajectories of healthy ageing towards PD development.
Collapse
Affiliation(s)
- Chiara Pirazzini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Tiago Azevedo
- Department of Computer Science and Technology, University of Cambridge, Cambridge, United Kingdom
| | - Luca Baldelli
- Department of Biomedical and NeuroMotor Sciences (DiBiNeM), University of Bologna, Italy
| | | | - Giovanna Calandra-Buonaura
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy; Department of Biomedical and NeuroMotor Sciences (DiBiNeM), University of Bologna, Italy
| | | | - Giovanna Maria Dimitri
- Department of Computer Science and Technology, University of Cambridge, Cambridge, United Kingdom
| | - Ivan Doykov
- Centre for Inborn Errors of Metabolism, UCL Institute of Child Health, London, United Kingdom
| | - Pilar Gómez-Garre
- Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Unidad de Trastornos del Movimiento, Servicio de Neurología y NeurofisiologíaClínica, Instituto de Biomedicina de Sevilla, Seville, Spain; Centro de Investigación Biomédicaen Red sobreEnfermedades Neurodegenerativas (CIBERNED), Spain
| | - Sara Hägg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jenny Hällqvist
- Centre for Inborn Errors of Metabolism, UCL Institute of Child Health, London, United Kingdom
| | - Claire Halsband
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany; Department of Gerontopsychiatry, Rhein-Mosel-Fachklinik, Andernach, Germany
| | - Wendy Heywood
- Centre for Inborn Errors of Metabolism, UCL Institute of Child Health, London, United Kingdom; NIHR Great Ormond Street Biomedical Research Centre, Great Ormond Street Hospital and UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Silvia Jesús
- Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Unidad de Trastornos del Movimiento, Servicio de Neurología y NeurofisiologíaClínica, Instituto de Biomedicina de Sevilla, Seville, Spain; Centro de Investigación Biomédicaen Red sobreEnfermedades Neurodegenerativas (CIBERNED), Spain
| | - Juulia Jylhävä
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | | | - Miguel A Labrador-Espinosa
- Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Unidad de Trastornos del Movimiento, Servicio de Neurología y NeurofisiologíaClínica, Instituto de Biomedicina de Sevilla, Seville, Spain; Centro de Investigación Biomédicaen Red sobreEnfermedades Neurodegenerativas (CIBERNED), Spain
| | - Cristina Licari
- CERM, University of Florence, Sesto Fiorentino, Florence, Italy
| | - Maria Giovanna Maturo
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Giacomo Mengozzi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | | | - Maddalena Milazzo
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Maria Teresa Periñán-Tocino
- Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Unidad de Trastornos del Movimiento, Servicio de Neurología y NeurofisiologíaClínica, Instituto de Biomedicina de Sevilla, Seville, Spain; Centro de Investigación Biomédicaen Red sobreEnfermedades Neurodegenerativas (CIBERNED), Spain
| | - Francesco Ravaioli
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Claudia Sala
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - Luisa Sambati
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy; Department of Biomedical and NeuroMotor Sciences (DiBiNeM), University of Bologna, Italy
| | - Sebastian Schade
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| | - Sebastian Schreglmann
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Simeon Spasov
- Department of Computer Science and Technology, University of Cambridge, Cambridge, United Kingdom
| | - Leonardo Tenori
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Florence, Italy
| | - Dylan Williams
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Sabina Capellari
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy; Department of Biomedical and NeuroMotor Sciences (DiBiNeM), University of Bologna, Italy
| | - Pietro Cortelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy; Department of Biomedical and NeuroMotor Sciences (DiBiNeM), University of Bologna, Italy
| | - Paolo Garagnani
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, WC1N 3BG, United Kingdom
| | - Pietro Liò
- Department of Computer Science and Technology, University of Cambridge, Cambridge, United Kingdom
| | - Claudio Luchinat
- CERM, University of Florence, Sesto Fiorentino, Florence, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Italy
| | | | - Kevin Mills
- Centre for Inborn Errors of Metabolism, UCL Institute of Child Health, London, United Kingdom; NIHR Great Ormond Street Biomedical Research Centre, Great Ormond Street Hospital and UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Pablo Mir
- Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Unidad de Trastornos del Movimiento, Servicio de Neurología y NeurofisiologíaClínica, Instituto de Biomedicina de Sevilla, Seville, Spain; Centro de Investigación Biomédicaen Red sobreEnfermedades Neurodegenerativas (CIBERNED), Spain
| | - Brit Mollenhauer
- Paracelsus-Elena-Klinik, Kassel, Germany; Department of Neurology, University Medical Centre Goettingen, Goettingen, Germany
| | - Christine Nardini
- Istituto per le Applicazioni del Calcolo Mauro Picone, CNR, Roma, Italy
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Federica Provini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy; Department of Biomedical and NeuroMotor Sciences (DiBiNeM), University of Bologna, Italy
| | - Stephen Strom
- Department of Laboratory Medicine, Karolinska Institute and Karolinska Universitetssjukhuset, 171 76, Stockholm, Sweden
| | - Claudia Trenkwalder
- Paracelsus-Elena-Klinik, Kassel, Germany; Department of Neurosurgery, University Medical Center Göttingen, Germany
| | - Paola Turano
- CERM, University of Florence, Sesto Fiorentino, Florence, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Italy
| | | | - Claudio Franceschi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy; Laboratory of Systems Medicine of Healthy Aging and Department of Applied Mathematics, Lobachevsky University, Nizhny Novgorod, Russia
| |
Collapse
|
9
|
Penney J, Ralvenius WT, Tsai LH. Modeling Alzheimer's disease with iPSC-derived brain cells. Mol Psychiatry 2020; 25:148-167. [PMID: 31391546 PMCID: PMC6906186 DOI: 10.1038/s41380-019-0468-3] [Citation(s) in RCA: 262] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 04/10/2019] [Accepted: 05/13/2019] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease is a devastating neurodegenerative disorder with no cure. Countless promising therapeutics have shown efficacy in rodent Alzheimer's disease models yet failed to benefit human patients. While hope remains that earlier intervention with existing therapeutics will improve outcomes, it is becoming increasingly clear that new approaches to understand and combat the pathophysiology of Alzheimer's disease are needed. Human induced pluripotent stem cell (iPSC) technologies have changed the face of preclinical research and iPSC-derived cell types are being utilized to study an array of human conditions, including neurodegenerative disease. All major brain cell types can now be differentiated from iPSCs, while increasingly complex co-culture systems are being developed to facilitate neuroscience research. Many cellular functions perturbed in Alzheimer's disease can be recapitulated using iPSC-derived cells in vitro, and co-culture platforms are beginning to yield insights into the complex interactions that occur between brain cell types during neurodegeneration. Further, iPSC-based systems and genome editing tools will be critical in understanding the roles of the numerous new genes and mutations found to modify Alzheimer's disease risk in the past decade. While still in their relative infancy, these developing iPSC-based technologies hold considerable promise to push forward efforts to combat Alzheimer's disease and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Jay Penney
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - William T Ralvenius
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Li-Huei Tsai
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
10
|
Heterogeneity in old fibroblasts is linked to variability in reprogramming and wound healing. Nature 2019; 574:553-558. [PMID: 31645721 DOI: 10.1038/s41586-019-1658-5] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 09/05/2019] [Indexed: 02/06/2023]
Abstract
Age-associated chronic inflammation (inflammageing) is a central hallmark of ageing1, but its influence on specific cells remains largely unknown. Fibroblasts are present in most tissues and contribute to wound healing2,3. They are also the most widely used cell type for reprogramming to induced pluripotent stem (iPS) cells, a process that has implications for regenerative medicine and rejuvenation strategies4. Here we show that fibroblast cultures from old mice secrete inflammatory cytokines and exhibit increased variability in the efficiency of iPS cell reprogramming between mice. Variability between individuals is emerging as a feature of old age5-8, but the underlying mechanisms remain unknown. To identify drivers of this variability, we performed multi-omics profiling of fibroblast cultures from young and old mice that have different reprogramming efficiencies. This approach revealed that fibroblast cultures from old mice contain 'activated fibroblasts' that secrete inflammatory cytokines, and that the proportion of activated fibroblasts in a culture correlates with the reprogramming efficiency of that culture. Experiments in which conditioned medium was swapped between cultures showed that extrinsic factors secreted by activated fibroblasts underlie part of the variability between mice in reprogramming efficiency, and we have identified inflammatory cytokines, including TNF, as key contributors. Notably, old mice also exhibited variability in wound healing rate in vivo. Single-cell RNA-sequencing analysis identified distinct subpopulations of fibroblasts with different cytokine expression and signalling in the wounds of old mice with slow versus fast healing rates. Hence, a shift in fibroblast composition, and the ratio of inflammatory cytokines that they secrete, may drive the variability between mice in reprogramming in vitro and influence wound healing rate in vivo. This variability may reflect distinct stochastic ageing trajectories between individuals, and could help in developing personalized strategies to improve iPS cell generation and wound healing in elderly individuals.
Collapse
|
11
|
Halpern M, Brennand KJ, Gregory J. Examining the relationship between astrocyte dysfunction and neurodegeneration in ALS using hiPSCs. Neurobiol Dis 2019; 132:104562. [PMID: 31381978 DOI: 10.1016/j.nbd.2019.104562] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 06/28/2019] [Accepted: 07/31/2019] [Indexed: 02/07/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a complex and fatal neurodegenerative disease for which the causes of disease onset and progression remain unclear. Recent advances in human induced pluripotent stem cell (hiPSC)-based models permit the study of the genetic factors associated with ALS in patient-derived neural cell types, including motor neurons and glia. While astrocyte dysfunction has traditionally been thought to exacerbate disease progression, astrocytic dysfunction may play a more direct role in disease initiation and progression. Such non-cell autonomous mechanisms expand the potential targets of therapeutic intervention, but only a handful of ALS risk-associated genes have been examined for their impact on astrocyte dysfunction and neurodegeneration. This review summarizes what is currently known about astrocyte function in ALS and suggests ways in which hiPSC-based models can be used to more effectively study the role of astrocytes in neurodegenerative disease.
Collapse
Affiliation(s)
- Madeline Halpern
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America
| | - Kristen J Brennand
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America.
| | - James Gregory
- Center for Genomics of Neurodegenerative Disease, New York Genome Center, New York, NY 10013, United States of America.
| |
Collapse
|