1
|
Cominelli E, Sparvoli F, Lisciani S, Forti C, Camilli E, Ferrari M, Le Donne C, Marconi S, Juan Vorster B, Botha AM, Marais D, Losa A, Sala T, Reboul E, Alvarado-Ramos K, Waswa B, Ekesa B, Aragão F, Kunert K. Antinutritional factors, nutritional improvement, and future food use of common beans: A perspective. FRONTIERS IN PLANT SCIENCE 2022; 13:992169. [PMID: 36082303 PMCID: PMC9445668 DOI: 10.3389/fpls.2022.992169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/02/2022] [Indexed: 06/06/2023]
Abstract
Common bean seeds are an excellent source of protein as well as of carbohydrates, minerals, vitamins, and bioactive compounds reducing, when in the diet, the risks of diseases. The presence of bioactive compounds with antinutritional properties (e.g., phytic acid, lectins, raffinosaccharides, protease inhibitors) limits, however, the bean's nutritional value and its wider use in food preparations. In the last decades, concerted efforts have been, therefore, made to develop new common bean genotypes with reduced antinutritional compounds by exploiting the natural genetic variability of common bean and also applying induced mutagenesis. However, possible negative, or positive, pleiotropic effects due to these modifications, in terms of plant performance in response to stresses or in the resulting technological properties of the developed mutant genotypes, have yet not been thoroughly investigated. The purpose of the perspective paper is to first highlight the current advances, which have been already made in mutant bean characterization. A view will be further provided on future research directions to specifically explore further advantages and disadvantages of these bean mutants, their potential use in innovative foods and representing a valuable genetic reservoir of combinations to assess the true functional role of specific seed bioactive components directly in the food matrix.
Collapse
Affiliation(s)
- Eleonora Cominelli
- National Research Council, Institute of Agricultural Biology and Biotechnology, Milan, Italy
| | - Francesca Sparvoli
- National Research Council, Institute of Agricultural Biology and Biotechnology, Milan, Italy
| | - Silvia Lisciani
- Council for Agricultural Research and Economics, Research Centre for Food and Nutrition, Rome, Italy
| | - Chiara Forti
- National Research Council, Institute of Agricultural Biology and Biotechnology, Milan, Italy
| | - Emanuela Camilli
- Council for Agricultural Research and Economics, Research Centre for Food and Nutrition, Rome, Italy
| | - Marika Ferrari
- Council for Agricultural Research and Economics, Research Centre for Food and Nutrition, Rome, Italy
| | - Cinzia Le Donne
- Council for Agricultural Research and Economics, Research Centre for Food and Nutrition, Rome, Italy
| | - Stefania Marconi
- Council for Agricultural Research and Economics, Research Centre for Food and Nutrition, Rome, Italy
| | - Barend Juan Vorster
- Department Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Anna-Maria Botha
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| | - Diana Marais
- Department Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Alessia Losa
- Council for Research in Agriculture and Economics, Research Centre for Genomics and Bioinformatics, Montanaso Lombardo, Italy
| | - Tea Sala
- Council for Research in Agriculture and Economics, Research Centre for Genomics and Bioinformatics, Montanaso Lombardo, Italy
| | | | | | - Boaz Waswa
- International Center for Tropical Agriculture (CIAT), CIAT Regional Office for Africa, Nairobi, Kenya
| | - Beatrice Ekesa
- International Center for Tropical Agriculture (CIAT), CIAT Regional Office for Africa, Nairobi, Kenya
| | | | - Karl Kunert
- Department Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
2
|
Sun Z, Yi M, Liu X, Yixin S, Li J. Synergism Between Water Management and Phosphorus Supply Enhances the Nodulation and Root Growth and Development of Chinese Milk Vetch ( Astragalus sinicus L.). FRONTIERS IN PLANT SCIENCE 2022; 12:784251. [PMID: 35185950 PMCID: PMC8850655 DOI: 10.3389/fpls.2021.784251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
The response of root development and nodule formation of the manure crop Chinese milk vetch to different levels of soil moisture and phosphorous (P) fertilizer remains unclear. In this study, a pot experiment was performed to trace the root growth and nodule formation of Chinese milk vetch at the seedling, branching and full-flowering stages, under various soil moisture gradients [25% (W1), 50% (W2), 75% (W3), and 100% (W4) of the maximum field water-holding capacity] and P levels [0 (P0), 30 (P1), 60 (P2), and 90 (P3) kg hm-2]. The root/shoot ratio, root vitality, number of nodules, nodule weight, and nitrogenase activity were affected remarkably by soil moisture or the level of added P across the whole stage. Differences were found in the interaction effect between soil moisture and added P on the characteristic indices of the root and nodule at the different growth stages. There were obvious differences in root activity and nitrogenase activity at seedling stage, but no evident differences were found in other indices. Certain differences were also found in the indicators mentioned above at the branching stage. W1P0 and W2P0 showed the highest root/shoot ratio, W2P2 and W3P2 resulted in the highest root activity; W3P3 and W3P2 had the highest number and weight of nodules; and W3P2, W2P2, and W3P1 had higher nitrogenase activity than the other treatments at the full-flowering stage. The application of P at 60 kg hm-2 and the relative soil moisture of 75% was the best P-water combination suitable for the root development, nodule formation, and nitrogen fixation of Chinese milk vetch. This study will provide a theoretical basis for the production of this plant by managing the synergistic interaction between P fertilizer and soil moisture.
Collapse
Affiliation(s)
- Zhengguo Sun
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Mingxuan Yi
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Xinbao Liu
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Shen Yixin
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Jianlong Li
- School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
3
|
Losa A, Vorster J, Cominelli E, Sparvoli F, Paolo D, Sala T, Ferrari M, Carbonaro M, Marconi S, Camilli E, Reboul E, Waswa B, Ekesa B, Aragão F, Kunert K. Drought and heat affect common bean minerals and human diet—What we know and where to go. Food Energy Secur 2021. [DOI: 10.1002/fes3.351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Alessia Losa
- Council for Research in Agriculture and Economics Research Centre for Genomics and Bioinformatics (CREA‐GB) Montanaso Italy
| | - Juan Vorster
- Department Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute University of Pretoria Pretoria South Africa
| | - Eleonora Cominelli
- National Research Council Institute of Agricultural Biology and Biotechnology (CNR‐IBBA) Milan Italy
| | - Francesca Sparvoli
- National Research Council Institute of Agricultural Biology and Biotechnology (CNR‐IBBA) Milan Italy
| | - Dario Paolo
- National Research Council Institute of Agricultural Biology and Biotechnology (CNR‐IBBA) Milan Italy
| | - Tea Sala
- Council for Research in Agriculture and Economics Research Centre for Genomics and Bioinformatics (CREA‐GB) Montanaso Italy
| | - Marika Ferrari
- Council for Agricultural Research and Economics Research Centre for Food and Nutrition (CREA‐AN) Rome Italy
| | - Marina Carbonaro
- Council for Agricultural Research and Economics Research Centre for Food and Nutrition (CREA‐AN) Rome Italy
| | - Stefania Marconi
- Council for Agricultural Research and Economics Research Centre for Food and Nutrition (CREA‐AN) Rome Italy
| | - Emanuela Camilli
- Council for Agricultural Research and Economics Research Centre for Food and Nutrition (CREA‐AN) Rome Italy
| | | | - Boaz Waswa
- International Center for Tropical Agriculture (CIAT) CIAT Regional Office for Africa Nairobi Kenya
| | - Beatrice Ekesa
- International Center for Tropical Agriculture (CIAT) CIAT Regional Office for Africa Nairobi Kenya
| | | | - Karl Kunert
- Department Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute University of Pretoria Pretoria South Africa
| |
Collapse
|
4
|
Colombo F, Paolo D, Cominelli E, Sparvoli F, Nielsen E, Pilu R. MRP Transporters and Low Phytic Acid Mutants in Major Crops: Main Pleiotropic Effects and Future Perspectives. FRONTIERS IN PLANT SCIENCE 2020; 11:1301. [PMID: 32973854 PMCID: PMC7481554 DOI: 10.3389/fpls.2020.01301] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 08/11/2020] [Indexed: 05/15/2023]
Abstract
Phytic acid (PA) represents the major storage form of seed phosphate (P). During seed maturation, it accumulates as phytate salts chelating various mineral cations, therefore reducing their bioavailability. During germination, phytase dephosphorylates PA releasing both P and cations which in turn can be used for the nutrition of the growing seedling. Animals do not possess phytase, thus monogastric animals assimilate only 10% of the phytate ingested with feed, whilst 90% is excreted and may contribute to cause P pollution of the environment. To overcome this double problem, nutritional and environmental, in the last four decades, many low phytic acid (lpa) mutants (most of which affect the PA-MRP transporters) have been isolated and characterized in all major crops, showing that the lpa trait can increase the nutritional quality of foods and feeds and improve P management in agriculture. Nevertheless, these mutations are frequently accompanied by negative pleiotropic effects leading to agronomic defects which may affect either seed viability and germination or plant development or in some cases even increase the resistance to cooking, thus limiting the interest of breeders. Therefore, although some significant results have been reached, the isolation of lpa mutants improved for their nutritional quality and with a good field performance remains a goal so far not fully achieved for many crops. Here, we will summarize the main pleiotropic effects that have been reported to date in lpa mutants affected in PA-MRP transporters in five productive agronomic species, as well as addressing some of the possible challenges to overcome these hurdles and improve the breeding efforts for lpa mutants.
Collapse
Affiliation(s)
- Federico Colombo
- Department of Agricultural and Environmental Sciences—Production Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
| | - Dario Paolo
- Institute of Agricultural Biology and Biotechnology, Consiglio Nazionale delle Ricerche (CNR), Milan, Italy
| | - Eleonora Cominelli
- Institute of Agricultural Biology and Biotechnology, Consiglio Nazionale delle Ricerche (CNR), Milan, Italy
| | - Francesca Sparvoli
- Institute of Agricultural Biology and Biotechnology, Consiglio Nazionale delle Ricerche (CNR), Milan, Italy
| | - Erik Nielsen
- Department of Biology and Biotechnology, Università degli Studi di Pavia, Pavia, Italy
| | - Roberto Pilu
- Department of Agricultural and Environmental Sciences—Production Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
- *Correspondence: Roberto Pilu,
| |
Collapse
|