1
|
Villano C, Demurtas OC, Esposito S, Granell A, Rambla JL, Piombino P, Frusciante L, Carputo D, Diretto G, Aversano R. Integrative analysis of metabolome and transcriptome profiles to highlight aroma determinants in Aglianico and Falanghina grape berries. BMC PLANT BIOLOGY 2023; 23:241. [PMID: 37149574 PMCID: PMC10163809 DOI: 10.1186/s12870-023-04251-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/26/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND The biochemical makeup of grape berries at harvest is essential for wine quality and depends on a fine transcriptional regulation occurring during berry development. In this study, we conducted a comprehensive survey of transcriptomic and metabolomic changes occurring in different berry tissues and developmental stages of the ancient grapes Aglianico and Falanghina to establish the patterns of the secondary metabolites contributing to their wine aroma and investigate the underlying transcriptional regulation. RESULTS Over two hundred genes related to aroma were found, of which 107 were differentially expressed in Aglianico and 99 in Falanghina. Similarly, 68 volatiles and 34 precursors were profiled in the same samples. Our results showed a large extent of transcriptomic and metabolomic changes at the level of isoprenoids (terpenes, norisoprenoids), green leaf volatiles (GLVs), and amino acid pathways, although the terpenoid metabolism was the most distinctive for Aglianico, and GLVs for Falanghina. Co-expression analysis that integrated metabolome and transcriptome data pinpointed 25 hub genes as points of biological interest in defining the metabolic patterns observed. Among them, three hub genes encoding for terpenes synthases (VvTPS26, VvTPS54, VvTPS68) in Aglianico and one for a GDP-L-galactose phosphorylase (VvGFP) in Falanghina were selected as potential active player underlying the aroma typicity of the two grapes. CONCLUSION Our data improve the understanding of the regulation of aroma-related biosynthetic pathways of Aglianico and Falanghina and provide valuable metabolomic and transcriptomic resources for future studies in these varieties.
Collapse
Affiliation(s)
- Clizia Villano
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, Naples, 80055, Italy
| | - Olivia Costantina Demurtas
- Biotechnology Laboratory, Casaccia Research Centre, Italian National Agency for New Technologies, Energy, and Sustainable Development (ENEA), Rome, 00123, Italy
| | - Salvatore Esposito
- CREA Research Centre for Cereal and Industrial Crops (CREA-CI), S.S. 673, km 25, Foggia, 200-71122, Italy
| | - Antonio Granell
- IBMCP Institute for Plant Molecular and Cell Biology (CSIC-UPV), Carrer de l'Enginyer Fausto Elio, s/n, Valencia, 46022, Spain
| | - José Luis Rambla
- IBMCP Institute for Plant Molecular and Cell Biology (CSIC-UPV), Carrer de l'Enginyer Fausto Elio, s/n, Valencia, 46022, Spain
| | - Paola Piombino
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, Naples, 80055, Italy
| | - Luigi Frusciante
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, Naples, 80055, Italy
| | - Domenico Carputo
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, Naples, 80055, Italy
| | - Gianfranco Diretto
- Biotechnology Laboratory, Casaccia Research Centre, Italian National Agency for New Technologies, Energy, and Sustainable Development (ENEA), Rome, 00123, Italy.
| | - Riccardo Aversano
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, Naples, 80055, Italy.
- Department of Biology, Biochemistry and Environmental Sciences, Universitat Jaume I, Castellón de la Plana, 12071, Spain.
| |
Collapse
|
2
|
Amin N, Ahmad N, Khalifa MAS, Du Y, Mandozai A, Khattak AN, Piwu W. Identification and Molecular Characterization of RWP-RK Transcription Factors in Soybean. Genes (Basel) 2023; 14:369. [PMID: 36833296 PMCID: PMC9956977 DOI: 10.3390/genes14020369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
The RWP-RK is a small family of plant-specific transcription factors that are mainly involved in nitrate starvation responses, gametogenesis, and root nodulation. To date, the molecular mechanisms underpinning nitrate-regulated gene expression in many plant species have been extensively studied. However, the regulation of nodulation-specific NIN proteins during nodulation and rhizobial infection under nitrogen starvation in soybean still remain unclear. Here, we investigated the genome-wide identification of RWP-RK transcription factors and their essential role in nitrate-inducible and stress-responsive gene expression in soybean. In total, 28 RWP-RK genes were identified from the soybean genome, which were unevenly distributed on 20 chromosomes from 5 distinct groups during phylogeny classification. The conserved topology of RWP-RK protein motifs, cis-acting elements, and functional annotation has led to their potential as key regulators during plant growth, development, and diverse stress responses. The RNA-seq data revealed that the up-regulation of GmRWP-RK genes in the nodules indicated that these genes might play crucial roles during root nodulation in soybean. Furthermore, qRT-PCR analysis revealed that most GmRWP-RK genes under Phytophthora sojae infection and diverse environmental conditions (such as heat, nitrogen, and salt) were significantly induced, thus opening a new window of possibilities into their regulatory roles in adaptation mechanisms that allow soybean to tolerate biotic and abiotic stress. In addition, the dual luciferase assay indicated that GmRWP-RK1 and GmRWP-RK2 efficiently bind to the promoters of GmYUC2, GmSPL9, and GmNIN, highlighting their possible involvement in nodule formation. Together, our findings provide novel insights into the functional role of the RWP-RK family during defense responses and root nodulation in soybean.
Collapse
Affiliation(s)
- Nooral Amin
- Plant Biotechnology Centre, College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Naveed Ahmad
- Joint Center for Single Cell Biology, Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mohamed A. S. Khalifa
- Plant Biotechnology Centre, College of Agronomy, Jilin Agricultural University, Changchun 130118, China
- Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Yeyao Du
- Plant Biotechnology Centre, College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Ajmal Mandozai
- Plant Biotechnology Centre, College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Aimal Nawaz Khattak
- Institute of Crop Science Chinese Academy of Agriculture Sciences, Beijing 100000, China
| | - Wang Piwu
- Plant Biotechnology Centre, College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
3
|
Genome-Wide Identification of MADS-Box Family Genes in Safflower ( Carthamus tinctorius L.) and Functional Analysis of CtMADS24 during Flowering. Int J Mol Sci 2023; 24:ijms24021026. [PMID: 36674539 PMCID: PMC9862418 DOI: 10.3390/ijms24021026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/14/2022] [Accepted: 12/27/2022] [Indexed: 01/07/2023] Open
Abstract
Safflower is an important economic crop with a plethora of industrial and medicinal applications around the world. The bioactive components of safflower petals are known to have pharmacological activity that promotes blood circulation and reduces blood stasis. However, fine-tuning the genetic mechanism of flower development in safflower is still required. In this study, we report the genome-wide identification of MADS-box transcription factors in safflower and the functional characterization of a putative CtMADS24 during vegetative and reproductive growth. In total, 77 members of MADS-box-encoding genes were identified from the safflower genome. The phylogenetic analysis divided CtMADS genes into two types and 15 subfamilies. Similarly, bioinformatic analysis, such as of conserved protein motifs, gene structures, and cis-regulatory elements, also revealed structural conservation of MADS-box genes in safflower. Furthermore, the differential expression pattern of CtMADS genes by RNA-seq data indicated that type II genes might play important regulatory roles in floral development. Similarly, the qRT-PCR analysis also revealed the transcript abundance of 12 CtMADS genes exhibiting tissue-specific expression in different flower organs. The nucleus-localized CtMADS24 of the AP1 subfamily was validated by transient transformation in tobacco using GFP translational fusion. Moreover, CtMADS24-overexpressed transgenic Arabidopsis exhibited early flowering and an abnormal phenotype, suggesting that CtMADS24 mediated the expression of genes involved in floral organ development. Taken together, these findings provide valuable information on the regulatory role of CtMADS24 during flower development in safflower and for the selection of important genes for future molecular breeding programs.
Collapse
|
4
|
Zhang X, Lin S, Peng D, Wu Q, Liao X, Xiang K, Wang Z, Tembrock LR, Bendahmane M, Bao M, Wu Z, Fu X. Integrated multi-omic data and analyses reveal the pathways underlying key ornamental traits in carnation flowers. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1182-1196. [PMID: 35247284 PMCID: PMC9129081 DOI: 10.1111/pbi.13801] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 02/09/2022] [Accepted: 02/19/2022] [Indexed: 05/20/2023]
Abstract
Carnation (Dianthus caryophyllus) is one of the most popular ornamental flowers in the world. Although numerous studies on carnations exist, the underlying mechanisms of flower color, fragrance, and the formation of double flowers remain unknown. Here, we employed an integrated multi-omics approach to elucidate the genetic and biochemical pathways underlying the most important ornamental features of carnation flowers. First, we assembled a high-quality chromosome-scale genome (636 Mb with contig N50 as 14.67 Mb) of D. caryophyllus, the 'Scarlet Queen'. Next, a series of metabolomic datasets was generated with a variety of instrumentation types from different parts of the flower at multiple stages of development to assess spatial and temporal differences in the accumulation of pigment and volatile compounds. Finally, transcriptomic data were generated to link genomic, biochemical, and morphological patterns to propose a set of pathways by which ornamental traits such as petal coloration, double flowers, and fragrance production are formed. Among them, the transcription factors bHLHs, MYBs, and a WRKY44 homolog are proposed to be important in controlling petal color patterning and genes such as coniferyl alcohol acetyltransferase and eugenol synthase are involved in the synthesis of eugenol. The integrated dataset of genomics, transcriptomics, and metabolomics presented herein provides an important foundation for understanding the underlying pathways of flower development and coloration, which in turn can be used for selective breeding and gene editing for the development of novel carnation cultivars.
Collapse
Affiliation(s)
- Xiaoni Zhang
- Key Laboratory of Horticultural Plant BiologyCollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
- Guangdong Laboratory for Lingnan Modern AgricultureGenome Analysis Laboratory of the Ministry of AgricultureAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenGuangdongChina
| | - Shengnan Lin
- Key Laboratory of Horticultural Plant BiologyCollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Dan Peng
- Guangdong Laboratory for Lingnan Modern AgricultureGenome Analysis Laboratory of the Ministry of AgricultureAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenGuangdongChina
| | - Quanshu Wu
- Key Laboratory of Horticultural Plant BiologyCollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Xuezhu Liao
- Guangdong Laboratory for Lingnan Modern AgricultureGenome Analysis Laboratory of the Ministry of AgricultureAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenGuangdongChina
| | - Kunli Xiang
- Guangdong Laboratory for Lingnan Modern AgricultureGenome Analysis Laboratory of the Ministry of AgricultureAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenGuangdongChina
| | - Zehao Wang
- Key Laboratory of Horticultural Plant BiologyCollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Luke R. Tembrock
- Department of Agricultural BiologyColorado State UniversityFort CollinsCOUSA
| | - Mohammed Bendahmane
- Key Laboratory of Horticultural Plant BiologyCollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
- Laboratoire Reproduction et Development des PlantesINRA‐CNRS‐Lyon1‐ENSEcole Normale Supérieure de LyonLyonFrance
| | - Manzhu Bao
- Key Laboratory of Horticultural Plant BiologyCollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Zhiqiang Wu
- Guangdong Laboratory for Lingnan Modern AgricultureGenome Analysis Laboratory of the Ministry of AgricultureAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenGuangdongChina
| | - Xiaopeng Fu
- Key Laboratory of Horticultural Plant BiologyCollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
5
|
Yan Y, Li M, Zhang X, Kong W, Bendahmane M, Bao M, Fu X. Tissue-Specific Expression of the Terpene Synthase Family Genes in Rosa chinensis and Effect of Abiotic Stress Conditions. Genes (Basel) 2022; 13:genes13030547. [PMID: 35328100 PMCID: PMC8950262 DOI: 10.3390/genes13030547] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 01/22/2023] Open
Abstract
Rose (Rosa chinensis) is one of the most famous ornamental plants worldwide, with a variety of colors and fragrances. Terpene synthases (TPSs) play critical roles in the biosynthesis of terpenes. In this work, we report a comprehensive study on the genome-wide identification and characterization of the TPS family in R. chinensis. We identified 49 TPS genes in the R. chinensis genome, and they were grouped into five subfamilies (TPS-a, TPS-b, TPS-c, TPS-g and TPS-e/f). Phylogenetics, gene structure and conserved motif analyses indicated that the RcTPS genes possessed relatively conserved gene structures and the RcTPS proteins contained relatively conserved motifs. Multiple putative cis-acting elements involved in the stress response were identified in the promoter region of RcTPS genes, suggesting that some could be regulated by stress. The expression profile of RcTPS genes showed that they were predominantly expressed in the petals of open flowers, pistils, leaves and roots. Under osmotic and heat stresses, the expression of most RcTPS genes was upregulated. These data provide a useful foundation for deciphering the functional roles of RcTPS genes during plant growth as well as addressing the link between terpene biosynthesis and abiotic stress responses in roses.
Collapse
Affiliation(s)
- Yuhang Yan
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (Y.Y.); (M.L.); (M.B.)
| | - Mouliang Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (Y.Y.); (M.L.); (M.B.)
| | - Xiaoni Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (X.Z.); (W.K.)
| | - Weilong Kong
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (X.Z.); (W.K.)
| | - Mohammed Bendahmane
- Laboratoire Reproduction et Development des Plantes, Ecole Normale Supérieure Lyon, 520074 Lyon, France;
| | - Manzhu Bao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (Y.Y.); (M.L.); (M.B.)
| | - Xiaopeng Fu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (Y.Y.); (M.L.); (M.B.)
- Correspondence: ; Tel.: +86-159-2625-8658; Fax: +86-027-8728-2010
| |
Collapse
|
6
|
Ren L, Sun H, Dai S, Feng S, Qiao K, Wang J, Gong S, Zhou A. Identification and Characterization of MIKC c-Type MADS-Box Genes in the Flower Organs of Adonis amurensis. Int J Mol Sci 2021; 22:ijms22179362. [PMID: 34502271 PMCID: PMC8430553 DOI: 10.3390/ijms22179362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 01/22/2023] Open
Abstract
Adonis amurensis is a perennial herbaceous flower that blooms in early spring in northeast China, where the night temperature can drop to −15 °C. To understand flowering time regulation and floral organogenesis of A. amurensis, the MIKCc-type MADS (Mcm1/Agamous/ Deficiens/Srf)-box genes were identified and characterized from the transcriptomes of the flower organs. In this study, 43 non-redundant MADS-box genes (38 MIKCc, 3 MIKC*, and 2 Mα) were identified. Phylogenetic and conserved motif analysis divided the 38 MIKCc-type genes into three major classes: ABCDE model (including AP1/FUL, AP3/PI, AG, STK, and SEPs/AGL6), suppressor of overexpression of constans1 (SOC1), and short vegetative phase (SVP). qPCR analysis showed that the ABCDE model genes were highly expressed mainly in flowers and differentially expressed in the different tissues of flower organs, suggesting that they may be involved in the flower organ identity of A. amurensis. Subcellular localization revealed that 17 full-length MADSs were mainly localized in the nucleus: in Arabidopsis, the heterologous expression of three full-length SOC1-type genes caused early flowering and altered the expression of endogenous flowering time genes. Our analyses provide an overall insight into MIKCc genes in A. amurensis and their potential roles in floral organogenesis and flowering time regulation.
Collapse
|
7
|
Cheng X, Wang H, Wei H, Gu L, Hao P, Sun H, Wu A, Cheng S, Yu S. The MADS transcription factor GhAP1.7 coordinates the flowering regulatory pathway in upland cotton (Gossypium hirsutum L.). Gene 2020; 769:145235. [PMID: 33148424 DOI: 10.1016/j.gene.2020.145235] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 09/26/2020] [Accepted: 10/09/2020] [Indexed: 11/26/2022]
Abstract
MADS-box gene family plays an important role in the molecular regulatory network of flower development. APETALA1 (AP1), a MADS-box gene, plays an important role in the development of flower organs. Although many studies about MADS-box family genes have been reported, the function of AP1 is still not clear in cotton. In this study, GhAP1.7 (Gh_D03G0922), a candidate gene for cotton flower time and plant height obtained from our previous studies, was cloned from CCRI50 cotton variety and functionally characterized. Subcellular localization demonstrated that GhAP1.7 was located in nucleus. Infection test of Arabidopsis revealed that GhAP1.7 could cause precocious flowering and virus-induced gene silence (VIGS) assay demonstrated that GhAP1.7 could lead to delayed flowering of cotton plants. Yeast one-hybrid assays and transient dual-luciferase assays suggested that floral meristem identity control gene LEAFY (LFY) can bind the promoter of GhAP1.7 and negatively regulate it. Our research indicated that GhAP1.7 might work as a positive regulator in plant flowering. Moreover, GhAP1.7 may negatively regulated by GhLFY in the regulatory pathways. This work laid the foundation for subsequent functional studies of GhAP1.7.
Collapse
Affiliation(s)
- Xiaoqian Cheng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China; College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
| | - Hantao Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China.
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China.
| | - Lijiao Gu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China.
| | - Pengbo Hao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China.
| | - Huiru Sun
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China.
| | - Aimin Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China.
| | - Shuaishuai Cheng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China.
| | - Shuxun Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China.
| |
Collapse
|
8
|
Wang Q, Zhang X, Lin S, Yang S, Yan X, Bendahmane M, Bao M, Fu X. Mapping a double flower phenotype-associated gene DcAP2L in Dianthus chinensis. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1915-1927. [PMID: 31990971 PMCID: PMC7242084 DOI: 10.1093/jxb/erz558] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 01/25/2020] [Indexed: 05/12/2023]
Abstract
The double flower is a highly important breeding trait that affects the ornamental value in many flowering plants. To get a better understanding of the genetic mechanism of double flower formation in Dianthus chinensis, we have constructed a high-density genetic map using 140 F2 progenies derived from a cross between a single flower genotype and a double flower genotype. The linkage map was constructed using double-digest restriction site-associated DNA sequencing (ddRAD-seq) with 2353 single nucleotide polymorphisms (SNPs). Quantitative trait locus (QTL) mapping analysis was conducted for 12 horticultural traits, and major QTLs were identified for nine of the 12 traits. Among them, two major QTLs accounted for 20.7% and 78.1% of the total petal number variation, respectively. Bulked segregant RNA-seq (BSR-seq) was performed to search accurately for candidate genes associated with the double flower trait. Integrative analysis of QTL mapping and BSR-seq analysis using the reference genome of Dianthus caryophyllus suggested that an SNP mutation in the miR172 cleavage site of the A-class flower organ identity gene APETALA2 (DcAP2L) is responsible for double flower formation in Dianthus through regulating the expression of DcAG genes.
Collapse
Affiliation(s)
- Qijian Wang
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Urban Agriculture in Central China (pilot run), Ministry of Agriculture, Wuhan, China
| | - Xiaoni Zhang
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Urban Agriculture in Central China (pilot run), Ministry of Agriculture, Wuhan, China
| | - Shengnan Lin
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Urban Agriculture in Central China (pilot run), Ministry of Agriculture, Wuhan, China
| | - Shaozong Yang
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Urban Agriculture in Central China (pilot run), Ministry of Agriculture, Wuhan, China
| | - Xiuli Yan
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Urban Agriculture in Central China (pilot run), Ministry of Agriculture, Wuhan, China
| | - Mohammed Bendahmane
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Laboratoire Reproduction et Development des Plantes, INRA-CNRS-Lyon1-ENS, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Manzhu Bao
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Urban Agriculture in Central China (pilot run), Ministry of Agriculture, Wuhan, China
| | - Xiaopeng Fu
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Urban Agriculture in Central China (pilot run), Ministry of Agriculture, Wuhan, China
- Correspondence:
| |
Collapse
|
9
|
Wang Q, Dan N, Zhang X, Lin S, Bao M, Fu X. Identification, Characterization and Functional Analysis of C-Class Genes Associated with Double Flower Trait in Carnation ( Dianthus caryphyllus L.). PLANTS 2020; 9:plants9010087. [PMID: 31936710 PMCID: PMC7020439 DOI: 10.3390/plants9010087] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/19/2019] [Accepted: 01/06/2020] [Indexed: 11/23/2022]
Abstract
Flowers with more petals are of more ornamental value. It is well known that AGAMOUS (AG) is the core member of the C-class gene which plays an essential role in double flower formation and identification of stamens and carpels in Arabidopsisthaliana. We searched C-class genes in the genome of the carnation, and found two AG orthologs (DcaAGa, DcaAGb). Phylogenetic analysis showed that the two genes were closely related to the euAG subclade. Then we searched the genomes of other Caryophyllales plants (Beta vulgaris, Spinacia oleracea, Chenopodium quinoa) for C-class genes, and found that their C-class genes all belonged to the euAG subclade. Semi-quantitative PCR (sq-PCR) analysis indicated that the expression of DcaAG genes in the single flower phenotype was higher than that in the double flower phenotype. Quantitative real-time RT-PCR (qRT-PCR) analysis showed that the expressions of DcaAG genes in the flower bud were significantly different from those in the root, stem, and leaf between the single and double flower phenotype carnations, and that DcaAG genes were specifically expressed in the stamen and carpel of carnation. Moreover, the expression of other floral organ identity genes (AP1 and AP2, PI and AP3, SEP1 and SEP3 corresponding to the A-, B-, and E-class of genes, respectively) showed no significant difference in all floral organs between the single and double flower phenotype carnations, suggesting that C-class (DcaAG) genes might play an important role in the double flower phenotype in carnation. Petal loss or decrease, precocious flowering, silique shortening, and seed sterility were observed in 35S::DcaAGa and 35S::DcaAGb transgenic Arabidopsis plants. All these results show that DcaAG genes might affect the petal number negatively and have a specific function in stamen and carpel development in carnation.
Collapse
Affiliation(s)
- Qijian Wang
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (N.D.); (X.Z.); (S.L.); (M.B.)
- Key Laboratory of Urban Agriculture in Central China (pilot run), Ministry of Agriculture, Wuhan 430070, China
| | - Naizhen Dan
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (N.D.); (X.Z.); (S.L.); (M.B.)
- Key Laboratory of Urban Agriculture in Central China (pilot run), Ministry of Agriculture, Wuhan 430070, China
| | - Xiaoni Zhang
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (N.D.); (X.Z.); (S.L.); (M.B.)
- Key Laboratory of Urban Agriculture in Central China (pilot run), Ministry of Agriculture, Wuhan 430070, China
| | - Shengnan Lin
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (N.D.); (X.Z.); (S.L.); (M.B.)
- Key Laboratory of Urban Agriculture in Central China (pilot run), Ministry of Agriculture, Wuhan 430070, China
| | - Manzhu Bao
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (N.D.); (X.Z.); (S.L.); (M.B.)
- Key Laboratory of Urban Agriculture in Central China (pilot run), Ministry of Agriculture, Wuhan 430070, China
| | - Xiaopeng Fu
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (N.D.); (X.Z.); (S.L.); (M.B.)
- Key Laboratory of Urban Agriculture in Central China (pilot run), Ministry of Agriculture, Wuhan 430070, China
- Correspondence: ; Tel.: +86-159-2625-8658; Fax: +86-027-8728-2010
| |
Collapse
|
10
|
Zhang Y, Nyong'A TM, Shi T, Yang P. The complexity of alternative splicing and landscape of tissue-specific expression in lotus (Nelumbo nucifera) unveiled by Illumina- and single-molecule real-time-based RNA-sequencing. DNA Res 2020; 26:301-311. [PMID: 31173073 PMCID: PMC6704400 DOI: 10.1093/dnares/dsz010] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/03/2019] [Indexed: 12/16/2022] Open
Abstract
Alternative splicing (AS) plays a critical role in regulating different physiological and developmental processes in eukaryotes, by dramatically increasing the diversity of the transcriptome and the proteome. However, the saturation and complexity of AS remain unclear in lotus due to its limitation of rare obtainment of full-length multiple-splice isoforms. In this study, we apply a hybrid assembly strategy by combining single-molecule real-time sequencing and Illumina RNA-seq to get a comprehensive insight into the lotus transcriptomic landscape. We identified 211,802 high-quality full-length non-chimeric reads, with 192,690 non-redundant isoforms, and updated the lotus reference gene model. Moreover, our analysis identified a total of 104,288 AS events from 16,543 genes, with alternative 3ʹ splice-site being the predominant model, following by intron retention. By exploring tissue datasets, 370 tissue-specific AS events were identified among 12 tissues. Both the tissue-specific genes and isoforms might play important roles in tissue or organ development, and are suitable for ‘ABCE’ model partly in floral tissues. A large number of AS events and isoform variants identified in our study enhance the understanding of transcriptional diversity in lotus, and provide valuable resource for further functional genomic studies.
Collapse
Affiliation(s)
- Yue Zhang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, CN, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Tonny Maraga Nyong'A
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, CN, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Tao Shi
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, CN, China
| | - Pingfang Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
11
|
Bai G, Yang DH, Cao P, Yao H, Zhang Y, Chen X, Xiao B, Li F, Wang ZY, Yang J, Xie H. Genome-Wide Identification, Gene Structure and Expression Analysis of the MADS-Box Gene Family Indicate Their Function in the Development of Tobacco ( Nicotiana tabacum L.). Int J Mol Sci 2019; 20:E5043. [PMID: 31614589 PMCID: PMC6829366 DOI: 10.3390/ijms20205043] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/06/2019] [Accepted: 10/09/2019] [Indexed: 12/14/2022] Open
Abstract
MADS-box genes play a pivotal role in various processes, including floral and seed development, controlling flowering time, regulation of fruits ripening, and respond to abiotic and biotic stressors in planta. Tobacco (Nicotiana tabacum) has been widely used as a model plant for analyzing the gene function, however, there has been less information on the regulation of flowering, and the associated genes. In the present study, a total of 168 NtMADS-box genes were identified from tobacco, and their phylogenetic relationship, chromosome locations, and gene structures were further analyzed. NtMADS-box genes can be clustered into four sub-families of Mα, Mγ, MIKC*, and MIKCC. A total of 111 NtMADS-box genes were distributed on 20 chromosomes, and 57 NtMADS-box genes were located on the unanchored scaffolds due to the complex and incomplete assembly of the tobacco genome. Expression profiles of NtMADS-box genes by microarray from 23 different tissues indicated that members in different NtMADS-box gene subfamilies might play specific roles in the growth and flower development, and the transcript levels of 24 NtMADS-box genes were confirmed by quantitative real-time PCR. Importantly, overexpressed NtSOC1/NtMADS133 could promote early flowering and dwarfism in transgenic tobacco plants. Therefore, our findings provide insights on the characterization of NtMADS-box genes to further study their functions in plant development.
Collapse
Affiliation(s)
- Ge Bai
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, China.
- Key Laboratory of Tobacco Biotechnological Breeding, Kunming, 650021, China.
- National Tobacco Genetic Engineering Research Center, Kunming, 650021, China.
| | - Da-Hai Yang
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, China.
- Key Laboratory of Tobacco Biotechnological Breeding, Kunming, 650021, China.
- National Tobacco Genetic Engineering Research Center, Kunming, 650021, China.
| | - Peijian Cao
- China Tobacco Gene Research Centre, Zhengzhou Tobacco Research Institute, Zhengzhou, 450001, China.
| | - Heng Yao
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, China.
- Key Laboratory of Tobacco Biotechnological Breeding, Kunming, 650021, China.
- National Tobacco Genetic Engineering Research Center, Kunming, 650021, China.
| | - Yihan Zhang
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, China.
- Key Laboratory of Tobacco Biotechnological Breeding, Kunming, 650021, China.
- National Tobacco Genetic Engineering Research Center, Kunming, 650021, China.
| | - Xuejun Chen
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, China.
- Key Laboratory of Tobacco Biotechnological Breeding, Kunming, 650021, China.
- National Tobacco Genetic Engineering Research Center, Kunming, 650021, China.
| | - Bingguang Xiao
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, China.
- Key Laboratory of Tobacco Biotechnological Breeding, Kunming, 650021, China.
- National Tobacco Genetic Engineering Research Center, Kunming, 650021, China.
| | - Feng Li
- China Tobacco Gene Research Centre, Zhengzhou Tobacco Research Institute, Zhengzhou, 450001, China.
| | - Zhen-Yu Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228, China.
| | - Jun Yang
- China Tobacco Gene Research Centre, Zhengzhou Tobacco Research Institute, Zhengzhou, 450001, China.
| | - He Xie
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, China.
- Key Laboratory of Tobacco Biotechnological Breeding, Kunming, 650021, China.
- National Tobacco Genetic Engineering Research Center, Kunming, 650021, China.
| |
Collapse
|
12
|
Ning K, Han Y, Chen Z, Luo C, Wang S, Zhang W, Li L, Zhang X, Fan S, Wang Q. Genome-wide analysis of MADS-box family genes during flower development in lettuce. PLANT, CELL & ENVIRONMENT 2019; 42:1868-1881. [PMID: 30680748 DOI: 10.1111/pce.13523] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/10/2019] [Accepted: 01/13/2019] [Indexed: 05/08/2023]
Abstract
Lettuce (Lactuca sativa L.) is an important leafy vegetable consumed worldwide. Heat-induced bolting and flowering greatly limit lettuce production during the summer. Additionally, MADS-box transcription factors are important for various aspects of plant development and architecture (e.g., flowering and floral patterning). However, there has been no comprehensive study of lettuce MADS-box family genes. In this study, we identified 82 MADS-box family genes in lettuce, including 23 type I genes and 59 type II genes. Transcriptome profiling revealed that LsMADS gene expression patterns differ among the various floral stages and organs. Moreover, heat-responsive cis-elements were detected in the promoter regions of many LsMADS genes. An in situ hybridization assay of 10 homologs of flower-patterning genes and a yeast two-hybrid assay of the encoded proteins revealed that the ABC model is conserved in lettuce. Specifically, the APETALA1 (AP1) homolog in lettuce, LsMADS55, is responsive to heat and is specifically expressed in the inflorescence meristem and pappus bristles. The overexpression of LsMADS55 results in early flowering in Arabidopsis thaliana. Furthermore, we observed that the heat shock factor LsHSFB2A-1 can bind to the LsMADS55 promoter in lettuce. Therefore, a model was proposed for the LsMADS-regulated floral organ specification and heat-induced flowering in lettuce.
Collapse
Affiliation(s)
- Kang Ning
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Yingyan Han
- Plant Science and Technology College, Beijing University of Agriculture/New Technological Laboratory in Agriculture Application in Beijing, Beijing, 102206, China
| | - Zijing Chen
- College of Horticulture Science and Engineering/State Key Laboratory of Crop Biology, Scientific Observing and Experimental Station of Environment Controlled Agricultural Engineering in Huanghuaihai Region, Shan Dong Agricultural University, Taian, Shandong, 271018, China
| | - Chen Luo
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Shenglin Wang
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Wenjing Zhang
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Ling Li
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Xiaolan Zhang
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Shuangxi Fan
- Plant Science and Technology College, Beijing University of Agriculture/New Technological Laboratory in Agriculture Application in Beijing, Beijing, 102206, China
| | - Qian Wang
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| |
Collapse
|