1
|
Shayegan MJ. A brief review and scientometric analysis on ensemble learning methods for handling COVID-19. Heliyon 2024; 10:e26694. [PMID: 38420425 PMCID: PMC10901105 DOI: 10.1016/j.heliyon.2024.e26694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/07/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024] Open
Abstract
Numerous efforts and research have been conducted worldwide to combat the coronavirus disease 2019 (COVID-19) pandemic. In this regard, some researchers have focused on deep and machine-learning approaches to discover more about this disease. There have been many articles on using ensemble learning methods for COVID-19 detection. Still, there seems to be no scientometric analysis or a brief review of these researches. Hence, a combined method of scientometric analysis and brief review was used to study the published articles that employed an ensemble learning approach to detect COVID-19. This research used both methods to overcome their limitations, leading to enhanced and reliable outcomes. The related articles were retrieved from the Scopus database. Then a two-step procedure was employed. A concise review of the collected articles was conducted. Then they underwent scientometric and bibliometric analyses. The findings revealed that convolutional neural network (CNN) is the mostly employed algorithm, while support vector machine (SVM), random forest, Resnet, DenseNet, and visual geometry group (VGG) were also frequently used. Additionally, China has had a significant presence in the numerous top-ranking categories of this field of research. Both study phases yielded valuable results and rankings.
Collapse
|
2
|
Santosh KC, GhoshRoy D, Nakarmi S. A Systematic Review on Deep Structured Learning for COVID-19 Screening Using Chest CT from 2020 to 2022. Healthcare (Basel) 2023; 11:2388. [PMID: 37685422 PMCID: PMC10486542 DOI: 10.3390/healthcare11172388] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
The emergence of the COVID-19 pandemic in Wuhan in 2019 led to the discovery of a novel coronavirus. The World Health Organization (WHO) designated it as a global pandemic on 11 March 2020 due to its rapid and widespread transmission. Its impact has had profound implications, particularly in the realm of public health. Extensive scientific endeavors have been directed towards devising effective treatment strategies and vaccines. Within the healthcare and medical imaging domain, the application of artificial intelligence (AI) has brought significant advantages. This study delves into peer-reviewed research articles spanning the years 2020 to 2022, focusing on AI-driven methodologies for the analysis and screening of COVID-19 through chest CT scan data. We assess the efficacy of deep learning algorithms in facilitating decision making processes. Our exploration encompasses various facets, including data collection, systematic contributions, emerging techniques, and encountered challenges. However, the comparison of outcomes between 2020 and 2022 proves intricate due to shifts in dataset magnitudes over time. The initiatives aimed at developing AI-powered tools for the detection, localization, and segmentation of COVID-19 cases are primarily centered on educational and training contexts. We deliberate on their merits and constraints, particularly in the context of necessitating cross-population train/test models. Our analysis encompassed a review of 231 research publications, bolstered by a meta-analysis employing search keywords (COVID-19 OR Coronavirus) AND chest CT AND (deep learning OR artificial intelligence OR medical imaging) on both the PubMed Central Repository and Web of Science platforms.
Collapse
Affiliation(s)
- KC Santosh
- 2AI: Applied Artificial Intelligence Research Lab, Vermillion, SD 57069, USA
| | - Debasmita GhoshRoy
- School of Automation, Banasthali Vidyapith, Tonk 304022, Rajasthan, India;
| | - Suprim Nakarmi
- Department of Computer Science, University of South Dakota, Vermillion, SD 57069, USA;
| |
Collapse
|
3
|
Azad AK, Ahmed I, Ahmed MU. In Search of an Efficient and Reliable Deep Learning Model for Identification of COVID-19 Infection from Chest X-ray Images. Diagnostics (Basel) 2023; 13:diagnostics13030574. [PMID: 36766679 PMCID: PMC9914163 DOI: 10.3390/diagnostics13030574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/08/2022] [Accepted: 01/17/2023] [Indexed: 02/08/2023] Open
Abstract
The virus responsible for COVID-19 is mutating day by day with more infectious characteristics. With the limited healthcare resources and overburdened medical practitioners, it is almost impossible to contain this virus. The automatic identification of this viral infection from chest X-ray (CXR) images is now more demanding as it is a cheaper and less time-consuming diagnosis option. To that cause, we have applied deep learning (DL) approaches for four-class classification of CXR images comprising COVID-19, normal, lung opacity, and viral pneumonia. At first, we extracted features of CXR images by applying a local binary pattern (LBP) and pre-trained convolutional neural network (CNN). Afterwards, we utilized a pattern recognition network (PRN), support vector machine (SVM), decision tree (DT), random forest (RF), and k-nearest neighbors (KNN) classifiers on the extracted features to classify aforementioned four-class CXR images. The performances of the proposed methods have been analyzed rigorously in terms of classification performance and classification speed. Among different methods applied to the four-class test images, the best method achieved classification performances with 97.41% accuracy, 94.94% precision, 94.81% recall, 98.27% specificity, and 94.86% F1 score. The results indicate that the proposed method can offer an efficient and reliable framework for COVID-19 detection from CXR images, which could be immensely conducive to the effective diagnosis of COVID-19-infected patients.
Collapse
|
4
|
Ensemble Learning of Multiple Models Using Deep Learning for Multiclass Classification of Ultrasound Images of Hepatic Masses. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010069. [PMID: 36671641 PMCID: PMC9854883 DOI: 10.3390/bioengineering10010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
Ultrasound (US) is often used to diagnose liver masses. Ensemble learning has recently been commonly used for image classification, but its detailed methods are not fully optimized. The purpose of this study is to investigate the usefulness and comparison of some ensemble learning and ensemble pruning techniques using multiple convolutional neural network (CNN) trained models for image classification of liver masses in US images. Dataset of the US images were classified into four categories: benign liver tumor (BLT) 6320 images, liver cyst (LCY) 2320 images, metastatic liver cancer (MLC) 9720 images, primary liver cancer (PLC) 7840 images. In this study, 250 test images were randomly selected for each class, for a total of 1000 images, and the remaining images were used as the training. 16 different CNNs were used for training and testing ultrasound images. The ensemble learning used soft voting (SV), weighted average voting (WAV), weighted hard voting (WHV) and stacking (ST). All four types of ensemble learning (SV, ST, WAV, and WHV) showed higher values of accuracy than the single CNN. All four types also showed significantly higher deep learning (DL) performance than ResNeXt101 alone. For image classification of liver masses using US images, ensemble learning improved the performance of DL over a single CNN.
Collapse
|
5
|
Zhang K, Khosravi B, Vahdati S, Faghani S, Nugen F, Rassoulinejad-Mousavi SM, Moassefi M, Jagtap JMM, Singh Y, Rouzrokh P, Erickson BJ. Mitigating Bias in Radiology Machine Learning: 2. Model Development. Radiol Artif Intell 2022; 4:e220010. [PMID: 36204532 PMCID: PMC9530765 DOI: 10.1148/ryai.220010] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 05/31/2023]
Abstract
There are increasing concerns about the bias and fairness of artificial intelligence (AI) models as they are put into clinical practice. Among the steps for implementing machine learning tools into clinical workflow, model development is an important stage where different types of biases can occur. This report focuses on four aspects of model development where such bias may arise: data augmentation, model and loss function, optimizers, and transfer learning. This report emphasizes appropriate considerations and practices that can mitigate biases in radiology AI studies. Keywords: Model, Bias, Machine Learning, Deep Learning, Radiology © RSNA, 2022.
Collapse
Affiliation(s)
- Kuan Zhang
- From the Radiology Informatics Laboratory, Department of Radiology,
Mayo Clinic, 200 1st St SW, Rochester, MN 55905
| | - Bardia Khosravi
- From the Radiology Informatics Laboratory, Department of Radiology,
Mayo Clinic, 200 1st St SW, Rochester, MN 55905
| | - Sanaz Vahdati
- From the Radiology Informatics Laboratory, Department of Radiology,
Mayo Clinic, 200 1st St SW, Rochester, MN 55905
| | - Shahriar Faghani
- From the Radiology Informatics Laboratory, Department of Radiology,
Mayo Clinic, 200 1st St SW, Rochester, MN 55905
| | - Fred Nugen
- From the Radiology Informatics Laboratory, Department of Radiology,
Mayo Clinic, 200 1st St SW, Rochester, MN 55905
| | | | - Mana Moassefi
- From the Radiology Informatics Laboratory, Department of Radiology,
Mayo Clinic, 200 1st St SW, Rochester, MN 55905
| | - Jaidip Manikrao M. Jagtap
- From the Radiology Informatics Laboratory, Department of Radiology,
Mayo Clinic, 200 1st St SW, Rochester, MN 55905
| | - Yashbir Singh
- From the Radiology Informatics Laboratory, Department of Radiology,
Mayo Clinic, 200 1st St SW, Rochester, MN 55905
| | - Pouria Rouzrokh
- From the Radiology Informatics Laboratory, Department of Radiology,
Mayo Clinic, 200 1st St SW, Rochester, MN 55905
| | - Bradley J. Erickson
- From the Radiology Informatics Laboratory, Department of Radiology,
Mayo Clinic, 200 1st St SW, Rochester, MN 55905
| |
Collapse
|
6
|
Gomes R, Kamrowski C, Langlois J, Rozario P, Dircks I, Grottodden K, Martinez M, Tee WZ, Sargeant K, LaFleur C, Haley M. A Comprehensive Review of Machine Learning Used to Combat COVID-19. Diagnostics (Basel) 2022; 12:1853. [PMID: 36010204 PMCID: PMC9406981 DOI: 10.3390/diagnostics12081853] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 12/19/2022] Open
Abstract
Coronavirus disease (COVID-19) has had a significant impact on global health since the start of the pandemic in 2019. As of June 2022, over 539 million cases have been confirmed worldwide with over 6.3 million deaths as a result. Artificial Intelligence (AI) solutions such as machine learning and deep learning have played a major part in this pandemic for the diagnosis and treatment of COVID-19. In this research, we review these modern tools deployed to solve a variety of complex problems. We explore research that focused on analyzing medical images using AI models for identification, classification, and tissue segmentation of the disease. We also explore prognostic models that were developed to predict health outcomes and optimize the allocation of scarce medical resources. Longitudinal studies were conducted to better understand COVID-19 and its effects on patients over a period of time. This comprehensive review of the different AI methods and modeling efforts will shed light on the role that AI has played and what path it intends to take in the fight against COVID-19.
Collapse
Affiliation(s)
- Rahul Gomes
- Department of Computer Science, University of Wisconsin-Eau Claire, Eau Claire, WI 54701, USA; (C.K.); (J.L.); (I.D.); (K.G.); (M.M.); (W.Z.T.); (K.S.); (C.L.); (M.H.)
| | - Connor Kamrowski
- Department of Computer Science, University of Wisconsin-Eau Claire, Eau Claire, WI 54701, USA; (C.K.); (J.L.); (I.D.); (K.G.); (M.M.); (W.Z.T.); (K.S.); (C.L.); (M.H.)
| | - Jordan Langlois
- Department of Computer Science, University of Wisconsin-Eau Claire, Eau Claire, WI 54701, USA; (C.K.); (J.L.); (I.D.); (K.G.); (M.M.); (W.Z.T.); (K.S.); (C.L.); (M.H.)
| | - Papia Rozario
- Department of Geography and Anthropology, University of Wisconsin-Eau Claire, Eau Claire, WI 54701, USA;
| | - Ian Dircks
- Department of Computer Science, University of Wisconsin-Eau Claire, Eau Claire, WI 54701, USA; (C.K.); (J.L.); (I.D.); (K.G.); (M.M.); (W.Z.T.); (K.S.); (C.L.); (M.H.)
| | - Keegan Grottodden
- Department of Computer Science, University of Wisconsin-Eau Claire, Eau Claire, WI 54701, USA; (C.K.); (J.L.); (I.D.); (K.G.); (M.M.); (W.Z.T.); (K.S.); (C.L.); (M.H.)
| | - Matthew Martinez
- Department of Computer Science, University of Wisconsin-Eau Claire, Eau Claire, WI 54701, USA; (C.K.); (J.L.); (I.D.); (K.G.); (M.M.); (W.Z.T.); (K.S.); (C.L.); (M.H.)
| | - Wei Zhong Tee
- Department of Computer Science, University of Wisconsin-Eau Claire, Eau Claire, WI 54701, USA; (C.K.); (J.L.); (I.D.); (K.G.); (M.M.); (W.Z.T.); (K.S.); (C.L.); (M.H.)
| | - Kyle Sargeant
- Department of Computer Science, University of Wisconsin-Eau Claire, Eau Claire, WI 54701, USA; (C.K.); (J.L.); (I.D.); (K.G.); (M.M.); (W.Z.T.); (K.S.); (C.L.); (M.H.)
| | - Corbin LaFleur
- Department of Computer Science, University of Wisconsin-Eau Claire, Eau Claire, WI 54701, USA; (C.K.); (J.L.); (I.D.); (K.G.); (M.M.); (W.Z.T.); (K.S.); (C.L.); (M.H.)
| | - Mitchell Haley
- Department of Computer Science, University of Wisconsin-Eau Claire, Eau Claire, WI 54701, USA; (C.K.); (J.L.); (I.D.); (K.G.); (M.M.); (W.Z.T.); (K.S.); (C.L.); (M.H.)
| |
Collapse
|
7
|
Rajaraman S, Guo P, Xue Z, Antani SK. A Deep Modality-Specific Ensemble for Improving Pneumonia Detection in Chest X-rays. Diagnostics (Basel) 2022; 12:diagnostics12061442. [PMID: 35741252 PMCID: PMC9221627 DOI: 10.3390/diagnostics12061442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 12/02/2022] Open
Abstract
Pneumonia is an acute respiratory infectious disease caused by bacteria, fungi, or viruses. Fluid-filled lungs due to the disease result in painful breathing difficulties and reduced oxygen intake. Effective diagnosis is critical for appropriate and timely treatment and improving survival. Chest X-rays (CXRs) are routinely used to screen for the infection. Computer-aided detection methods using conventional deep learning (DL) models for identifying pneumonia-consistent manifestations in CXRs have demonstrated superiority over traditional machine learning approaches. However, their performance is still inadequate to aid in clinical decision-making. This study improves upon the state of the art as follows. Specifically, we train a DL classifier on large collections of CXR images to develop a CXR modality-specific model. Next, we use this model as the classifier backbone in the RetinaNet object detection network. We also initialize this backbone using random weights and ImageNet-pretrained weights. Finally, we construct an ensemble of the best-performing models resulting in improved detection of pneumonia-consistent findings. Experimental results demonstrate that an ensemble of the top-3 performing RetinaNet models outperformed individual models in terms of the mean average precision (mAP) metric (0.3272, 95% CI: (0.3006,0.3538)) toward this task, which is markedly higher than the state of the art (mAP: 0.2547). This performance improvement is attributed to the key modifications in initializing the weights of classifier backbones and constructing model ensembles to reduce prediction variance compared to individual constituent models.
Collapse
|