Watanabe J, Iwamatsu-Kobayashi Y, Kikuchi K, Kajita T, Morishima H, Yamauchi K, Yashiro W, Nishimura H, Kanetaka H, Egusa H. Visualization of droplets and aerosols in simulated dental treatments to clarify the effectiveness of oral suction devices.
J Prosthodont Res 2024;
68:85-91. [PMID:
36823102 DOI:
10.2186/jpr.jpr_d_23_00013]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
PURPOSE
The hazards of aerosols generated during dental treatments are poorly understood. This study aimed to establish visualization methods, discover conditions for droplets/aerosols generated in simulating dental treatments and identify the conditions for effective suction methods.
METHODS
The spreading area was evaluated via image analysis of the droplets/aerosols generated by a dental air turbine on a mannequin using a light emitting diode (LED) light source and high-speed camera. The effects of different bur types and treatment sites, reduction effect of intra-oral suction (IOS) and extra-oral suction (EOS) devices, and effect of EOS installation conditions were evaluated.
RESULTS
Regarding the bur types, a bud-shaped bur on the air turbine generated the most droplets/aerosols compared with round-shaped, round end-tapered, or needle-tapered burs. Regarding the treatment site, the area of droplets/aerosols produced by an air turbine from the palatal plane of the anterior maxillary teeth was significantly higher. The generated droplet/aerosol area was reduced by 92.1% by using IOS alone and 97.8% by combining IOS and EOS. EOS most effectively aspirated droplets/aerosols when placed close (10 cm) to the mouth in the vertical direction (0°).
CONCLUSIONS
The droplets/aerosols generated by an air turbine could be visualized using an LED light and a high-speed camera in simulating dental treatments. The bur shape and position of the dental air turbine considerably influenced droplet/aerosol diffusion. The combined use of IOS and EOS at a proper position (close and perpendicular to the mouth) facilitated effective diffusion prevention to protect the dental-care environment.
Collapse