1
|
Liu K, Lin M, Zhao Z, Zhang K, Yang S. Rational Design and Application of Breath Sensors for Healthcare Monitoring. ACS Sens 2025; 10:15-32. [PMID: 39740129 DOI: 10.1021/acssensors.4c02313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Biomarkers contained in human exhaled breath are closely related to certain diseases. As a noninvasive, portable, and efficient health diagnosis method, the breath sensor has received considerable attention in recent years for early disease screening and prevention due to its user-friendly and easy-accessible features. Although some key challenges have been addressed, its capability to precisely monitor specific biomarkers of interest and its physiological relevance to health metrics is still to be ascertained. In this context, we analyzed the rational design and recent advance of breath sensors for healthcare monitoring. This review begins with an introduction to exhaled breath biomarkers and their sensing technologies, such as chemoresistive, humidity-sensitive, electrochemical, and colorimetric principles. Then, a systematic overview of their emerging applications in early disease screening, drunk driving inspection, apnea monitoring, and exhaled breath condensate analysis are demonstrated. Finally, we discuss the challenges and opportunities of breath sensors for noninvasive healthcare monitoring. With the ongoing research efforts, the continuous breakthrough in breath sensors and their attractive applications is foreseeable in the future.
Collapse
Affiliation(s)
- Kai Liu
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, PR China
| | - Min Lin
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, PR China
| | - Zhihui Zhao
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, PR China
| | - Kewei Zhang
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, PR China
| | - Song Yang
- Department of Hepatology, Beijing Ditan Hospital of Capital Medical University, 100015Beijing, PR China
| |
Collapse
|
2
|
Vitazkova D, Foltan E, Kosnacova H, Micjan M, Donoval M, Kuzma A, Kopani M, Vavrinsky E. Advances in Respiratory Monitoring: A Comprehensive Review of Wearable and Remote Technologies. BIOSENSORS 2024; 14:90. [PMID: 38392009 PMCID: PMC10886711 DOI: 10.3390/bios14020090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/28/2024] [Accepted: 02/03/2024] [Indexed: 02/24/2024]
Abstract
This article explores the importance of wearable and remote technologies in healthcare. The focus highlights its potential in continuous monitoring, examines the specificity of the issue, and offers a view of proactive healthcare. Our research describes a wide range of device types and scientific methodologies, starting from traditional chest belts to their modern alternatives and cutting-edge bioamplifiers that distinguish breathing from chest impedance variations. We also investigated innovative technologies such as the monitoring of thorax micromovements based on the principles of seismocardiography, ballistocardiography, remote camera recordings, deployment of integrated optical fibers, or extraction of respiration from cardiovascular variables. Our review is extended to include acoustic methods and breath and blood gas analysis, providing a comprehensive overview of different approaches to respiratory monitoring. The topic of monitoring respiration with wearable and remote electronics is currently the center of attention of researchers, which is also reflected by the growing number of publications. In our manuscript, we offer an overview of the most interesting ones.
Collapse
Affiliation(s)
- Diana Vitazkova
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 81219 Bratislava, Slovakia; (E.F.); (H.K.); (M.M.); (M.D.); (A.K.)
| | - Erik Foltan
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 81219 Bratislava, Slovakia; (E.F.); (H.K.); (M.M.); (M.D.); (A.K.)
| | - Helena Kosnacova
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 81219 Bratislava, Slovakia; (E.F.); (H.K.); (M.M.); (M.D.); (A.K.)
- Department of Simulation and Virtual Medical Education, Faculty of Medicine, Comenius University, Sasinkova 4, 81272 Bratislava, Slovakia
| | - Michal Micjan
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 81219 Bratislava, Slovakia; (E.F.); (H.K.); (M.M.); (M.D.); (A.K.)
| | - Martin Donoval
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 81219 Bratislava, Slovakia; (E.F.); (H.K.); (M.M.); (M.D.); (A.K.)
| | - Anton Kuzma
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 81219 Bratislava, Slovakia; (E.F.); (H.K.); (M.M.); (M.D.); (A.K.)
| | - Martin Kopani
- Institute of Medical Physics, Biophysics, Informatics and Telemedicine, Faculty of Medicine, Comenius University, Sasinkova 2, 81272 Bratislava, Slovakia;
| | - Erik Vavrinsky
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 81219 Bratislava, Slovakia; (E.F.); (H.K.); (M.M.); (M.D.); (A.K.)
- Institute of Medical Physics, Biophysics, Informatics and Telemedicine, Faculty of Medicine, Comenius University, Sasinkova 2, 81272 Bratislava, Slovakia;
| |
Collapse
|
3
|
Glöckler J, Mizaikoff B, Díaz de León-Martínez L. SARS CoV-2 infection screening via the exhaled breath fingerprint obtained by FTIR spectroscopic gas-phase analysis. A proof of concept. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123066. [PMID: 37356392 PMCID: PMC10286574 DOI: 10.1016/j.saa.2023.123066] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/30/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023]
Abstract
The COVID-19 pandemic remains a global challenge now with the long-COVID arising. Mitigation measures focused on case counting, assessment and determination of variants and their likely targets of infection and transmission, the pursuit of drug treatments, use and enhancement of masks, social distancing, vaccination, post-infection rehabilitation, and mass screening. The latter is of utmost importance given the current scenario of infections, reinfections, and long-term health effects. Research on screening platforms has been developed to provide more sensitive, specific, and reliable tests that are accessible to the entire population and can be used to assess the prognosis of the disease as well as the subsequent health follow-up of patients with sequelae of COVID-19. Therefore, the aim of the present study was the simulation of exhaled breath of COVID-19 patients by evaluation of three identified COVID-19 indicator breath biomarkers (acetone (ACE), acetaldehyde (ACH) and nitric oxide (NO)) by gas-phase infrared spectroscopy as a proof-of-concept principle for the detection of infected patients' exhaled breath fingerprint and subsequent follow-up. The specific fingerprints of each of the compounds and the overall fingerprint were obtained. The synthetic exhaled breath evaluation concept revealed a linearity of r = 0.99 for all compounds, and LODs of 6.42, 13.81, 9.22 ppm, and LOQs of 42.26, 52.57, 69.23 ppm for NO, ACE, and ACH, respectively. This study proves the fundamental feasibility of gas-phase infrared spectroscopy for fingerprinting lung damage biomarkers in exhaled breath of patients with COVID-19. This analysis would allow faster and cheaper screening and follow-up of infected individuals, which could improve mass screening in POC settings.
Collapse
Affiliation(s)
- Johannes Glöckler
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; Hahn-Schickard Institute for Microanalysis Systems, Sedanstrasse 14, 89077 Ulm, Germany
| | - Lorena Díaz de León-Martínez
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| |
Collapse
|
4
|
Sha M, Maurya MR, Shafath S, Cabibihan JJ, Al-Ali A, Malik RA, Sadasivuni KK. Breath Analysis for the In Vivo Detection of Diabetic Ketoacidosis. ACS OMEGA 2022; 7:4257-4266. [PMID: 35155918 PMCID: PMC8830064 DOI: 10.1021/acsomega.1c05948] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Human breath analysis of volatile organic compounds has gained significant attention recently because of its rapid and noninvasive potential to detect various metabolic diseases. The detection of ketones in the breath and blood is key to diagnosing and managing diabetic ketoacidosis (DKA) in patients with type 1 diabetes. It may also be of increasing importance to detect euglycemic ketoacidosis in patients with type 1 or type 2 diabetes or heart failure, treated with sodium-glucose transporter-2 inhibitors (SGLT2-i). The present research evaluates the efficiency of colorimetry for detecting acetone and ethanol in exhaled human breath with the response time, pH effect, temperature effect, concentration effect, and selectivity of dyes. Using the proposed multidye system, we obtained a detection limit of 0.0217 ppm for acetone and 0.029 ppm for ethanol in the detection range of 0.05-50 ppm. A smartphone-assisted unit consisting of a portable colorimetric device was used to detect relative red/green/blue values within 60 s of the interface for practical and real-time application. The developed method could be used for rapid, low-cost detection of ketones in patients with type 1 diabetes and DKA and patients with type 1 or type 2 diabetes or heart failure treated with SGLT2-I and euglycemic ketoacidosis.
Collapse
Affiliation(s)
- Mizaj
Shabil Sha
- Center
for Advanced Materials, Qatar University, P.O. Box 2713, Doha 2713, Qatar
| | - Muni Raj Maurya
- Center
for Advanced Materials, Qatar University, P.O. Box 2713, Doha 2713, Qatar
- Department
of Mechanical and Industrial Engineering, Qatar University, P.O. Box 2713, Doha 2713, Qatar
| | - Sadiyah Shafath
- Center
for Advanced Materials, Qatar University, P.O. Box 2713, Doha 2713, Qatar
- Department
of Chemical Engineering, Qatar University, P.O. Box 2713, Doha 2713, Qatar
| | - John-John Cabibihan
- Department
of Mechanical and Industrial Engineering, Qatar University, P.O. Box 2713, Doha 2713, Qatar
| | - Abdulaziz Al-Ali
- Department
of Computer Science and Engineering, Qatar
University, P.O. Box 2713, Doha 2713, Qatar
- KINDI
Center for Computing Research, Qatar University, Doha 2713, Qatar
| | - Rayaz A. Malik
- Weill Cornell
Medicine-Qatar, Qatar Foundation-Education
City, P.O. Box 24144, Doha 2713, Qatar
| | | |
Collapse
|
5
|
Sha MS, Maurya MR, Geetha M, Kumar B, Abdullah AM, Sadasivuni KK. A Smart Colorimetric Platform for Detection of Methanol, Ethanol and Formic Acid. SENSORS (BASEL, SWITZERLAND) 2022; 22:618. [PMID: 35062579 PMCID: PMC8780487 DOI: 10.3390/s22020618] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/05/2022] [Accepted: 01/08/2022] [Indexed: 02/04/2023]
Abstract
Carbon dioxide (CO2) is a greenhouse gas in the atmosphere and scientists are working on converting it to useful products, thereby reducing its quantity in the atmosphere. For converting CO2, different approaches are used, and among them, electrochemistry is found to be the most common and more efficient technique. Current methods for detecting the products of electrochemical CO2 conversion are time-consuming and complex. To combat this, a simple, cost-effective colorimetric method has been developed to detect methanol, ethanol, and formic acid, which are formed electrochemically from CO2. In the present work, the highly efficient sensitive dyes were successfully established to detect these three compounds under optimized conditions. These dyes demonstrated excellent selectivity and showed no cross-reaction with other products generated in the CO2 conversion system. In the analysis using these three compounds, this strategy shows good specificity and limit of detection (LOD, ~0.03-0.06 ppm). A cost-effective and sensitive Internet of Things (IoT) colorimetric sensor prototype was developed to implement these dyes systems for practical and real-time application. Employing the dyes as sensing elements, the prototype exhibits unique red, green, and blue (RGB) values upon exposure to test solutions with a short response time of 2 s. Detection of these compounds via this new approach has been proven effective by comparing them with nuclear magnetic resonance (NMR). This novel approach can replace heavy-duty instruments such as high-pressure liquid chromatography (HPLC), gas chromatography (G.C.), and NMR due to its extraordinary selectivity and rapidity.
Collapse
Affiliation(s)
- Mizaj Shabil Sha
- Center for Advanced Materials, Qatar University, Doha P.O. Box 2713, Qatar; (M.S.S.); (M.R.M.); (M.G.); (A.M.A.)
| | - Muni Raj Maurya
- Center for Advanced Materials, Qatar University, Doha P.O. Box 2713, Qatar; (M.S.S.); (M.R.M.); (M.G.); (A.M.A.)
| | - Mithra Geetha
- Center for Advanced Materials, Qatar University, Doha P.O. Box 2713, Qatar; (M.S.S.); (M.R.M.); (M.G.); (A.M.A.)
| | - Bijandra Kumar
- Department of Technology, Elizabeth City State University, Elizabeth City, NC 27909, USA;
| | - Aboubakr M. Abdullah
- Center for Advanced Materials, Qatar University, Doha P.O. Box 2713, Qatar; (M.S.S.); (M.R.M.); (M.G.); (A.M.A.)
| | - Kishor Kumar Sadasivuni
- Center for Advanced Materials, Qatar University, Doha P.O. Box 2713, Qatar; (M.S.S.); (M.R.M.); (M.G.); (A.M.A.)
| |
Collapse
|