1
|
Mohammed SN, Jasim MH, Mahmood SH, Saleh EN, Hashemzadeh A. The role of irisin in exercise-induced muscle and metabolic health: a narrative review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04083-1. [PMID: 40167628 DOI: 10.1007/s00210-025-04083-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/20/2025] [Indexed: 04/02/2025]
Abstract
Irisin, a myokine released during physical exercise, has emerged as a key mediator of muscle health and metabolic regulation. This review synthesizes current evidence on how aerobic exercise stimulates irisin release and its subsequent effects, including enhanced muscle mass, strength, and recovery. Additionally, irisin promotes the browning of white adipose tissue, improving fat metabolism and glucose regulation. These adaptations position irisin as a promising therapeutic target for preventing metabolic disorders and optimizing exercise protocols. By exploring human studies and mechanistic insights, this review underscores irisin's potential to address global health challenges, such as obesity and type 2 diabetes, while advancing strategies for personalized exercise interventions.
Collapse
Affiliation(s)
- Sumaya Nadhim Mohammed
- Medical Laboratory Techniques Department, College of Health and Medical Technology, University of Al-Maarif, Anbar, Iraq
| | - Mohannad Hamid Jasim
- Biology Department, College of Education, University of Fallujah, Fallujah, Iraq
| | | | - Eman Naji Saleh
- Department of Biology, College of Education for Pure Sciences, University of Anbar, Ramadi, Iraq
| | - Alireza Hashemzadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Pinto JR, Deepika Bhat K, Bose B, Sudheer Shenoy P. Irisin: muscle's novel player in endoplasmic reticulum stress and disease. Mol Cell Biochem 2025:10.1007/s11010-025-05225-y. [PMID: 39984795 DOI: 10.1007/s11010-025-05225-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/02/2025] [Indexed: 02/23/2025]
Abstract
Irisin, an exercise-induced myokine, exhibits elevated levels during physical activity, yet its role in modulating the unfolded protein response (UPR) remains poorly understood. This comprehensive review pioneers an in-depth examination of irisin-mediated endoplasmic reticulum (ER) stress mitigation across various diseases. We provide a nuanced characterization of irisin's molecular profile, biological activity, and significance as a skeletal muscle-derived cytokine analogue. Our discussion elucidates the complex interplay between exercise, irisin signalling, and metabolic outcomes, highlighting key molecular interactions driving salutary effects. Moreover, we delineate the UPR's role as a critical ER stress countermeasure and underscore irisin's pivotal function in alleviating this stress, revealing potential therapeutic avenues for disease management. Exercise-induced release of irisin ameliorates ER stress through AMPK phosphorylation during various diseases (Icon image source: www.flaticon.com ).
Collapse
Affiliation(s)
- Joel Rimson Pinto
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya Deemed to be University, University Road, Deralakatte, Mangalore, Karnataka, 575018, India
| | - K Deepika Bhat
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya Deemed to be University, University Road, Deralakatte, Mangalore, Karnataka, 575018, India
| | - Bipasha Bose
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya Deemed to be University, University Road, Deralakatte, Mangalore, Karnataka, 575018, India
| | - P Sudheer Shenoy
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya Deemed to be University, University Road, Deralakatte, Mangalore, Karnataka, 575018, India.
| |
Collapse
|
3
|
Wu M, Li H, Sun X, Zhong R, Cai L, Chen R, Madeniyet M, Ren K, Peng Z, Yang Y, Chen W, Tu Y, Lai M, Deng J, Wu Y, Zhao S, Ruan Q, Rao M, Xie S, Ye Y, Wan J. Aerobic exercise prevents renal osteodystrophy via irisin-activated osteoblasts. JCI Insight 2025; 10:e184468. [PMID: 39883525 PMCID: PMC11949034 DOI: 10.1172/jci.insight.184468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 01/16/2025] [Indexed: 01/31/2025] Open
Abstract
Renal osteodystrophy is commonly seen in patients with chronic kidney disease (CKD) due to disrupted mineral homeostasis. Given the impaired renal function in these patients, common antiresorptive agents, including bisphosphonates, must be used with caution or even contraindicated. Therefore, an alternative therapy without renal burden to combat renal osteodystrophy is urgently needed. Here, we report that clinically relevant aerobic exercise significantly prevents high-turnover renal osteodystrophy in CKD mice and patients with CKD without compromising renal function. Mechanistically, 4-week aerobic exercise in CKD mice increased expression of skeletal muscle PPARγ coactivator-1α (PGC-1α) and circulating irisin. Both exercise and irisin administration significantly activated osteoblasts, but not osteoclasts, via integrin αvβ5, thereby conferring bone quality benefits. Removal of irisin-influenced thermogenic adipose tissues or genetic ablation of uncoupling protein 1 did not alter the irisin-conferred antiosteodystrophy effect. Importantly, in a pilot clinical study, 12-week aerobic exercise in patients with high-grade CKD significantly increased circulating irisin and prevented osteodystrophy progression, without detectable renal burden. The combination of irisin and current antiresorptive agents effectively rescued renal osteodystrophy in mice. Our work provides mechanistic insights into the role of exercise and irisin in renal osteodystrophy, and it highlights a clinically relevant, low-cost, kidney-friendly therapy for patients with this devastating disease.
Collapse
Affiliation(s)
- Meng Wu
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Nephrology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Huilan Li
- Department of Nephrology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaoting Sun
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Rongrong Zhong
- Department of Cardiology, Basic Scientific Research Center, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Linli Cai
- Department of Cardiology, Basic Scientific Research Center, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Ruibo Chen
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Madiya Madeniyet
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Kana Ren
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhen Peng
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yujie Yang
- Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Weiqin Chen
- Department of Nephrology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Yanling Tu
- Department of Nephrology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Miaoxin Lai
- Department of Nephrology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Jinxiu Deng
- Department of Nephrology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Yuting Wu
- Department of Cardiology, Basic Scientific Research Center, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Shumin Zhao
- Department of Cardiology, Basic Scientific Research Center, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Qingyan Ruan
- Department of Cardiology, Basic Scientific Research Center, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Mei Rao
- Department of Cardiology, Basic Scientific Research Center, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Sisi Xie
- Department of Cardiology, Basic Scientific Research Center, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Ying Ye
- Department of Oral Implantology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Jianxin Wan
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, and
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
4
|
Wang B, Xu H, Shang S, Liu L, Sun C, Du W. Irisin improves ROS‑induced mitohormesis imbalance in H9c2 cells. Mol Med Rep 2024; 30:240. [PMID: 39422020 PMCID: PMC11544398 DOI: 10.3892/mmr.2024.13364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 09/27/2024] [Indexed: 10/19/2024] Open
Abstract
Abnormal mitohormesis is a key pathogenic mechanism that induces a variety of cardiac diseases, including cardiac hypertrophy and heart failure. Irisin as a muscle factor serves a cardioprotective role in response to cellular oxidative stress injury. Rat cardiomyocyte cells (H9c2) were treated with 40 µM exogenous H2O2 to establish an oxidative stress model, followed by addition of 75 nM exogenous irisin for experiments to determine mitochondrial membrane potential, reactive oxygen species, and Mitohormesis‑related factors by attrition cytometry. Subsequently, the expression of mitochondrial membrane potential, reactive oxygen species and Mitohormesis‑related factors were continued to be determined by establishing a peroxisome proliferator‑activated receptor γ coactivator‑1 alpha (PGC‑1α) siRNA interference model and continuing the treatment with the addition of 75 nM irisin 12 h before the end of interference. When H9c2 cells underwent oxidative stress, irisin partially improved mitochondrial membrane potential and reactive oxygen species levels and partially restored mitochondrial energy metabolism by upregulating fusion proteins optic atrophy 1 (OPA1) mitochondrial dynamin‑like GTPase and mitofusin 2 and downregulating fission protein dynamin‑related protein 1. Following interference with PGC‑1α, irisin promoted mitochondrial biosynthesis by increasing the mRNA levels of OPA1 and protein levels of cytochrome c oxidase subunit 4. These results suggested that irisin acted partially independently of the PGC‑1α signaling pathway to regulate mitohormesis imbalance due to oxidative stress and maintain energy metabolism by improving mitochondrial structure.
Collapse
Affiliation(s)
- Baogui Wang
- School of Healthy Aging, Shandong Women's University, Jinan, Shandong 250000, P.R. China
- Department of Biological and Environmental Engineering, Binzhou University, Binzhou, Shandong 256600, P.R. China
| | - Haibo Xu
- School of Healthy Aging, Shandong Women's University, Jinan, Shandong 250000, P.R. China
- Sports and Human Sciences Major, Department of Physical Education, Binzhou University, Binzhou, Shandong 256600, P.R. China
| | - Shuai Shang
- Department of Biological and Environmental Engineering, Binzhou University, Binzhou, Shandong 256600, P.R. China
| | - Longxiang Liu
- Department of Biological and Environmental Engineering, Binzhou University, Binzhou, Shandong 256600, P.R. China
| | - Chunlong Sun
- Department of Biological and Environmental Engineering, Binzhou University, Binzhou, Shandong 256600, P.R. China
| | - Wen Du
- Department of Biological and Environmental Engineering, Binzhou University, Binzhou, Shandong 256600, P.R. China
| |
Collapse
|
5
|
Jamialahamdi T, Mirhadi E, Almahmeed W, Eid AH, Al-Rasadi K, Nguyen NT, Gadde KM, Sahebkar A. Impact of bariatric surgery on circulating irisin levels: a systematic review and meta‑analysis. Updates Surg 2024; 76:2745-2754. [PMID: 38743243 DOI: 10.1007/s13304-024-01866-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/03/2024] [Indexed: 05/16/2024]
Abstract
This systematic review and meta-analysis evaluated changes in circulating irisin levels after bariatric surgery. A systematic search was performed across Embase, Scopus, PubMed, and Web of Science for this study. The meta-analysis was conducted using Comprehensive Meta-Analysis (CMA) V4 software. The overall effect size was depicted through a random-effects meta-analysis and the leave-one-out method. The meta-analysis, which included 13 studies with a total of 407 participants, showed a statistically non-significant reduction in circulating irisin levels following bariatric surgery (SMD: - 0.089, 95% CI - 0.281, 0.102, 95% PI: - 0.790, 0.611, p = 0.360; I2:70.56). Our research found no significant change in irisin levels after bariatric surgery. Moreover, these findings were not associated with the type of surgery or the duration of follow-up.
Collapse
Affiliation(s)
- Tannaz Jamialahamdi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elaheh Mirhadi
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Wael Almahmeed
- Heart and Vascular Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Khalid Al-Rasadi
- Medical Research Centre, Sultan Qaboos University, Muscat, Oman
- Department of Biochemistry, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Ninh T Nguyen
- Department of Surgery, University of California Irvine Medical Center, Orange, CA, USA
| | - Kishore M Gadde
- Department of Surgery, University of California Irvine Medical Center, Orange, CA, USA
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Zhu JY, Guo L. Exercise-regulated lipolysis: Its role and mechanism in health and diseases. J Adv Res 2024:S2090-1232(24)00550-2. [PMID: 39613256 DOI: 10.1016/j.jare.2024.11.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024] Open
Abstract
Exercise has received considerable attention because of its importance not just in regulating physiological function, but also in ameliorating multiple pathological processes. Among these processes, lipolysis may play an important role in exercise-induced benefits. It is generally accepted that active lipolysis contributes to breakdown of fats, leading to the release of free fatty acids (FFAs) that serve as an energy source for muscles and other tissues during exercise. However, the significance of lipolysis in the context of exercise has not been fully understood. This review comprehensively outlines the potential regulatory mechanisms by which exercise stimulates lipolysis. The potential roles of exercise-mediated lipolysis in various physiological and pathological processes are also summarized. Additionally, we also discussed the potential non-classical effects of key lipolytic effectors induced by exercise. This will enhance our understanding of how exercise improves lipolytic function to bring about beneficial effects, offering new insights into potential therapeutic avenues for promoting health and alleviating diseases.
Collapse
Affiliation(s)
- Jie-Ying Zhu
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, China 200438; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China 200438; Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, China 200438
| | - Liang Guo
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, China 200438; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China 200438; Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, China 200438.
| |
Collapse
|
7
|
Hola V, Polanska H, Jandova T, Jaklová Dytrtová J, Weinerova J, Steffl M, Kramperova V, Dadova K, Durkalec-Michalski K, Bartos A. The Effect of Two Somatic-Based Practices Dance and Martial Arts on Irisin, BDNF Levels and Cognitive and Physical Fitness in Older Adults: A Randomized Control Trial. Clin Interv Aging 2024; 19:1829-1842. [PMID: 39525874 PMCID: PMC11550684 DOI: 10.2147/cia.s482479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Background Maintaining healthy brain function during ageing is of great importance, especially for the self-sufficiency of older adults. The main aim of this study was to determine the effects of dance and martial arts on exerkines Brain Derived Neurotrophic Factor (BDNF) and irisin blood serum levels. Methods This randomized controlled trial examined the effects of dance and martial arts on serum Brain-Derived Neurotrophic Factor (BDNF) and irisin levels, as well as cognitive function, mood, and physical measures in older adults. Seventy-seven independently living older adults (mean age 70.3±3.8 years) were randomized into three groups: dance (DG), martial arts (MaG), and control (CG), followed over 12 weeks. Generalized linear models were used to assess the interventions' effects. Results There was a significant increase in BDNF levels in both the DG (1.8 ± 4.9, p < 0.05) and MaG (3.5 ± 6.3, p < 0.05), while CG experienced a decrease (-4.9 ± 8.2, p < 0.05). Between-group effects were significant for BDNF, with DG and MaG showing higher levels than CG (p < 0.05). No significant changes in irisin levels were found. Cognitive performance, particularly attention and mental flexibility (measured by the Trail Making Test A and B), significantly improved in the DG compared to CG (p < 0.05). Additionally, participants in DG showed improved mood based on the Geriatric Depression Scale (p < 0.05) compared to CG. Anthropometric T-scores were significantly associated with changes in irisin levels (p < 0.05) after intervention. Conclusion The study found that dance and martial arts upregulated BDNF levels, with dance showing notable improvements in cognitive function and mood in older adults. Changes in anthropometric measures were linked to increased irisin levels. These findings suggest that both dance and martial arts may promote healthy brain function in aging populations. Trial Registration NCT05363228.
Collapse
Affiliation(s)
- Veronika Hola
- Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - Hana Polanska
- Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - Tereza Jandova
- Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | | | - Josefina Weinerova
- University Hospital Kralovske Vinohrady, Department of Neurology, Prague, Czech Republic
| | - Michal Steffl
- Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - Veronika Kramperova
- Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - Klara Dadova
- Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | | | - Ales Bartos
- University Hospital Kralovske Vinohrady, Department of Neurology, Prague, Czech Republic
- Third Faculty of Medicine, Charles University, Department of Neurology, Prague, Czech Republic
| |
Collapse
|
8
|
Shao J, Deng Q, Feng S, Wu C, Liu X, Yang L. Role of astrocytes in Alzheimer's disease pathogenesis and the impact of exercise-induced remodeling. Biochem Biophys Res Commun 2024; 732:150418. [PMID: 39032410 DOI: 10.1016/j.bbrc.2024.150418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Alzheimer's disease (AD) is a prevalent and debilitating brain disorder that worsens progressively with age, characterized by cognitive decline and memory impairment. The accumulation of amyloid-beta (Aβ) leading to amyloid plaques and hyperphosphorylation of Tau, resulting in intracellular neurofibrillary tangles (NFTs), are primary pathological features of AD. Despite significant research investment and effort, therapies targeting Aβ and NFTs have proven limited in efficacy for treating or slowing AD progression. Consequently, there is a growing interest in non-invasive therapeutic strategies for AD prevention. Exercise, a low-cost and non-invasive intervention, has demonstrated promising neuroprotective potential in AD prevention. Astrocytes, among the most abundant glial cells in the brain, play essential roles in various physiological processes and are implicated in AD initiation and progression. Exercise delays pathological progression and mitigates cognitive dysfunction in AD by modulating astrocyte morphological and phenotypic changes and fostering crosstalk with other glial cells. This review aims to consolidate the current understanding of how exercise influences astrocyte dynamics in AD, with a focus on elucidating the molecular and cellular mechanisms underlying astrocyte remodeling. The review begins with an overview of the neuropathological changes observed in AD, followed by an examination of astrocyte dysfunction as a feature of the disease. Lastly, the review explores the potential therapeutic implications of exercise-induced astrocyte remodeling in the context of AD.
Collapse
Affiliation(s)
- Jie Shao
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Qianting Deng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Shu Feng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Chongyun Wu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| | - Xiaocao Liu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| | - Luodan Yang
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
9
|
Kilic K, Vardar-Yagli N, Nayir-Buyuksahin H, Guzelkas I, Dogru D, Saglam M, Calik-Kutukcu E, Inal-Ince D, Emiralioglu N, Yalcin E, Ozcelik U, Kiper N. Exercise intolerance, oxidative stress, and irisin in pediatric cystic fibrosis: Can telehealth-based exercise training make a difference? Heart Lung 2024; 68:145-153. [PMID: 38981171 DOI: 10.1016/j.hrtlng.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND Patients with cystic fibrosis (CF) experience increased oxidative stress. Tele-exercise can be a new method to improve exercise in CF. OBJECTIVE This study aimed to investigate the effect of telehealth-based exercise training using different modalities (combined exercise training group, CombG, core stabilization exercise group, SG), in comparison with control group (CG), on exercise capacity, oxidative stress, and irisin in children with CF. METHODS Thirty-nine children with CF (mean age=11.41±2.18 years, mean FEV1(z-score)=-0.66±1.96) were included in the study. The children were randomly allocated to groups. The CombG and SG performed core stabilization exercises (CS) 3 days per week for 8 weeks. The CombG also performed aerobic exercises 3 days per week in addition to CS. Physical activity (PA) recommendations were provided to the CG. Exercise capacity was evaluated using the Modified Shuttle Test (MST). Oxidative stress was assessed using total antioxidant status (TAS), total oxidant status (TOS), Oxidative Stress Index (OSI), malondialdehyde (MDA), and superoxide dismutase (SOD). The irisin level was also measured. RESULTS Children's baseline sex, age, BMI, and FEV1 z-scores were similar (p > 0.05). The MST distance (p = 0.047,np2=0.157) and%MST distance (p = 0.045, np2=0.159) significantly improved in the CombG compared with the SG and CG. Although TAS and SOD decreased over time (p < 0.05), no significant changes were observed for TAS, TOS, OSI, MDA, SOD, and irisin parameters between the groups after training (p > 0.05). CONCLUSIONS Combining aerobic exercise training with core stabilization applied using telehealth improved exercise capacity more than core stabilitation training only or PA recommendations in children with CF.
Collapse
Affiliation(s)
- Kubra Kilic
- Hacettepe University, Faculty of Physical Therapy and Rehabilitation, Department of Cardiorespiratory Physiotherapy and Rehabilitation, Ankara, Turkey
| | - Naciye Vardar-Yagli
- Hacettepe University, Faculty of Physical Therapy and Rehabilitation, Department of Cardiorespiratory Physiotherapy and Rehabilitation, Ankara, Turkey.
| | - Halime Nayir-Buyuksahin
- Hacettepe University, Faculty of Medicine, Department of Pediatric Pulmonology, Ankara, Turkey
| | - Ismail Guzelkas
- Hacettepe University, Faculty of Medicine, Department of Pediatric Pulmonology, Ankara, Turkey
| | - Deniz Dogru
- Hacettepe University, Faculty of Medicine, Department of Pediatric Pulmonology, Ankara, Turkey
| | - Melda Saglam
- Hacettepe University, Faculty of Physical Therapy and Rehabilitation, Department of Cardiorespiratory Physiotherapy and Rehabilitation, Ankara, Turkey
| | - Ebru Calik-Kutukcu
- Hacettepe University, Faculty of Physical Therapy and Rehabilitation, Department of Cardiorespiratory Physiotherapy and Rehabilitation, Ankara, Turkey
| | - Deniz Inal-Ince
- Hacettepe University, Faculty of Physical Therapy and Rehabilitation, Department of Cardiorespiratory Physiotherapy and Rehabilitation, Ankara, Turkey
| | - Nagehan Emiralioglu
- Hacettepe University, Faculty of Medicine, Department of Pediatric Pulmonology, Ankara, Turkey
| | - Ebru Yalcin
- Hacettepe University, Faculty of Medicine, Department of Pediatric Pulmonology, Ankara, Turkey
| | - Ugur Ozcelik
- Hacettepe University, Faculty of Medicine, Department of Pediatric Pulmonology, Ankara, Turkey
| | - Nural Kiper
- Hacettepe University, Faculty of Medicine, Department of Pediatric Pulmonology, Ankara, Turkey
| |
Collapse
|
10
|
Cheng Y, Ma J, Bo S. Short- and long-term effects of concurrent aerobic and resistance training on circulating irisin levels in overweight or obese individuals: a systematic review and meta-analysis of randomized controlled trials. PeerJ 2024; 12:e17958. [PMID: 39308824 PMCID: PMC11416761 DOI: 10.7717/peerj.17958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/31/2024] [Indexed: 09/25/2024] Open
Abstract
Background Concurrent training (CT) is emerging as a practical and effective approach to enhance body composition, cardiovascular function, and muscle mass, thereby elevating overall individual health. This study aims to systematically investigate the effects of short- and long-term concurrent aerobic and resistance training on circulating irisin levels in overweight or obese individuals. Methodology The electronic databases, including China National Knowledge Infrastructure, PubMed, Embase, Wan Fang Database, and Web of Science, were systematically searched for articles on "concurrent training" and "irisin" published from their inception to 30 November 2023. The pooled effect size was determined using standardized mean difference (SMD) and corresponding 95% confidence intervals (CIs). The study protocol received registration with the International Prospective Register of Systematic Reviews (CRD42023494163). Results All nine studies, encompassing a total of 264 participants, were randomized controlled trials and met the eligibility criteria. Results indicate that short- and long-term concurrent training moderately increased circulating irisin levels compared to the control group (SMD = 0.56, 95% CI [0.33-0.80], p = 0.00; I 2 = 36.6%, heterogeneity p = 0.106). Subgroup analyses revealed that both equal to or less than 10 weeks (SMD = 0.78, 95% CI [0.18-1.37], p = 0.01; I 2 = 62.3%, heterogeneity p = 0.03) and more than 10 weeks (SMD = 0.45, 95% CI [0.14-0.76], p = 0.00; I 2 = 0%, heterogeneity p = 0.54) of concurrent training significantly increased circulating irisin levels in overweight or obese individuals. There were no significant between-group differences (I 2 = 0%, p = 0.34). Additionally, concurrent training significantly increased irisin levels in overweight or obese participants (SMD = 1.06, 95% CI [0.34-1.78], p = 0.00; I 2 = 50.6%, heterogeneity p = 0.13) and in type 2 diabetes patients (SMD = 0.70, 95% CI [0.30-1.10], p = 0.00; I 2 = 0%, heterogeneity p = 0.99). However, no significant effect was observed in patients with metabolic syndrome (SMD = 0.21, 95% CI [-0.25-0.68], p = 0.37; I 2 = 38.7%, heterogeneity p = 0.18). There were significant between-group differences (I 2 = 53.9%, p = 0.11). Lastly, concurrent training significantly increased circulating irisin levels in overweight or obese individuals aged 45-60 years (SMD = 0.56, 95% CI [0.25-0.86], p = 0.00; I 2 = 6.5%, heterogeneity p = 0.38), and a significant increase in irisin levels was observed 12 h post-intervention (SMD = 0.70, 95% CI [0.35-1.05], p = 0.00; I 2 = 0%, heterogeneity p = 0.74). However, none of the above categorical variables showed significant between-group differences. Conclusions Short- and long-term concurrent training can effectively improve circulating irisin levels in overweight or obese individuals. However, the effects of short- and long-term concurrent training should consider the participants' health status, age, and the timing of post-exercise measurements to maximize health benefits.
Collapse
Affiliation(s)
- Yang Cheng
- Capital University of Physical Education And Sports, Beijing, Haidian, China
| | - Jing Ma
- Capital University of Physical Education And Sports, Beijing, Haidian, China
| | - Shumin Bo
- Capital University of Physical Education And Sports, Beijing, Haidian, China
| |
Collapse
|
11
|
Vargas-Foitzick R, García-Ordenes B, Iratchet D, Acuña A, Alcayaga S, Fernández C, Toledo K, Rodríguez M, Naranjo C, Bustamante R, Haeger PA. Exercise reduces physical alterations in a rat model of fetal alcohol spectrum disorders. Biol Res 2024; 57:41. [PMID: 38907274 PMCID: PMC11193177 DOI: 10.1186/s40659-024-00520-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 06/04/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND Prenatal alcohol exposure (PAE) has serious physical consequences for children such as behavioral disabilities, growth disorders, neuromuscular problems, impaired motor coordination, and decreased muscle tone. However, it is not known whether loss of muscle strength occurs, and which interventions will effectively mitigate physical PAE impairments. We aimed to investigate whether physical alteration persists during adolescence and whether exercise is an effective intervention. RESULTS Using paradigms to evaluate different physical qualities, we described that early adolescent PAE animals have significant alterations in agility and strength, without alterations in balance and coordination compared to CTRL animals. We evaluated the effectiveness of 3 different exercise protocols for 4 weeks: Enrichment environment (EE), Endurance exercise (EEX), and Resistance exercise (REX). The enriched environment significantly improved the strength in the PAE group but not in the CTRL group whose strength parameters were maintained even during exercise. Resistance exercise showed the greatest benefits in gaining strength, and endurance exercise did not. CONCLUSION PAE induced a significant decrease in strength compared to CTRL in PND21. Resistance exercise is the most effective to reverse the effects of PAE on muscular strength. Our data suggests that individualized, scheduled, and supervised training of resistance is more beneficial than endurance or enriched environment exercise for adolescents FASD.
Collapse
Affiliation(s)
- Ronald Vargas-Foitzick
- Carrera de Kinesiología, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Bayron García-Ordenes
- Carrera de Kinesiología, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
- Núcleo de Investigación en Prevención y Tratamiento de Enfermedades Crónicas no Transmisibles (NiPTEC), Universidad Católica del Norte, Coquimbo, Chile
| | - Donovan Iratchet
- Carrera de Kinesiología, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Angie Acuña
- Carrera de Kinesiología, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Spencer Alcayaga
- Carrera de Kinesiología, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Cristian Fernández
- Carrera de Kinesiología, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Karla Toledo
- Carrera de Kinesiología, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Marianela Rodríguez
- Carrera de Kinesiología, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Carolina Naranjo
- Departamento de Ciencias Clínicas, Universidad Católica del Norte, Coquimbo, Chile
| | - René Bustamante
- Carrera de Kinesiología, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
- Núcleo de Investigación en Prevención y Tratamiento de Enfermedades Crónicas no Transmisibles (NiPTEC), Universidad Católica del Norte, Coquimbo, Chile
| | - Paola A Haeger
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile.
- Núcleo de Investigación en Prevención y Tratamiento de Enfermedades Crónicas no Transmisibles (NiPTEC), Universidad Católica del Norte, Coquimbo, Chile.
| |
Collapse
|
12
|
Adilakshmi P, Suganthi V, Balu Mahendran K, Satyanarayana Rao K, Savithri B. Exercise-Induced Alterations in Irisin and Osteocalcin Levels: A Comparative Analysis Across Different Training Modalities. Cureus 2024; 16:e59704. [PMID: 38841020 PMCID: PMC11151138 DOI: 10.7759/cureus.59704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/05/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Physical activity significantly influences physiological biomarkers, including irisin and osteocalcin, which are pivotal for metabolic and bone health. Understanding the differential impacts of various exercise modalities on these biomarkers is essential for optimizing health benefits. OBJECTIVES The study aimed to compare the effects of endurance training and high-intensity resistance training (HIRT) on the levels of irisin and osteocalcin and determine which exercise modality more effectively influences these health-related biomarkers. METHODS The study was conducted at the Nimra Institute of Medical Sciences in Andhra Pradesh, India, where 100 healthy male participants aged between 21 and 35 were recruited. These participants, who were not regularly active and had no metabolic or bone diseases, were divided into two groups to undergo an eight-week training from March to April 2022. One group participated in endurance training involving running and cycling, while the other engaged in HIRT, both targeting a heart rate set at 75% of the maximum. Baseline and follow-up measurements of irisin and osteocalcin were taken before and after the training using blood samples collected after fasting. The study used paired t-tests to analyze changes in biomarker levels, and Pearson correlation coefficients to explore the relationship between the biomarkers, with results processed using statistical software and presented as mean ± standard deviation (SD). RESULTS Post-intervention, both exercise groups showed significant increases in irisin and a modest increase in osteocalcin levels. The HIRT group exhibited a higher increase in irisin levels (+119.33 pg/mL, p<0.015) compared to the endurance group (+108.32 pg/mL, p<0.023). Similarly, osteocalcin levels increased modestly in both groups, with the HIRT group showing a higher mean difference (+0.75 pg/mL, p<0.001) than the endurance group (+0.70 pg/mL). The study also found a link between changes in irisin and osteocalcin levels. This link was stronger in the HIRT group (r = +0.22; p < 0.039) than in the endurance group (r = +0.20; p < 0.038). CONCLUSION Both endurance and high-intensity resistance training are effective in enhancing metabolic and bone health, evidenced by increases in irisin and osteocalcin levels. Although the differences in mean values suggest that HIRT may have a marginal advantage in boosting these biomarkers, confirming the statistical significance of this difference is essential. Further research is required to understand the mechanisms behind these effects and to assess their long-term impacts on health and disease prevention.
Collapse
Affiliation(s)
- P Adilakshmi
- Department of Physiology, Dr. Pinnamaneni Siddhartha Institute of Medical Sciences and Research Foundation, Vijayawada, IND
| | - V Suganthi
- Department of Physiology, Vinyaka Mission's Kirupanada Variyar Medical College and Hospitals, Salem, IND
| | - K Balu Mahendran
- Department of Biochemistry, Siddhartha Medical College, Vijayawada, IND
| | - K Satyanarayana Rao
- Department of General Medicine, Nimra Institute of Medical Sciences, Vijayawada, IND
| | - B Savithri
- Department of Statistics, Dr. Pinnamaneni Siddhartha Institute of Medical Sciences and Research Foundation, Vijayawada, IND
| |
Collapse
|
13
|
Torabi A, Reisi J, Kargarfard M, Mansourian M. Differences in the Impact of Various Types of Exercise on Irisin Levels: A Systematic Review and Meta-Analysis. Int J Prev Med 2024; 15:11. [PMID: 38563037 PMCID: PMC10982734 DOI: 10.4103/ijpvm.ijpvm_76_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/06/2023] [Indexed: 04/04/2024] Open
Abstract
Background Irisin, a myokine that is responsive to exercise, induces significant changes in subcutaneous adipose tissue. By promoting the browning of white fat tissue, it enhances energy expenditure, thereby addressing overweight and obesity. This systematic review and meta-analysis aimed to compare the effects of different types of physical exercises on irisin levels in overweight and obese adults. Methods Specifically, the review focused on studies involving obese or overweight individuals who participated in exercise training for a minimum of 8 weeks, with measured and reported changes in serum irisin levels compared to a control group. Data were collected from four databases (Google Scholar, ISI Web of Science Core Collection, PubMed, and Scopus). The risk of bias was assessed using the Begg and Egger tests, and the results were synthesized. Results Initial searches identified 560 titles, out of which only seven met the criteria for inclusion in the systematic review. Statistical analysis demonstrated a significant increase in serum irisin concentration (SMD = 0.957, P = 0.005) among obese and overweight individuals who engaged in exercise, compared to the passive control group. High-intensity interval training (HIIT) (SMD = 1.229, P < 0.001) had a more pronounced effect on increasing serum irisin levels than other exercise protocols. Furthermore, the effectiveness of exercise varied based on the participants' weight status (significant changes for overweight individuals; P < 0.001 and insignificant changes for obese individuals; P = 0.1), age (significant changes for those under 40 years old; P < 0.001 and insignificant changes for those over 40 years old; P = 0.322), and gender (significant changes for men; P < 0.001 and insignificant changes for women; P = 0.285). Conclusions Consequently, exercise can elevate serum irisin levels, leading to alterations in adipose tissue phenotype and thermogenesis, ultimately contributing to weight reduction in obese and overweight individuals.
Collapse
Affiliation(s)
- Atefe Torabi
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Isfahan, Iran
| | - Jalil Reisi
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Isfahan, Iran
| | - Mehdi Kargarfard
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Isfahan, Iran
| | - Marjan Mansourian
- Department of Biostatistics and Epidemiology, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
14
|
Leung WKC, Yau SY, Suen LKP, Lam SC. Effect of exercise interventions on brain-derived neurotrophic factor expression in people with overweight and obesity: protocol for a systematic review and meta-analysis. BMJ Open 2023; 13:e076118. [PMID: 37865417 PMCID: PMC10603475 DOI: 10.1136/bmjopen-2023-076118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/27/2023] [Indexed: 10/23/2023] Open
Abstract
INTRODUCTION Epidemic obesity ('globobesity') has led to a considerable rise in the prevalence and incidence of many disabling conditions, including cognitive dysfunction. Recent evidence has suggested that habitual exercise can alleviate the deleterious effects of obesity on cognitive functioning across the lifespan. Given that there is a potential link among obesity, exercise, cognitive health and brain-derived neurotrophic factor (BDNF), this systematic review aims to critically appraise interventional trials on exercise and BDNF and to estimate the pooled effect of exercise training on BDNF levels among healthy individuals with overweight and obesity. METHODS AND ANALYSIS Six electronic databases-PubMed, MEDLINE, EMBASE, Web of Science, Ovid Nursing Database and SPORTDiscus-will be searched from their inception through December 2022. Only interventional studies, including randomised controlled trials and quasi-experimental studies, with full text available and reported in English will be included. The primary outcomes will be changes in BDNF levels among healthy subjects with overweight and obesity following either acute or chronic bouts of exercise interventions. Two reviewers will independently conduct data extraction and risk of bias assessment for included trials using the Physiotherapy Evidence Database Scale. We will produce a narrative synthesis, with findings categorised by sex, age groups and types of exercise training. Data will be extracted and pooled for meta-analyses using random-effects models. ETHICS AND DISSEMINATION No formal ethical approval is required for this systematic review. The findings of this review will be disseminated through peer-reviewed publications. PROSPERO REGISTRATION NUMBER CRD42023414868.
Collapse
Affiliation(s)
| | - Suk Yu Yau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | | | | |
Collapse
|
15
|
Cutuli D, Decandia D, Giacovazzo G, Coccurello R. Physical Exercise as Disease-Modifying Alternative against Alzheimer's Disease: A Gut-Muscle-Brain Partnership. Int J Mol Sci 2023; 24:14686. [PMID: 37834132 PMCID: PMC10572207 DOI: 10.3390/ijms241914686] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Alzheimer's disease (AD) is a common cause of dementia characterized by neurodegenerative dysregulations, cognitive impairments, and neuropsychiatric symptoms. Physical exercise (PE) has emerged as a powerful tool for reducing chronic inflammation, improving overall health, and preventing cognitive decline. The connection between the immune system, gut microbiota (GM), and neuroinflammation highlights the role of the gut-brain axis in maintaining brain health and preventing neurodegenerative diseases. Neglected so far, PE has beneficial effects on microbial composition and diversity, thus providing the potential to alleviate neurological symptoms. There is bidirectional communication between the gut and muscle, with GM diversity modulation and short-chain fatty acid (SCFA) production affecting muscle metabolism and preservation, and muscle activity/exercise in turn inducing significant changes in GM composition, functionality, diversity, and SCFA production. This gut-muscle and muscle-gut interplay can then modulate cognition. For instance, irisin, an exercise-induced myokine, promotes neuroplasticity and cognitive function through BDNF signaling. Irisin and muscle-generated BDNF may mediate the positive effects of physical activity against some aspects of AD pathophysiology through the interaction of exercise with the gut microbial ecosystem, neural plasticity, anti-inflammatory signaling pathways, and neurogenesis. Understanding gut-muscle-brain interconnections hold promise for developing strategies to promote brain health, fight age-associated cognitive decline, and improve muscle health and longevity.
Collapse
Affiliation(s)
- Debora Cutuli
- Department of Psychology, University of Rome La Sapienza, 00185 Rome, Italy;
- European Center for Brain Research, Santa Lucia Foundation IRCCS, 00143 Rome, Italy;
| | - Davide Decandia
- Department of Psychology, University of Rome La Sapienza, 00185 Rome, Italy;
- European Center for Brain Research, Santa Lucia Foundation IRCCS, 00143 Rome, Italy;
| | - Giacomo Giacovazzo
- European Center for Brain Research, Santa Lucia Foundation IRCCS, 00143 Rome, Italy;
- Facoltà di Medicina Veterinaria, Università degli Studi di Teramo (UniTE), 64100 Teramo, Italy
| | - Roberto Coccurello
- European Center for Brain Research, Santa Lucia Foundation IRCCS, 00143 Rome, Italy;
- Institute for Complex Systems (ISC), National Council of Research (CNR), 00185 Rome, Italy
| |
Collapse
|
16
|
Kim YC, Ki SW, Kim H, Kang S, Kim H, Go GW. Recent Advances in Nutraceuticals for the Treatment of Sarcopenic Obesity. Nutrients 2023; 15:3854. [PMID: 37686886 PMCID: PMC10490319 DOI: 10.3390/nu15173854] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/26/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
Sarcopenic obesity, low muscle mass, and high body fat are growing health concerns in the aging population. This review highlights the need for standardized criteria and explores nutraceuticals as potential therapeutic agents. Sarcopenic obesity is associated with insulin resistance, inflammation, hormonal changes, and reduced physical activity. These factors lead to impaired muscle activity, intramuscular fat accumulation, and reduced protein synthesis, resulting in muscle catabolism and increased fat mass. Myostatin and irisin are myokines that regulate muscle synthesis and energy expenditure, respectively. Nutritional supplementation with vitamin D and calcium is recommended for increasing muscle mass and reducing body fat content. Testosterone therapy decreases fat mass and improves muscle strength. Vitamin K, specifically menaquinone-4 (MK-4), improves mitochondrial function and reduces muscle damage. Irisin is a hormone secreted during exercise that enhances oxidative metabolism, prevents insulin resistance and obesity, and improves bone quality. Low-glycemic-index diets and green cardamom are potential methods for managing sarcopenic obesity. In conclusion, along with exercise and dietary support, nutraceuticals, such as vitamin D, calcium, vitamin K, and natural agonists of irisin or testosterone, can serve as promising future therapeutic alternatives.
Collapse
Affiliation(s)
| | | | | | | | | | - Gwang-woong Go
- Department of Food and Nutrition, Hanyang University, Seoul 04763, Republic of Korea; (Y.-C.K.); (S.-W.K.); (H.K.); (S.K.); (H.K.)
| |
Collapse
|
17
|
Salisbury DL, Li D, Todd M, Ng TKS, Yu F. Aerobic Exercise, Training Dose, and Cardiorespiratory Fitness: Effects and Relationships with Resting Plasma Neurotrophic Factors in Alzheimer's Dementia. JOURNAL OF VASCULAR DISEASES 2023; 2:351-366. [PMID: 39328309 PMCID: PMC11426414 DOI: 10.3390/jvd2030027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Background Vascular health is increasingly recognized for its roles in the pathogenesis and progression of Alzheimer's disease (AD). The objective of this study was to investigate effects of exercise training, dose, and cardiorespiratory fitness (CRF) on neurotrophic factors in community-dwelling, older adults with mild-to-moderate AD dementia. Methods This was a pilot blood ancillary study of the FIT-AD trial. Participants in the parent study were randomized to 6-month aerobic exercise (AEx) or stretching control. For this ancillary study, resting plasma brain-derived neurotrophic factor (BDNF), irisin, fibroblast growth factor-21 (FGF-21), and insulin-like growth factor-1 (IGF-1) biomarkers were assessed at baseline, 3, and 6 months. Estimates of within- and between-group effect sizes were calculated (Cohen's d). Relationships of biomarker change with dose and CRF change were explored with multivariable linear regression and repeated measures correlations. Results The sample (n = 26, 18 AEx/8 stretching) averaged 77.6 ± 6.9 years old, with the majority being male (65.4%), and non-Hispanic White (92.3%); between-group effect sizes were generally small except for irisin (d = -0.44)), AEx group relative to stretching group. Associations of dose and changes in CRF with changes in neurotrophic biomarker were weak (r2 ≤ 0.025). Conclusions The effects of exercise on BDNF, irisin, IGF-1, and FGF-21 were heterogeneous in AD. Our findings need validation in future, adequately powered exercise studies in AD.
Collapse
Affiliation(s)
| | - Danni Li
- School of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael Todd
- Edison College of Nursing and Health Innovation, Arizona State University, Tempe, AZ 85281, USA
| | - Ted K. S. Ng
- Department of Internal Medicine & Rush Institute of Healthy Aging, Rush University Medical Center, Chicago, IL 60612, USA
| | - Fang Yu
- Edison College of Nursing and Health Innovation, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
18
|
Lu Y, Bu FQ, Wang F, Liu L, Zhang S, Wang G, Hu XY. Recent advances on the molecular mechanisms of exercise-induced improvements of cognitive dysfunction. Transl Neurodegener 2023; 12:9. [PMID: 36850004 PMCID: PMC9972637 DOI: 10.1186/s40035-023-00341-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/09/2023] [Indexed: 03/01/2023] Open
Abstract
Physical exercise is of great significance for maintaining human health. Exercise can provide varying degrees of benefits to cognitive function at all stages of life cycle. Currently, with the aging of the world's population and increase of life expectancy, cognitive dysfunction has gradually become a disease of high incidence, which is accompanied by neurodegenerative diseases in elderly individuals. Patients often exhibit memory loss, aphasia and weakening of orientation once diagnosed, and are unable to have a normal life. Cognitive dysfunction largely affects the physical and mental health, reduces the quality of life, and causes a great economic burden to the society. At present, most of the interventions are aimed to maintain the current cognitive level and delay deterioration of cognition. In contrast, exercise as a nonpharmacological therapy has great advantages in its nontoxicity, low cost and universal application. The molecular mechanisms underlying the effect of exercise on cognition are complex, and studies have been extensively centered on neural plasticity, the direct target of exercise in the brain. In addition, mitochondrial stability and energy metabolism are essential for brain status. Meanwhile, the organ-brain axis responds to exercise and induces release of cytokines related to cognition. In this review, we summarize the latest evidence on the molecular mechanisms underlying the effects of exercise on cognition, and point out directions for future research.
Collapse
Affiliation(s)
- Yi Lu
- grid.13291.380000 0001 0807 1581West China School of Nursing, Sichuan University/Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Fa-Qian Bu
- grid.13291.380000 0001 0807 1581West China School of Nursing, Sichuan University/Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Fang Wang
- grid.13291.380000 0001 0807 1581West China School of Nursing, Sichuan University/Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Li Liu
- grid.13291.380000 0001 0807 1581West China School of Nursing, Sichuan University/Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Shuai Zhang
- grid.13291.380000 0001 0807 1581West China School of Nursing, Sichuan University/Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Guan Wang
- West China School of Nursing, Sichuan University/Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Xiu-Ying Hu
- West China School of Nursing, Sichuan University/Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
19
|
Trettel CDS, Pelozin BRDA, Barros MP, Bachi ALL, Braga PGS, Momesso CM, Furtado GE, Valente PA, Oliveira EM, Hogervorst E, Fernandes T. Irisin: An anti-inflammatory exerkine in aging and redox-mediated comorbidities. Front Endocrinol (Lausanne) 2023; 14:1106529. [PMID: 36843614 PMCID: PMC9951776 DOI: 10.3389/fendo.2023.1106529] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/16/2023] [Indexed: 02/12/2023] Open
Abstract
Human beings lead largely sedentary lives. From an evolutionary perspective, such lifestyle is not beneficial to health. Exercise can promote many enabling pathways, particularly through circulating exerkines, to optimize individual health and quality of life. Such benefits might explain the protective effects of exercise against aging and noncommunicable diseases. Nevertheless, the miRNA-mediated molecular mechanisms and exerkine interorgan crosstalk that underlie the beneficial effects of exercise remain poorly understood. In this mini review, we focused on the exerkine, irisin, mainly produced by muscle contraction during adaptation to exercise and its beneficial effects on body homeostasis. Herein, the complex role of irisin in metabolism and inflammation is described, including its subsequent effects on thermogenesis through browning to control obesity and improve glycemic regulation for diabetes mellitus control, its potential to improve cognitive function (via brain derived neurotrophic factor), and its pathways of action and role in aging.
Collapse
Affiliation(s)
- Caio dos Santos Trettel
- Interdisciplinary Program in Health Sciences, Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo, Brazil
| | - Bruno Rocha de Avila Pelozin
- Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | - Marcelo Paes Barros
- Interdisciplinary Program in Health Sciences, Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo, Brazil
| | | | - Pedro Gabriel Senger Braga
- Laboratory of Metabolism and Lipids, Heart Institute, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | | | - Guilherme Eustáquio Furtado
- Applied Research Institute, Polytechnic Institute of Coimbra, Coimbra, Portugal
- Research Unit for Sport and Physical Activity (CIDAF, UID/PTD/04213/2020), Faculty of Sport Sciences and Physical Education (FCDEF-UC), Coimbra, Portugal
| | - Pedro Afonso Valente
- Research Centre for Sport and Physical Activity, Faculty of Sport Science and Physical Education, University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Edilamar Menezes Oliveira
- Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | - Eef Hogervorst
- National Centre for Sports and Exercise Medicine, Loughborough University, Loughborough, United Kingdom
| | - Tiago Fernandes
- Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
20
|
Hamasaki H. Effects of Exercise on Circulating Muscle-related Cytokines in Adults with Type 2 Diabetes and/or Obesity. Curr Diabetes Rev 2023; 19:e121222211873. [PMID: 36515029 DOI: 10.2174/1573399819666221212145712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/12/2022] [Accepted: 11/01/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Skeletal muscle is an endocrine organ that plays an important role in metabolic health by secreting a variety of myokines. Recent studies have shown that exercise significantly decreases interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in patients with type 2 diabetes (T2D). This paper explores the effect of chronic exercise on myokines in patients with T2D and/or obesity. METHODS The author searched for relevant English-language articles in PubMed. A total of 14 randomized controlled studies were found to be eligible for this short review. RESULTS It has been observed that chronic exercise does not change brain-derived neurotrophic factor (BDNF), irisin, and secreted protein acidic and rich in cysteine levels, whereas it decreases TNF-α levels in patients with T2D. Combined aerobic exercise (AE) and resistance training (RT) or sprint interval training increase insulin-like growth factor 1 (IGF-1) levels and decrease IL-6 and IL-15 levels in patients with T2D. Combined AE and RT may also increase IL-15 levels in obese individuals. In addition, RT alone may increase BDNF, IGF-1, and IL-7 levels in overweight individuals. However, AE alone does not change circulating myokine levels in patients with T2D, while it may increase myonectin levels in obese individuals. CONCLUSION This short review demonstrated that exercise appears to have favorable effects on some myokines in patients with T2D and/or obesity. However, it remains inconclusive due to the heterogeneity in subject characteristics and exercise modalities.
Collapse
Affiliation(s)
- Hidetaka Hamasaki
- Department of Diabetes and Endocrinology, Hamasaki Clinic 2-21-4 Nishida, Kagoshima 890-0046, Japan
| |
Collapse
|
21
|
Abstract
Ageing is characterised by the accumulation of molecular and cellular damage through time, leading to a decline in physical and mental abilities. Currently, society has experienced a rapid increase in life expectancy, which has led to an increase in age-associated diseases. Therefore, it is crucial to study the process of ageing to guarantee the best conditions in the final stages of life. In recent years, interest has increased in a myokine known as irisin, which is secreted during physical exercise. This polypeptide hormone is produced by various organs, mainly muscle, and once it is released into the blood, it performs a wide variety of functions that are involved in metabolic control and may be relevant during some of the diseases associated with ageing. The aim of this review is to highlight the recent studies of irisin, such as its mechanism of expression, blood release, distribution, tissue target and participation in various cellular metabolic reactions and the relationship with key anti-ageing pathways such as adenosine monophosphate-activated protein kinase, silent information regulator T 1, autophagy and telomerase. In conclusion, irisin is a key player during the ageing process and it could be a novel target molecule for the therapeutic approach to boost longevity pathways. However, more research will be necessary to use this promising hormone for this gain.
Collapse
|
22
|
Rody T, De Amorim JA, De Felice FG. The emerging neuroprotective roles of exerkines in Alzheimer’s disease. Front Aging Neurosci 2022; 14:965190. [PMID: 36118704 PMCID: PMC9472554 DOI: 10.3389/fnagi.2022.965190] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/11/2022] [Indexed: 11/26/2022] Open
Abstract
Despite the extensive knowledge of the beneficial effects of physical exercise, a sedentary lifestyle is still a predominant harm in our society. Sedentarism is one of the major modifiable risk factors for metabolic diseases such as diabetes mellitus, obesity and neurological disorders, including Alzheimer’s disease (AD)–characterized by synaptic failure, amyloid protein deposition and memory loss. Physical exercise promotes neuroprotective effects through molecules released in circulation and mediates the physiological crosstalk between the periphery and the brain. This literature review summarizes the current understanding of the roles of exerkines, molecules released during physical exercise, as systemic and central factors that mediate the beneficial effects of physical exercise on cognition. We highlight the neuroprotective role of irisin—a myokine released from the proteolytic cleavage of fibronectin type III domain-containing protein 5 (FNDC5) transmembrane protein. Lastly, we review evidence pointing to physical exercise as a potential preventative and interventional strategy against cognitive decline in AD.
Collapse
Affiliation(s)
- Tayna Rody
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Julia A. De Amorim
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda G. De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Centre for Neuroscience Studies, Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
- Department of Psychiatry, Queen’s University, Kingston, ON, Canada
- D’Or Institute for Research and Education, Rio de Janeiro, Brazil
- *Correspondence: Fernanda G. De Felice,
| |
Collapse
|
23
|
Zhu B, Wang B, Zhao C, Wang Y, Zhou Y, Lin J, Zhao R. Irisin Regulates Cardiac Responses to Exercise in Health and Diseases: a Narrative Review. J Cardiovasc Transl Res 2022; 16:430-442. [PMID: 36036861 DOI: 10.1007/s12265-022-10310-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/22/2022] [Indexed: 11/26/2022]
Abstract
Exercise has been recognized as an important non-pharmacological approach for the prevention, treatment, and rehabilitation of cardiovascular diseases, but the mechanisms of exercise in promoting cardiovascular health remain unclear. Exercise generates cardiac benefits via stimulating muscle to secret hundreds of myokines that directly enter circulation and target heart tissue. Therefore, inter-organ communication between skeletal muscle and heart may be one important regulating pattern, and such communication can occur through secretion of molecules, frequently known as myokines. Irisin, a newly identified myokine, is cleaved from fibronectin type III domain-containing protein 5 (FNDC5) and secreted by the stimulation of exercise. Recently, accumulating evidence focusing on the interaction between irisin and cardiac function has been reported. This review highlights the molecular signaling by which irisin regulates the benefits of exercise on cardiac function both in physiological and pathological process, and discusses the clinical potential of irisin in treating heart diseases. Exercise generates various cardiovascular benefits through stimulating skeletal muscle to secrete irisin. The exercise "hormone" irisin, both produced by exercise or recombinant form, exerts therapeutic effects in a group of cardiovascular disorders including heart failure, myocardial infarction, atherosclerosis and hypertension. However, the molecular mechanisms involved remain ambiguous.This review highlights the most up-to-date findings to bridge the gap between exercise, irisin and cardiovascular diseases, and discusses the potential clinical prospect of irisin.
Collapse
Affiliation(s)
- Baishu Zhu
- College of Physical Education, Yangzhou University, 88 South Daxue Road, Yangzhou, 225009, Jiangsu, China
| | - Bin Wang
- College of Physical Education, Yangzhou University, 88 South Daxue Road, Yangzhou, 225009, Jiangsu, China
| | - Chen Zhao
- College of Physical Education, Yangzhou University, 88 South Daxue Road, Yangzhou, 225009, Jiangsu, China
| | - Yuanxin Wang
- College of Physical Education, Yangzhou University, 88 South Daxue Road, Yangzhou, 225009, Jiangsu, China
| | - Yalan Zhou
- College of Physical Education, Yangzhou University, 88 South Daxue Road, Yangzhou, 225009, Jiangsu, China
| | - Junjie Lin
- College of Physical Education, Yangzhou University, 88 South Daxue Road, Yangzhou, 225009, Jiangsu, China
| | - Renqing Zhao
- College of Physical Education, Yangzhou University, 88 South Daxue Road, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
24
|
Ning K, Wang Z, Zhang XA. Exercise-induced modulation of myokine irisin in bone and cartilage tissue—Positive effects on osteoarthritis: A narrative review. Front Aging Neurosci 2022; 14:934406. [PMID: 36062149 PMCID: PMC9439853 DOI: 10.3389/fnagi.2022.934406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis is a chronic degenerative musculoskeletal disease characterized by pathological changes in joint structures along with the incidence of which increases with age. Exercise is recommended for all clinical treatment guidelines of osteoarthritis, but the exact molecular mechanisms are still unknown. Irisin is a newly discovered myokine released mainly by skeletal muscle in recent years—a biologically active protein capable of being released into the bloodstream as an endocrine factor, the synthesis and secretion of which is specifically induced by exercise-induced muscle contraction. Although the discovery of irisin is relatively recent, its role in affecting bone density and cartilage homeostasis has been reported. Here, we review the production and structural characteristics of irisin and discuss the effects of the different types of exercise involved in the current study on irisin and the role of irisin in anti-aging. In addition, the role of irisin in the regulation of bone mineral density, bone metabolism, and its role in chondrocyte homeostasis and metabolism is reviewed. A series of studies on irisin have provided new insights into the mechanisms of exercise training in improving bone density, resisting cartilage degeneration, and maintaining the overall environmental homeostasis of the joint. These studies further contribute to the understanding of the role of exercise in the fight against osteoarthritis and will provide an important reference and aid in the development of the field of osteoarthritis prevention and treatment.
Collapse
|
25
|
Darweesh SK, De Vries NM, Helmich RC, Verbeek MM, Schwarzschild MA, Bloem BR. Inhibition of Neuroinflammation May Mediate the Disease-Modifying Effects of Exercise: Implications for Parkinson’s Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:1419-1422. [PMID: 35466957 PMCID: PMC9398068 DOI: 10.3233/jpd-223216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Sirwan K.L. Darweesh
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nienke M. De Vries
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rick C. Helmich
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marcel M. Verbeek
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Bastiaan R. Bloem
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
26
|
Shen S, Liao Q, Chen X, Peng C, Lin L. The role of irisin in metabolic flexibility: beyond adipose tissue browning. Drug Discov Today 2022; 27:2261-2267. [PMID: 35364272 DOI: 10.1016/j.drudis.2022.03.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 02/18/2022] [Accepted: 03/26/2022] [Indexed: 02/06/2023]
Abstract
Metabolic flexibility is the ability to adapt to physiological and environmental changes in metabolic demand. Irisin was originally discovered as an exercise-induced myokine involved in fat browning. In this review, we summarize emerging evidence for the role of irisin in regulating glucose metabolism and insulin sensitivity in skeletal muscle, neuroplasticity and satiety in central nervous system, β cell function and insulin secretion in the pancreas, bone remodeling, and adipose tissue function, which together orchestrate whole-body metabolic flexibility. Irisin is a key communicating mediator between skeletal muscle and other organs, and its manipulation could be a promising therapeutic strategy for treating obesity and related metabolic disorders. Teaser: This review summarizes recent progress in manipulating metabolic flexibility with irisin, and discusses its potential application as a drug target to treat obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Shengnan Shen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau; Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiwen Liao
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ligen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau.
| |
Collapse
|
27
|
Mohammad Rahimi GR, Hejazi K, Hofmeister M. The effect of exercise interventions on Irisin level: a systematic review and meta-analysis of randomized controlled trials. EXCLI JOURNAL 2022; 21:524-539. [PMID: 36110558 PMCID: PMC9441678 DOI: 10.17179/excli2022-4703] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/15/2022] [Indexed: 11/13/2022]
Abstract
Irisin is a hormone that is offered to be a hopeful remedial target in obesity and type 2 diabetes. It has received striking attention recently, whereas, the interactions between exercise training and irisin are still unclear. Therefore, this systematic review and meta-analysis investigated the impacts of exercise interventions on circulating irisin in adults. A systematic search was conducted in PubMed, CINAHL, MEDLINE, Cochrane, Google Scholar, and Scopus up to July 15, 2021. Twenty-four studies, which assessed a total of 921 participants were included and analyzed using a random-effects model to estimate weighted mean differences (MD) with 95 % confidence intervals (CI). Overall, data revealed that exercise training significantly increased circulating irisin (MD: 0.01, 95 % CI: 0.00, 0.01, p = 0.005), and declined insulin (MD: -2.09, 95 % CI: -2.81, -1.37, p < 0.00001), glucose (MD: -12.89, 95 % CI: -16.52, -9.26, p < 0.00001), and insulin resistance (MD: -0.89, 95 % CI: -1.15, -0.62, p < 0.00001). Subgroup analysis revealed that irisin raised significantly when resistance training (p = 0.04) and combined training (p = 0.002) were applied, and for the type 2 diabetes and prediabetes (p = 0.002 for both) groups. Moreover, subgroup analysis by the type of intervention demonstrated that insulin reduced when aerobic training (p < 0.00001) and combined training (p = 0.0003) were employed, but glucose and HOMA-IR reduced after all three types of exercise training. These findings demonstrate that exercise interventions may produce ameliorations in circulating irisin. Further long-term studies are required to confirm these findings.
Collapse
Affiliation(s)
| | - Keyvan Hejazi
- Department of Physical Education and Sport Sciences, Hakim Sabzevari University, Sabzevar, Iran,*To whom correspondence should be addressed: Keyvan Hejazi, Department of Physical Education and Sport Sciences, Hakim Sabzevari University, Sabzevar, Iran; Tel: +98 (51) 344012620, E-mail:
| | - Martin Hofmeister
- Department Food and Nutrition, Consumer Center of the German Federal State of Bavaria, Munich, Germany
| |
Collapse
|