1
|
Kubar MS, Wang C, Noor RS, Feng M, Yang W, Kubar KA, Soomro K, Yang C, Sun H, Mohamed H, Mosa WFA. Nitrogen fertilizer application rates and ratios promote the biochemical and physiological attributes of winter wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:1011515. [PMID: 36507429 PMCID: PMC9728544 DOI: 10.3389/fpls.2022.1011515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/16/2022] [Indexed: 06/17/2023]
Abstract
Improper optimization of the rates and ratios of nitrogen application reduces grain yields and increases the nitrogen loss, thereby affecting environmental quality. In addition, scarcer evidence exists on the integrative approach of nitrogen, which could have effects on the biochemical and physiological characteristics of wheat. Treatments were arranged as nitrogen (N) rates of 00, 75, 150, 225, and 300 kg ha-1 in the main plots, and different nitrogen ratios were organized in subplots at 5:5:0:0 and 6:4:0:0, which were applied at the sowing, jointing, flowering, and grain filling stages. The results revealed that 225 kg N ha-1 significantly enhanced the stomatal conductance (G s), photosynthetic rate (P n), intercellular CO2 (C i), transpiration rate (T r), and total chlorophyll by 28.5%, 42.3%, 10.0%, 15.2%, and 50%, receptively, at the jointing stage in comparison to the control (0 kg N ha-1). Nitrogen application of 225 kg ha-1 increased the soil-plant analysis development (SPAD) value and the chlorophyll a, chlorophyll b, and carotenoid contents of winter wheat under the 6:4:0:0 ratio. The trend of the photosynthetic characteristics was observed to be greater at the 6:4:0:0 fertilization ratio compared to that at 5:5:0:0. The photosynthetic rate was significantly associated with the biochemical and physiological characteristics of winter wheat. In conclusion, the nitrogen dose of 225 kg ha-1 and the ratio of 6:4:0:0 (quantity applied at the sowing, jointing, flowering, and grain filling stages) effectively promoted the photosynthetic and other physiological characteristics of winter wheat.
Collapse
Affiliation(s)
| | - Chao Wang
- College of Agriculture, Shanxi Agricultural University, Taigu Jinzhong, China
| | - Rana Shahzad Noor
- Department of Agriculture, Biological, Environment and Energy Engineering, College of Engineering, Northeast Agricultural University, Harbin, China
- Faculty of Agricultural Engineering and Technology, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Meichen Feng
- College of Agriculture, Shanxi Agricultural University, Taigu Jinzhong, China
| | - Wude Yang
- College of Agriculture, Shanxi Agricultural University, Taigu Jinzhong, China
| | - Kashif Ali Kubar
- Faculty of Agriculture, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Pakistan
| | - Khalilullah Soomro
- Department of Plant Pathology, Sichuan Agricultural University, Chengdu, China
| | - Chen Yang
- College of Agriculture, Shanxi Agricultural University, Taigu Jinzhong, China
| | - Hui Sun
- College of Agriculture, Shanxi Agricultural University, Taigu Jinzhong, China
| | - Hasan Mohamed
- Bioinformatics Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Walid F A Mosa
- Plant Production Department (Horticulture- Pomology), Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, Egypt
| |
Collapse
|
2
|
Karlsen-Ayala E, Smith ME, Askey BC, Gazis R. Native ectomycorrhizal fungi from the endangered pine rocklands are superior symbionts to commercial inoculum for slash pine seedlings. MYCORRHIZA 2022; 32:465-480. [PMID: 36210381 DOI: 10.1007/s00572-022-01092-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
The south Florida pine rocklands is a critically endangered, fire-dependent ecosystem dominated by the overstory tree Pinus densa (South Florida slash pine). Because pine recruitment in this ecosystem has proven problematic, restoration efforts need to include replanting slash pine trees. Even though ectomycorrhizal fungi are known to be critical symbionts of young pines and are necessary for the development of healthy pines, virtually nothing is known about these mutualists and their role in pine establishment and survival in the pine rocklands. One approach to improve pine establishment is to grow seedlings in a nursery before outplanting, facilitating early associations with ectomycorrhizae, and therefore improving seedling health. In this study, we compared health metrics (height, stem diameter, final needle length, root length, root colonization, needle greenness, root volume, and root:shoot ratio) of seedlings grown in soil amended with five commercially available mycorrhizal inocula versus field soil collected from three pine rockland fragments. Seedlings grown with native field soil from the pine rocklands generally performed better than those grown with commercial inoculum in all metrics except root length. According to their labels, each commercial inoculum contained between 4 and 10 ectomycorrhizal fungi species. However, no ectomycorrhizal fungi were recovered from two of the inoculum products and only three ectomycorrhizal fungi in total were recovered from the other three products. In contrast, seedlings grown with field soil are associated with ten ectomycorrhizal species. Our results highlight the importance of incorporating native ectomycorrhizal fungi into pine seedling replanting as part of restoration efforts in the pine rocklands.
Collapse
Affiliation(s)
- Elena Karlsen-Ayala
- Department of Plant Pathology, Tropical Research and Education Center, University of Florida, Homestead, FL, 33031, USA.
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32608, USA.
- Department of Soil and Water Sciences, Southwest Research and Education Center, University of Florida, Immokalee, FL, 34142, USA.
| | - Matthew E Smith
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32608, USA
| | - Bryce C Askey
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Romina Gazis
- Department of Plant Pathology, Tropical Research and Education Center, University of Florida, Homestead, FL, 33031, USA
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32608, USA
| |
Collapse
|
3
|
Zhang R, Li H, Gui Y, Wei J, Zhu K, Zhou H, Lakshmanan P, Mao L, Lu M, Liu J, Que Y, Li S, Liu X. Comparative Transcriptome Analysis of Two Sugarcane Cultivars in Response to Paclobutrazol Treatment. PLANTS (BASEL, SWITZERLAND) 2022; 11:2417. [PMID: 36145817 PMCID: PMC9502373 DOI: 10.3390/plants11182417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Sugarcane is an important crop across the globe, and the rapid multiplication of excellent cultivars is an important object of the sugarcane industry. As one of the plant growth regulators, paclobutrazol (PBZ) has been frequently used in the tissue culture of sugarcane seedlings. However, little is known about the molecular mechanisms of response to PBZ in this crop. Here, we performed a comparative transcriptome analysis between sensitive (LC05-136) and non-sensitive (GGZ001) sugarcane cultivars treated by PBZ at three time points (0 d, 10 d, and 30 d) using RNA sequencing (RNA-Seq). The results showed that approximately 70.36 Mb of clean data for each sample were generated and assembled into 239,212 unigenes. A total of 6108 and 4404 differentially expressed genes (DEGs) were identified within the sensitive and non-sensitive sugarcane cultivars, respectively. Among them, DEGs in LC05-136 were most significantly enriched in the photosynthesis and valine, leucine and isoleucine degradation pathways, while in GGZ001, DEGs associated with ion channels and plant-pathogen interaction were mainly observed. Notably, many interesting genes, including those encoding putative regulators, key components of photosynthesis, amino acids degradation and glutamatergic synapse, were identified, revealing their importance in the response of sugarcane to PBZ. Furthermore, the expressions of sixteen selected DEGs were tested by quantitative reverse transcription PCR (RT-qPCR), confirming the reliability of the RNA-seq data used in this study. These results provide valuable information regarding the transcriptome changes in sugarcane treated by PBZ and provide an insight into understanding the molecular mechanisms underlying the resistance to PBZ in sugarcane.
Collapse
Affiliation(s)
- Ronghua Zhang
- Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning 530007, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Haibi Li
- Guangxi South Subtropical Agricultural Science Research Institute, Guangxi Academy of Agricultural Sciences, Longzhou 532415, China
| | - Yiyun Gui
- Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning 530007, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Jinju Wei
- Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning 530007, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Kai Zhu
- Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning 530007, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Hui Zhou
- Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning 530007, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Prakash Lakshmanan
- Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning 530007, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Lianying Mao
- Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning 530007, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Manman Lu
- Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning 530007, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Junxian Liu
- Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning 530007, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Youxiong Que
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Song Li
- Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning 530007, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Xihui Liu
- Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning 530007, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| |
Collapse
|
4
|
Santos Filho FB, Silva TI, Dias MG, Alves ACL, Grossi JAS. Paclobutrazol reduces growth and increases chlorophyll indices and gas exchanges of basil (Ocimum basilicum). BRAZ J BIOL 2022; 82:e262364. [PMID: 35857950 DOI: 10.1590/1519-6984.262364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/06/2022] [Indexed: 11/22/2022] Open
Abstract
Basil (Ocimum basilicum) is a medicinal, ornamental and aromatic plant, however, its size can be an obstacle to its commercialization as a potted ornamental plant. Paclobutrazol (PBZ) is a substance that can retard plant growth by inhibiting the synthesis of gibberellins. The objective of this work was to evaluate the effect of paclobutrazol on growth regulation and gas exchange of basil (var. Cinnamon). The experiment was carried out in a completely randomized design with five treatments (PBZ doses: 0, 2.5, 5, 7.5 and 10 mg L-1), with eight replicates. Growth (plant height, number of leaves, stem diameter, leaf dry mass, stem dry mass, inflorescence dry mass, and total), growth rates (leaf mass ratio, stem mass ratio, inflorescence mass ratio, and robustness quotient), chlorophyll indices, gas exchange (gs, A, E, Ci, WUE, iWUE and iCE) were evaluated. Paclobutrazol reduced the growth of basil plants and increased the chlorophyll indices, A, gs, and WUE. Paclobutrazol can be used to regulate plant growth of basil plants var. Cinnamon, without altering its physiological and ornamental characteristics.
Collapse
Affiliation(s)
- F B Santos Filho
- Universidade Federal de Viçosa - UFV, Departamento de Agronomia, Viçosa, MG, Brasil
| | - T I Silva
- Universidade Federal de Viçosa - UFV, Departamento de Agronomia, Viçosa, MG, Brasil
| | - M G Dias
- Universidade Federal de Viçosa - UFV, Departamento de Agronomia, Viçosa, MG, Brasil
| | - A C L Alves
- Universidade Federal de Viçosa - UFV, Departamento de Agronomia, Viçosa, MG, Brasil
| | - J A S Grossi
- Universidade Federal de Viçosa - UFV, Departamento de Agronomia, Viçosa, MG, Brasil
| |
Collapse
|
5
|
Zhang J, Wang X, Zhang D, Qiu S, Wei J, Guo J, Li D, Xia Y. Evaluating the Comprehensive Performance of Herbaceous Peonies at low latitudes by the Integration of Long-running Quantitative Observation and Multi-Criteria Decision Making Approach. Sci Rep 2019; 9:15079. [PMID: 31636314 PMCID: PMC6803760 DOI: 10.1038/s41598-019-51425-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/19/2019] [Indexed: 02/06/2023] Open
Abstract
Enlarging the planting area of economic plants, such as the "Southward Planting of Herbaceous Peony" (Paeonia lactiflora. Pall), is significant for improving people's lives. Peony is globally known as an ornamental because of gorgeous flowers and is mainly cultivated in the temperate regions with relatively cool and dry climates in the Northern Hemisphere. Promoting the landscape application of peony to the lower latitude regions is difficult because of the hot-humid climate. In this study, 29 northern peony cultivars and a unique Chinese southern peony, 'Hang Baishao', were introduced to Hangzhou, located in the central subtropics. Annual growth cycles, resistances and dormancy durations were measured, and crossbreeding between the southern and northern peonies was performed for six years, from 2012 to 2017. Based on data collected from the long-running quantitative observation (LQO), a multi-criteria decision making (MCDM) system was established to evaluate the comprehensive planting performance of these 30 cultivars in the central subtropics. 'Qihua Lushuang', 'Hang Baishao' and 'Meiju' were highly recommended, while 'Zhuguang' and 'Qiaoling' were scarcely recommended for the Hangzhou landscape. This study highlights the dependability and comprehensiveness of integrating the LQO and MCDM approaches for evaluating the introduction performance of ornamental plants.
Collapse
Affiliation(s)
- Jiaping Zhang
- Physiology and Molecular Biology Laboratory of Ornamental Plants, Institute of Landscape Architecture, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xiaobin Wang
- Physiology and Molecular Biology Laboratory of Ornamental Plants, Institute of Landscape Architecture, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Dong Zhang
- Physiology and Molecular Biology Laboratory of Ornamental Plants, Institute of Landscape Architecture, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Shuai Qiu
- Research & Development Center, Hangzhou Landscaping Incorporated, Hangzhou, 310020, China
| | - Jianfen Wei
- Research & Development Center, Hangzhou Landscaping Incorporated, Hangzhou, 310020, China
| | - Juan Guo
- Research & Development Center, Hangzhou Landscaping Incorporated, Hangzhou, 310020, China
| | - Danqing Li
- Physiology and Molecular Biology Laboratory of Ornamental Plants, Institute of Landscape Architecture, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Yiping Xia
- Physiology and Molecular Biology Laboratory of Ornamental Plants, Institute of Landscape Architecture, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|