1
|
Dokka N, Rathinam M, Sreevathsa R. Lignin lite: Boosting plant power through selective downregulation. PLANT, CELL & ENVIRONMENT 2024; 47:4945-4962. [PMID: 39115273 DOI: 10.1111/pce.15060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 11/06/2024]
Abstract
SUMMARY STATEMENTThis article explores the dual benefits of reducing lignin content in plants, which streamlines biofuel production while maintaining robust defence mechanisms. It discusses how plants compensate for lower lignin levels through alternative defence strategies, recent biotechnological advances in lignin modification, and the implications for agriculture and industry.
Collapse
Affiliation(s)
- Narasimham Dokka
- Division of Molecular Biology and Biotechnology, ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, India
| | - Maniraj Rathinam
- Division of Molecular Biology and Biotechnology, ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, India
| | - Rohini Sreevathsa
- Division of Molecular Biology and Biotechnology, ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, India
| |
Collapse
|
2
|
Mikulic-Petkovsek M, Ivancic A, Gacnik S, Veberic R, Hudina M, Marinovic S, Molitor C, Halbwirth H. Biochemical Characterization of Black and Green Mutant Elderberry during Fruit Ripening. PLANTS (BASEL, SWITZERLAND) 2023; 12:504. [PMID: 36771589 PMCID: PMC9918921 DOI: 10.3390/plants12030504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/22/2022] [Accepted: 01/16/2023] [Indexed: 05/22/2023]
Abstract
The content of sugars, organic acids, phenolic compounds and selected enzyme activities in the anthocyanin pathway were analyzed in NIGRA (Sambucus nigra var. nigra-black fruits) and VIRIDIS (S. nigra var. viridis-green fruits) fruits over four stages of ripening. The share of glucose and fructose in green fruits was higher than in colored fruits, and the sugar content increased significantly until the third developmental stage. Ripe NIGRA berries had 47% flavonol glycosides, 34% anthocyanins, 3% hydroxycinnamic acids and 14% flavanols, whereas the major phenolic group in the VIRIDIS fruits, making up 88% of the total analyzed polyphenols, was flavonols. NIGRA fruits were rich in anthocyanins (6020 µg g-1 FW), showing strong activation of the late anthocyanin pathway (dihydroflavonol 4-reductase, anthocyanidin synthase). In both color types, phenylalanine ammonia lyase and chalcone synthase/chalcone isomerase activities were highest in the first stage and decreased during ripening. In VIRIDIS fruit, no anthocyanins and only one flavanol (procyanidin dimer) were found. This was most likely caused by a lack of induction of the late anthocyanin pathway in the last period of fruit ripening. The VIRIDIS genotype may be useful in studying the regulatory structures of anthocyanin biosynthesis and the contribution of distinct flavonoid classes to the health benefits of elderberries.
Collapse
Affiliation(s)
- Maja Mikulic-Petkovsek
- Chair for Fruit Growing, Viticulture and Vegetable Growing, Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Anton Ivancic
- 2 Chair for Genetics, Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, SI-2311 Hoce, Slovenia
| | - Sasa Gacnik
- Chair for Fruit Growing, Viticulture and Vegetable Growing, Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Robert Veberic
- Chair for Fruit Growing, Viticulture and Vegetable Growing, Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Metka Hudina
- Chair for Fruit Growing, Viticulture and Vegetable Growing, Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Silvija Marinovic
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Getreidemarkt 9, A-1060 Vienna, Austria
| | - Christian Molitor
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Getreidemarkt 9, A-1060 Vienna, Austria
| | - Heidi Halbwirth
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Getreidemarkt 9, A-1060 Vienna, Austria
| |
Collapse
|
3
|
Ponce C, Kuhn N, Arellano M, Time A, Multari S, Martens S, Carrera E, Sagredo B, Donoso JM, Meisel LA. Differential Phenolic Compounds and Hormone Accumulation Patterns between Early- and Mid-Maturing Sweet Cherry ( Prunus avium L.) Cultivars during Fruit Development and Ripening. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8850-8860. [PMID: 34339217 DOI: 10.1021/acs.jafc.1c01140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Color acquisition is one of the most distinctive features of fruit development and ripening processes. The color red is closely related to the accumulation of polyphenolic compounds, mainly anthocyanins, during sweet cherry fruit maturity. In non-climacteric fruit species like sweet cherry, the maturity process is mainly controlled by the phytohormone abscisic acid (ABA), though other hormones may also play a role. However, the coordinated stage-specific production of polyphenolic compounds and their relation with hormone content variations have not been studied in depth in sweet cherry fruits. To further understand the accumulation dynamics of these compounds (hormones and metabolites) during fruit development, two sweet cherry cultivars ("Lapins" and "Glenred") with contrasting maturity timing phenotypes were analyzed using targeted metabolic analysis. The ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) approach revealed that phenolic acids, flavonols, and flavan-3-ols accumulated mainly until the straw-yellow stage in the early-maturing cultivar, while accumulation was mainly at the green stage in the mid-maturing cultivar, suggesting a cultivar-dependent stage-specific production of secondary metabolites. In the mid-maturing cultivar, anthocyanins were detected only from the red stage onward, whereas detection began at the pink stage in the early-maturing cultivar. ABA negatively correlated (p-value < 0.05) with the flavonols and flavan-3-ols in both cultivars. ABA and anthocyanin content increased at the same time in the early-season cultivar. In contrast, anthocyanins accumulated and the pink color initiation started several days after the ABA increase in the mid-maturing cultivar. Differential accumulation patterns of GA4, a ripening antagonizing hormone, between the cultivars could explain this difference. These results showed that both red-colored cultivars presented different accumulation dynamics of phenolic compounds and plant hormones during fruit development, suggesting underlying differences in the sweet cherry fruit color evolution.
Collapse
Affiliation(s)
- Claudio Ponce
- Universidad de Chile, Instituto de Nutrición y Tecnología de los Alimentos, 820808 Macul, Chile
| | - Nathalie Kuhn
- Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, 2340025 Valparaíso, Chile
| | - Macarena Arellano
- Universidad de Chile, Instituto de Nutrición y Tecnología de los Alimentos, 820808 Macul, Chile
| | - Alson Time
- Universidad de Chile, Instituto de Nutrición y Tecnología de los Alimentos, 820808 Macul, Chile
- Programa de Doctorado en Ciencias Silvoagropecuarias y Veterinarias, Campus Sur, Universidad de Chile, 1004 La Pintana, Chile
- Instituto de Investigaciones Agropecuarias, Centro Regional INIA Rayentué, 2940000 Rengo, Chile
| | - Salvatore Multari
- Department of Food Quality and Nutrition, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all'Adige, Trentino, Italy
| | - Stefan Martens
- Department of Food Quality and Nutrition, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all'Adige, Trentino, Italy
| | - Esther Carrera
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universidad Politécnica de Valencia, CPI, Edificio 8E, lab. 2.06, C/Ing. Fausto Elio s/n., 46022 Valencia, Spain
| | - Boris Sagredo
- Instituto de Investigaciones Agropecuarias, Centro Regional INIA Rayentué, 2940000 Rengo, Chile
| | - José Manuel Donoso
- Instituto de Investigaciones Agropecuarias, Centro Regional INIA Rayentué, 2940000 Rengo, Chile
| | - Lee A Meisel
- Universidad de Chile, Instituto de Nutrición y Tecnología de los Alimentos, 820808 Macul, Chile
| |
Collapse
|
4
|
Medda S, Sanchez-Ballesta MT, Romero I, Dessena L, Mulas M. Expression of Structural Flavonoid Biosynthesis Genes in Dark-Blue and White Myrtle Berries ( Myrtus communis L.). PLANTS 2021; 10:plants10020316. [PMID: 33562119 PMCID: PMC7915511 DOI: 10.3390/plants10020316] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 11/16/2022]
Abstract
Within the myrtle (Myrtus communis L.) species, different genotypes may produce dark-blue berries or white berries depending on the peel color upon ripening. One dark-blue cultivar and one white myrtle cultivar were used to study the molecular mechanisms underlying flavonoid biosynthesis. The relative expression levels of common (PAL, CHS, CHI, DFR and LDOX) and specific (FLS, ANR, LAR and UFGT) flavonoid genes were analyzed during fruit development by means of quantitative real-time polymerase chain reaction (RT-qPCR). Moreover, the anthocyanin content was determined, and it showed an increase with the ripening of the berries of the dark-blue cultivar. The results showed an increased transcript abundance of PAL, CHI, DFR, LDOX and UFGT gene expression in the dark-blue cultivar compared to the white one, as well as a strong positive correlation between the changes in gene expression and anthocyanin accumulation. The transcript levels of UFGT showed sharp increases at 150 and 180 days after full blooming (DAF) in the dark-blue cultivar, which corresponded with anthocyanin accumulation. However, ripening seemed to modulate the expression of genes implicated in flavonols (i.e., FLS) and flavan-3-ols (i.e., LAR and ANR) in different manners. However, whereas FLS transcript accumulation increased at the end of the ripening period in the dark-blue cultivar, LAR and ANR gene expression decreased in both cultivars.
Collapse
Affiliation(s)
- Silvia Medda
- Department of Agricultural Science, University of Sassari, Via De Nicola 9, 07100 Sassari, Italy; (S.M.); (L.D.)
| | - Maria Teresa Sanchez-Ballesta
- Instituto de Ciencia y Tecnologia de Alimentos y Nutrición (ICTAN-CSIC), Jose Antonio Novais, 10, 28040 Madrid, Spain; (M.T.S.-B.); (I.R.)
| | - Irene Romero
- Instituto de Ciencia y Tecnologia de Alimentos y Nutrición (ICTAN-CSIC), Jose Antonio Novais, 10, 28040 Madrid, Spain; (M.T.S.-B.); (I.R.)
| | - Leonarda Dessena
- Department of Agricultural Science, University of Sassari, Via De Nicola 9, 07100 Sassari, Italy; (S.M.); (L.D.)
| | - Maurizio Mulas
- Department of Agricultural Science, University of Sassari, Via De Nicola 9, 07100 Sassari, Italy; (S.M.); (L.D.)
- Centre for Conservation and Evaluation of Plant Biodiversity, University of Sassari, Via De Nicola 9, 07100 Sassari, Italy
- Correspondence: ; Tel.: +39-079229334
| |
Collapse
|