1
|
Fodor M, Matkovits A, Benes EL, Jókai Z. The Role of Near-Infrared Spectroscopy in Food Quality Assurance: A Review of the Past Two Decades. Foods 2024; 13:3501. [PMID: 39517284 PMCID: PMC11544831 DOI: 10.3390/foods13213501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
During food quality control, NIR technology enables the rapid and non-destructive determination of the typical quality characteristics of food categories, their origin, and the detection of potential counterfeits. Over the past 20 years, the NIR results for a variety of food groups-including meat and meat products, milk and milk products, baked goods, pasta, honey, vegetables, fruits, and luxury items like coffee, tea, and chocolate-have been compiled. This review aims to give a broad overview of the NIRS processes that have been used thus far to assist researchers employing non-destructive techniques in comparing their findings with earlier data and determining new research directions.
Collapse
Affiliation(s)
- Marietta Fodor
- Department of Food and Analytical Chemistry, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary; (A.M.); (E.L.B.); (Z.J.)
| | | | | | | |
Collapse
|
2
|
Mihaly Cozmuta A, Peter A, Nicula C, Jastrzębska A, Jakubczak M, Purbayanto M, Bunea A, Bora F, Uivarasan A, Szakács Z, Mihaly Cozmuta L. The impact of visible light component bands on polyphenols from red grape seed extract powder encapsulated in alginate-whey protein matrix. Food Chem X 2024; 23:101758. [PMID: 39679380 PMCID: PMC11639332 DOI: 10.1016/j.fochx.2024.101758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 12/17/2024] Open
Abstract
Beads made of sodium alginate, whey protein concentrate, and red grape seed extract powder were exposed to white light and its red-orange, yellow-green-cyan, and cyan-blue-violet bands. The chemical analysis showed that encapsulation in the alginate-whey protein matrix protected polyphenols, flavonoids and cyanidin-3-O-glucoside when exposed to red-orange light. The reflectance spectra acquired from grape seed extract powder and grape seed extract beads were deconvoluted and anthocyanins-based moieties which contribute to the expression of bathochromic or hypsochromic effects were identified. The evolution of the peak areas assigned to the colored compounds confirms that the most intense polyphenol degradation occurred in grape seed extract powder and grape seed extract beads exposed to cyan-blue-violet light, as shown by the chemical analysis. The results of the study are important in choosing the light band from the visible spectrum which can be used to process food enriched with grape seed extract with minimal polyphenol degradation.
Collapse
Affiliation(s)
- A. Mihaly Cozmuta
- Technical University of Cluj Napoca, North University Center of Baia Mare, Victoriei Str. 76, Baia Mare, Romania
| | - A. Peter
- Technical University of Cluj Napoca, North University Center of Baia Mare, Victoriei Str. 76, Baia Mare, Romania
| | - C. Nicula
- Technical University of Cluj Napoca, North University Center of Baia Mare, Victoriei Str. 76, Baia Mare, Romania
| | - A. Jastrzębska
- Warsaw University of Technology, Faculty of Mechatronics, 8 Andrzeja Boboli Street, 02-525 Warsaw, Poland
| | - M. Jakubczak
- Warsaw University of Technology, Faculty of Mechatronics, 8 Andrzeja Boboli Street, 02-525 Warsaw, Poland
| | - M.A.K. Purbayanto
- Warsaw University of Technology, Faculty of Mechatronics, 8 Andrzeja Boboli Street, 02-525 Warsaw, Poland
| | - A. Bunea
- Biochemistry Department, Faculty of Animal Science and Biotechnology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania
| | - F. Bora
- Viticulture and Oenology Department, Advanced Horticultural Research Institute of Transylvania, Faculty of Horticulture and Business in Rural Development, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania
- Laboratory of Chromatography, Advanced Horticultural Research Institute of Transylvania, Faculty of Horticulture and Business for Rural Development, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - A. Uivarasan
- Technical University of Cluj Napoca, North University Center of Baia Mare, Victoriei Str. 76, Baia Mare, Romania
| | - Z. Szakács
- Technical University of Cluj Napoca, North University Center of Baia Mare, Victoriei Str. 76, Baia Mare, Romania
| | - L. Mihaly Cozmuta
- Technical University of Cluj Napoca, North University Center of Baia Mare, Victoriei Str. 76, Baia Mare, Romania
| |
Collapse
|
3
|
Uivarasan A, Lukinac J, Jukić M, Šelo G, Peter A, Nicula C, Mihaly Cozmuta A, Mihaly Cozmuta L. Characterization of Polyphenol Composition and Starch and Protein Structure in Brown Rice Flour, Black Rice Flour and Their Mixtures. Foods 2024; 13:1592. [PMID: 38890821 PMCID: PMC11172181 DOI: 10.3390/foods13111592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/20/2024] Open
Abstract
The study investigates the structural and chemical properties of brown rice flour (WRF), black rice flour (BRF) and their mixtures in ratios of 25%, 50% and 75% to provide reference information for the gluten-free bakery industry. BRF contains higher concentrations of proteins, lipids, total minerals, crude fiber, total polyphenols, proanthocyanidins and flavonoids than WRF. A higher amylose content in BRF than in WRF resulted in flour mixtures with slower starch digestion and a lower glycemic response depending on the BRF ratio added. Differences in the chemical composition of WRF and BRF led to improved composition of the flour mixtures depending on the BRF ratio. The presence of anthocyanidins and phenolic acids in higher concentrations in the BRF resulted in a red-blue color shift within the flour mixtures. The deconvoluted FTIR spectra showed a higher proportion of α-helixes in the amide I band of BRF proteins, indicating their tighter folding. An analysis of the FTIR spectra revealed a more compact starch structure in BRF than in WRF. By processing reflection spectra, nine optically active compound groups were distinguished in rice flour, the proportion in BRF being 83.02% higher than in WRF. Due to co-pigmentation, the bathochromic shift to higher wavelengths was expressed by the proanthocyanins and phenolic acids associated with the wavelengths 380 nm to 590 nm and at 695 nm. Anthocyanins, protein-tannin complexes, methylated anthocyanins and acylated anthocyanins, associated with wavelengths 619, 644 and 668 nm, exhibited a hypsochromic effect by shifting the wavelengths to lower values. This research represents a first step in the development of rice-based products with increased nutritional value and a lower glycemic index.
Collapse
Affiliation(s)
- Alexandra Uivarasan
- Department of Chemistry-Biology, Technical University of Cluj Napoca, 430122 Baia Mare, Romania; (A.U.); (A.P.); (C.N.); (A.M.C.)
| | - Jasmina Lukinac
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (J.L.); (M.J.); (G.Š.)
| | - Marko Jukić
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (J.L.); (M.J.); (G.Š.)
| | - Gordana Šelo
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (J.L.); (M.J.); (G.Š.)
| | - Anca Peter
- Department of Chemistry-Biology, Technical University of Cluj Napoca, 430122 Baia Mare, Romania; (A.U.); (A.P.); (C.N.); (A.M.C.)
| | - Camelia Nicula
- Department of Chemistry-Biology, Technical University of Cluj Napoca, 430122 Baia Mare, Romania; (A.U.); (A.P.); (C.N.); (A.M.C.)
| | - Anca Mihaly Cozmuta
- Department of Chemistry-Biology, Technical University of Cluj Napoca, 430122 Baia Mare, Romania; (A.U.); (A.P.); (C.N.); (A.M.C.)
| | - Leonard Mihaly Cozmuta
- Department of Chemistry-Biology, Technical University of Cluj Napoca, 430122 Baia Mare, Romania; (A.U.); (A.P.); (C.N.); (A.M.C.)
| |
Collapse
|
4
|
Soengas P, Madloo P, Lema M. Spectral Reflectance Indexes Reveal Differences in the Physiological Status of Brassica oleracea with Contrasting Glucosinolate Content under Biotic Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:2698. [PMID: 37514312 PMCID: PMC10384497 DOI: 10.3390/plants12142698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/06/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023]
Abstract
Brassica species produce glucosinolates, a specific group of secondary metabolites present in the Brassicaceae family with antibacterial and antifungal properties. The employment of improved varieties for specific glucosinolates would reduce the production losses caused by pathogen attack. However, the consequences of the increment in these secondary metabolites in the plant are unknown. In this work, we utilized reflectance indexes to test how the physiological status of Brasica oleracea plants changes depending on their constitutive content of glucosinolates under nonstressful conditions and under the attack of the bacteria Xanthomonas campestris pv. campestris and the fungus Sclerotinia sclerotiorum. The modification in the content of glucosinolates had consequences in the resistance to both necrotrophic pathogens, and in several physiological aspects of the plants. By increasing the content in sinigrin and glucobrassicin, plants decrease photosynthesis efficiency (PR531, FvFm), biomass production (CHL-NDVI, SR), pigment content (SIPI, NPQI, RE), and senescence (YI) and increase their water content (WI900). These variables may have a negative impact in the productivity of crops in an agricultural environment. However, when plants are subjected to the attack of both necrotrophic pathogens, an increment of sinigrin and glucobrassicin confers an adaptative advantage to the plants, which compensates for the decay of physiological parameters.
Collapse
Affiliation(s)
- Pilar Soengas
- Group of Genetics, Breeding and Biochemistry of Brassicas, Misión Biológica de Galicia, Spanish Council for Scientific Research (MBG-CSIC), 36143 Pontevedra, Spain
| | - Pari Madloo
- Group of Genetics, Breeding and Biochemistry of Brassicas, Misión Biológica de Galicia, Spanish Council for Scientific Research (MBG-CSIC), 36143 Pontevedra, Spain
| | - Margarita Lema
- Group of Genetics, Breeding and Biochemistry of Brassicas, Misión Biológica de Galicia, Spanish Council for Scientific Research (MBG-CSIC), 36143 Pontevedra, Spain
| |
Collapse
|
5
|
Ali Redha A, Torquati L, Langston F, Nash GR, Gidley MJ, Cozzolino D. Determination of glucosinolates and isothiocyanates in glucosinolate-rich vegetables and oilseeds using infrared spectroscopy: A systematic review. Crit Rev Food Sci Nutr 2023; 64:8248-8264. [PMID: 37035931 DOI: 10.1080/10408398.2023.2198015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Cruciferous vegetables and oilseeds are rich in glucosinolates that can transform into isothiocyanates upon enzymic hydrolysis during post-harvest handling, food preparation and/or digestion. Vegetables contain glucosinolates that have beneficial bioactivities, while glucosinolates in oilseeds might have anti-nutritional properties. It is therefore important to monitor and assess glucosinolates and isothiocyanates content through the food value chain as well as for optimized crop production. Vibrational spectroscopy methods, such as infrared (IR) spectroscopy, are used as a nondestructive, rapid and low-cost alternative to the current and common costly, destructive, and time-consuming techniques. This systematic review discusses and evaluates the recent literature available on the use of IR spectroscopy to determine glucosinolates and isothiocyanates in vegetables and oilseeds. NIR spectroscopy was used to predict glucosinolates in broccoli, kale, rocket, cabbage, Brussels sprouts, brown mustard, rapeseed, pennycress, and a combination of Brassicaceae family seeds. Only one study reported the use of NIR spectroscopy to predict broccoli isothiocyanates. The major limitations of these studies were the absence of the critical evaluation of errors associated with the reference method used to develop the calibration models and the lack of interpretation of loadings or regression coefficients used to predict glucosinolates.
Collapse
Affiliation(s)
- Ali Ali Redha
- The Department of Public Health and Sport Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD, Australia
| | - Luciana Torquati
- The Department of Public Health and Sport Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Faye Langston
- Natural Sciences, Faculty of Environment, Science and Economy, University of Exeter, Exeter, UK
| | - Geoffrey R Nash
- Natural Sciences, Faculty of Environment, Science and Economy, University of Exeter, Exeter, UK
| | - Michael J Gidley
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD, Australia
| | - Daniel Cozzolino
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
6
|
An origami paper-based electrochemical biosensing platform for quality control of agri-food waste in the valorization strategy. Mikrochim Acta 2022; 189:311. [PMID: 35920941 PMCID: PMC9349161 DOI: 10.1007/s00604-022-05392-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/26/2022] [Indexed: 11/04/2022]
Abstract
The increasing demand for food and the need for a sustainability vision in the agri-food sector have boosted novel approaches for food management, enhancing the valorization of wastes and by-products belonging to the food industry. Herein, we present a novel paper-based origami device to assess the amount of both glucosinolate and glucose in a food waste product belonging to Brassicaceae plants, to evaluate the quality value and the correct management of waste samples. The device has been designed as an origami paper-based platform constituted of two paper-based biosensors to work synergistically in a multiplexed detection. In detail, a monoenzymatic biosensor and a bienzymatic biosensor were configured for the detection of glucose and glucosinolates, respectively, using filter paper pads preloaded with glucose oxidase and/or myrosinase. To complete the paper-based platform, the enzyme-preloaded pads were combined with office paper-based electrodes modified with Carbon black/Prussian Blue nanoparticles for the measurement of enzymatic by-product at a low applied potential (i.e., 0 V versus Ag/AgCl). Overall, this paper-based platform measured glucose and glucosinolate (i.e., sinigrin) with a linear range up to 2.5 and 1.5 mM, and detection limits of 0.05 and 0.07 mM, respectively. The repeatability corresponded to an RSD% equal to 5% by testing 10 mM of glucose, and 10% by testing 1 mM of sinigrin. The accuracy of the developed multiplex device was evaluated by recovery studies at two different levels of sinigrin, i.e., 0.25 and 0.5 mM, obtaining recoveries values equal to (111 ± 3) % and (86 ± 1) %, respectively. The multiplex detection of both glucose and glucosinolate in Brassicaceae samples evaluates the quality values of the waste sample, ensuring the quality of the re-used food product waste by using an eco-designed analytical tool. The combination of paper-based devices for quality control of food waste with the re-use of these food products represents a sustainable approach that perfectly matches sustainable agrifood practices as well as the overall approach of the circular economy.
Collapse
|
7
|
Yoon HI, Kim HY, Kim J, Son JE. Quantitative Analysis of UV-B Radiation Interception and Bioactive Compound Contents in Kale by Leaf Position According to Growth Progress. FRONTIERS IN PLANT SCIENCE 2021; 12:667456. [PMID: 34305968 PMCID: PMC8297650 DOI: 10.3389/fpls.2021.667456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 06/07/2021] [Indexed: 05/13/2023]
Abstract
UV-B (280-315 nm) radiation has been used as an effective tool to improve bioactive compound contents in controlled environments, such as plant factories. However, plant structure changes with growth progress induce different positional distributions of UV-B radiation interception, which cause difficulty in accurately evaluating the effects of UV-B on biosynthesis of bioactive compounds. The objective of this study was to quantitatively analyze the positional distributions of UV-B radiation interception and bioactive compound contents of kales (Brassica oleracea L. var. acephala) with growth progress and their relationships. Short-term moderate UV-B levels did not affect the plant growth and photosynthetic parameters. Spatial UV-B radiation interception was analyzed quantitatively by using 3D-scanned plant models and ray-tracing simulations. As growth progressed, the differences in absorbed UV-B energy between leaf positions were more pronounced. The concentrations of total phenolic compound (TPC) and total flavonoid compound (TFC) were higher with more cumulative absorbed UV-B energy. The cumulative UV energy yields for TFC were highest for the upper leaves of the older plants, while those for TPC were highest in the middle leaves of the younger plants. Despite the same UV-B levels, the UV-B radiation interception and UV-B susceptibility in the plants varied with leaf position and growth stage, which induced the different biosynthesis of TFC and TPC. This attempt to quantify the relationship between UV-B radiation interception and bioactive compound contents will contribute to the estimation and production of bioactive compounds in plant factories.
Collapse
Affiliation(s)
- Hyo In Yoon
- Department of Agriculture, Forestry and Bioresources (Horticultural Science and Biotechnology), Seoul National University, Seoul, South Korea
| | - Hyun Young Kim
- Department of Agriculture, Forestry and Bioresources (Horticultural Science and Biotechnology), Seoul National University, Seoul, South Korea
| | - Jaewoo Kim
- Department of Agriculture, Forestry and Bioresources (Horticultural Science and Biotechnology), Seoul National University, Seoul, South Korea
| | - Jung Eek Son
- Department of Agriculture, Forestry and Bioresources (Horticultural Science and Biotechnology), Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- *Correspondence: Jung Eek Son,
| |
Collapse
|