1
|
Huang G, Lu J, Yin X, Zhang L, Liu C, Zhang X, Lin H, Zuo J. QTL mapping and candidate gene mining of seed size and seed weight in castor plant (Ricinus communis L.). BMC PLANT BIOLOGY 2024; 24:885. [PMID: 39342119 PMCID: PMC11438104 DOI: 10.1186/s12870-024-05611-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Castor (Ricinus communis L., 2n = 2x = 20) is an important industrial crop, due to its oil is very important to the global special chemical industry. Seed size and seed weight are fundamentally important in determining castor yield, while little is known about it. In this study, QTL analysis and candidate gene mining of castor seed size and seed weight were conducted with composite interval mapping (CIM), inclusive composite interval mapping (ICIM) and marker enrichment strategy in 4 populations, i.e., populations F2, BC1, S1-1 and S1-2, derived from 2 accessions with significant phenotypic differences. RESULTS In the QTL primary mapping, 2 novel QTL clusters were detected in marker intervals RCM520-RCM76 and RCM915-RCM950. In order to verify their accuracy and to narrow their intervals, QTL remapping was carried out in populations F2 and BC1. Among them, 44 and 30 QTLs underlying seed size and seed weight were detected in F2 population using methods CIM and ICIM-ADD respectively, including 4-9 and 3-5 ones conferring each trait were identified with a phenotypic variation explained ranged from 37.92 to 115.81% and 32.86-45.98% respectively. The remapping results in BC1 population were consistent with those in F2 population. Importantly, 3 QTL clusters (i.e. QTL-cluster1, QTL-cluster2 and QTL-cluster3) were found in marker intervals RCM74-RCM76 (37.1 kb), RCM930-RCM950 (259.8 kb) and RCM918-RCM920 (172.9 kb) respectively; in addition, all of them were detected again, the former one was found in the S1-2 population, and the latter two were found simultaneously in the populations S1-1 and S1-2. Finally, 6 candidate genes (i.e. LOC8266555, LOC8281168, LOC8281151, LOC8259066, LOC8258591 and LOC8270077) were screened in the above QTL clusters, they were differentially expressed in multiple seed tissues of both parents, signifying the potential role in regulating seed size and seed weight. CONCLUSION The above results not only provide new insights into the genetic structure of seed size and seed weight in castor, but also lay the foundation for the functional identification of these candidate genes.
Collapse
Affiliation(s)
- Guanrong Huang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Jiannong Lu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Xuegui Yin
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China.
| | - Liuqin Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Chaoyu Liu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Xiaoxiao Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Haihong Lin
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Jinying Zuo
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| |
Collapse
|
2
|
Tang K, Karamat U, Li G, Guo J, Jiang S, Fu M, Yang X. Integrated metabolome and transcriptome analyses reveal the role of BoGSTF12 in anthocyanin accumulation in Chinese kale (Brassica oleracea var. alboglabra). BMC PLANT BIOLOGY 2024; 24:335. [PMID: 38664614 PMCID: PMC11044404 DOI: 10.1186/s12870-024-05016-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/12/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND The vivid red, purple, and blue hues that are observed in a variety of plant fruits, flowers, and leaves are produced by anthocyanins, which are naturally occurring pigments produced by a series of biochemical processes occurring inside the plant cells. The purple-stalked Chinese kale, a popular vegetable that contains anthocyanins, has many health benefits but needs to be investigated further to identify the genes involved in the anthocyanin biosynthesis and translocation in this vegetable. RESULTS In this study, the purple- and green-stalked Chinese kale were examined using integrative transcriptome and metabolome analyses. The content of anthocyanins such as cyanidin-3-O-(6″-O-feruloyl) sophoroside-5-O-glucoside, cyanidin-3,5-O-diglucoside (cyanin), and cyanidin-3-O-(6″-O-p-hydroxybenzoyl) sophoroside-5-O-glucoside were considerably higher in purple-stalked Chinese kale than in its green-stalked relative. RNA-seq analysis indicated that 23 important anthocyanin biosynthesis genes, including 3 PAL, 2 C4H, 3 4CL, 3 CHS, 1 CHI, 1 F3H, 2 FLS, 2 F3'H, 1 DFR, 3 ANS, and 2 UFGT, along with the transcription factor BoMYB114, were significantly differentially expressed between the purple- and green-stalked varieties. Results of analyzing the expression levels of 11 genes involved in anthocyanin production using qRT-PCR further supported our findings. Association analysis between genes and metabolites revealed a strong correlation between BoGSTF12 and anthocyanin. We overexpressed BoGSTF12 in Arabidopsis thaliana tt19, an anthocyanin transport mutant, and this rescued the anthocyanin-loss phenotype in the stem and rosette leaves, indicating BoGSTF12 encodes an anthocyanin transporter that affects the accumulation of anthocyanins. CONCLUSION This work represents a key step forward in our understanding of the molecular processes underlying anthocyanin production in Chinese kale. Our comprehensive metabolomic and transcriptome analyses provide important insights into the regulatory system that controls anthocyanin production and transport, while providing a foundation for further research to elucidate the physiological importance of the metabolites found in this nutritionally significant vegetable.
Collapse
Affiliation(s)
- Kang Tang
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510642, China
| | - Umer Karamat
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510642, China
| | - Guihua Li
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510642, China
| | - Juxian Guo
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510642, China
| | - Shizheng Jiang
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510642, China
| | - Mei Fu
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510642, China.
| | - Xian Yang
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
3
|
Bashir T, Ul Haq SA, Masoom S, Ibdah M, Husaini AM. Quality trait improvement in horticultural crops: OMICS and modern biotechnological approaches. Mol Biol Rep 2023; 50:8729-8742. [PMID: 37642759 DOI: 10.1007/s11033-023-08728-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/31/2023] [Indexed: 08/31/2023]
Abstract
Horticultural crops are an essential part of food and nutritional security. Moreover, these form an integral part of the agricultural economy and have enormous economic potential. They are a rich source of nutrients that are beneficial to human health. Plant breeding of horticultural crops has focussed primarily on increasing the productivity and related traits of these crops. However, fruit and vegetable quality is paramount to their perishability, marketability, and consumer acceptance. The improved nutritional value is beneficial to underprivileged and undernourished communities. Due to a declining genetic base, conventional plant breeding does not contribute much to quality improvement as the existing natural allelic variations and crossing barriers between cultivated and wild species limit it. Over the past two decades, 'omics' and modern biotechnological approaches have made it possible to decode the complex genomes of crop plants, assign functions to the otherwise many unknown genes, and develop genome-wide DNA markers. Genetic engineering has enabled the validation of these genes and the introduction of crucial agronomic traits influencing various quality parameters directly or indirectly. This review discusses the significant advances in the quality improvement of horticultural crops, including shelf life, aroma, browning, nutritional value, colour, and many other related traits.
Collapse
Affiliation(s)
- Tanzeel Bashir
- Genome Engineering and Societal Biotechnology Lab, Division of Plant Biotechnology, SKUAST-K, Shalimar, Srinagar, Jammu and Kashmir, India
| | - Syed Anam Ul Haq
- Genome Engineering and Societal Biotechnology Lab, Division of Plant Biotechnology, SKUAST-K, Shalimar, Srinagar, Jammu and Kashmir, India
| | - Salsabeel Masoom
- Genome Engineering and Societal Biotechnology Lab, Division of Plant Biotechnology, SKUAST-K, Shalimar, Srinagar, Jammu and Kashmir, India
| | - Mwafaq Ibdah
- Newe Yaar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel
| | - Amjad M Husaini
- Genome Engineering and Societal Biotechnology Lab, Division of Plant Biotechnology, SKUAST-K, Shalimar, Srinagar, Jammu and Kashmir, India.
| |
Collapse
|
4
|
Yu H, Wang J, Shen Y, Sheng X, Shaw RK, Branca F, Gu H. A 43 Bp-Deletion in the F3'H Gene Reducing Anthocyanins Is Responsible for Keeping Buds Green at Low Temperatures in Broccoli. Int J Mol Sci 2023; 24:11391. [PMID: 37511150 PMCID: PMC10380335 DOI: 10.3390/ijms241411391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Most broccoli cultivars or accessions exhibit green buds under appropriate growth conditions, which turn purple at cold temperatures. However, certain cultivars consistently maintain green buds both during normal growth and at cold temperatures. In this study, we used BSA-seq (bulked segregation analysis-sequencing), along with fine mapping and transcriptome analysis to identify a candidate gene (flavonoid 3'-hydroxylase, F3'H) responsible for reducing anthocyanin accumulation in the mutant GS and HX-16 broccoli (Brassica oleracea L. var. italica), which could retain green buds even at low temperatures. A 43-bp deletion was detected in the coding sequence (CDS) of the F3'H gene in HX-16 and the mutant GS, which significantly decreased F3'H expression and the accumulation of cyanidin and delphinidin in the mutant GS. Furthermore, the expression of F3'H was upregulated at low temperatures in the wild line PS. Our results demonstrated the efficacy of utilizing the 43-bp InDel (Insertion-Deletion) in predicting whether buds in B. oleracea L. will turn purple or remain green at cold temperatures across forty-two germplasm materials. This study provides critical genetic and molecular insights for the molecular breeding of B. oleracea and sheds light on the molecular mechanisms underlying the effect of low temperatures on bud color in broccoli.
Collapse
Affiliation(s)
- Huifang Yu
- Institute of Vegetable, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jiansheng Wang
- Institute of Vegetable, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yusen Shen
- Institute of Vegetable, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaoguang Sheng
- Institute of Vegetable, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ranjan Kumar Shaw
- Institute of Vegetable, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ferdinando Branca
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy
| | - Honghui Gu
- Institute of Vegetable, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
5
|
Development of Novel Markers and Creation of Non-Anthocyanin and Anthocyanin-Rich Broccoli (Brassica oleracea var. italica) Cultivars. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12126267] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In broccoli, anthocyanin pigments can be accumulated in the flower bud epidermis, resulting in a purple-green head. This study aimed to create non-anthocyanin green broccoli varieties and anthocyanin-rich purple broccoli varieties using new F3′H and Pur7.1-K1 molecular markers, respectively. The breeding program started with crosses of the recipient (superior variety and line) LF02 line with the donor line SN60 carrying the recessive allele f3′h and the donor line BT126 carrying the dominant allele Pur7.1. The F1 hybrids were confirmed with molecular markers and backcrossed with the recurrent parent LF02, followed by cycles of foreground and background selection at each stage. A total of 161 green plants with the f3′hf3′h genotype and 152 purple plants with the Pur7.1Pur7.1 genotype were selected from the BC3F2 line. Among these, 34 green plants and 28 purple plants demonstrated >85% background recovery. The identified plants were selfed to obtain 301 green and 416 purple BC3F3 plants for assessment of major agronomic traits. After these investigations, two green broccoli lines without anthocyanin and three anthocyanin-rich purple lines with the best yield/quality characteristics were obtained. The development of these lines might help provide basic materials and the theoretical basis for breeding commercial broccoli varieties.
Collapse
|