1
|
Gan Z, Zhang Y, Jin Z, Wang Y, Li J, Yang C, Cao Q, Chen J, Rong Z, Lu X, Guo S. Gum arabic coating alleviates chilling injury of cold-stored peach by regulating reactive oxygen species, phenolic, and sugar metabolism. Food Chem 2024; 455:139899. [PMID: 38823138 DOI: 10.1016/j.foodchem.2024.139899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/19/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024]
Abstract
In this study, gum arabic (GA) coating was employed to mitigate chilling injury in peach fruit, and it was observed that 10% GA coating exhibited the most favorable effect. GA coating significantly inhibited the decline of AsA content and enhanced antioxidant enzyme activity in peach fruit, thereby enhancing reactive oxygen species (ROS) scavenging rate while reducing its accumulation. Simultaneously, GA coating inhibited the activity of oxidative degradation enzymes for phenolics and enhanced synthase activity, thus maintaining higher levels of total phenolics and flavonoids in fruits. Additionally, compared to the control fruit, GA-coated fruits demonstrated higher concentrations of sucrose and sorbitol, accompanied more robust activity of sucrose synthase and sucrose phosphate synthase, as well as reduced activity of acid invertase and neutral invertase. Our study demonstrates that GA coating can effectively enhance the cold resistance of peach fruit by regulating ROS, phenolics, and sugar metabolism, maintaining high levels of phenolics and sucrose while enhancing antioxidant activity.
Collapse
Affiliation(s)
- Zengyu Gan
- Jiangxi Provincial Key Laboratory for Postharvest Storage and Preservation of Fruits & Vegetables, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yupei Zhang
- Jiangxi Provincial Key Laboratory for Postharvest Storage and Preservation of Fruits & Vegetables, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ziteng Jin
- Jiangxi Provincial Key Laboratory for Postharvest Storage and Preservation of Fruits & Vegetables, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yongjie Wang
- Jiangxi Provincial Key Laboratory for Postharvest Storage and Preservation of Fruits & Vegetables, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jiali Li
- Jiangxi Provincial Key Laboratory for Postharvest Storage and Preservation of Fruits & Vegetables, Jiangxi Agricultural University, Nanchang 330045, China
| | - Caining Yang
- Jiangxi Provincial Key Laboratory for Postharvest Storage and Preservation of Fruits & Vegetables, Jiangxi Agricultural University, Nanchang 330045, China
| | - Qing Cao
- Jiangxi Provincial Key Laboratory for Postharvest Storage and Preservation of Fruits & Vegetables, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jinyin Chen
- Jiangxi Provincial Key Laboratory for Postharvest Storage and Preservation of Fruits & Vegetables, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zhenbang Rong
- School of Electronics and Information Engineering, Wuyi University, Jiangmen 529020, China
| | - Xuming Lu
- School of Electronics and Information Engineering, Wuyi University, Jiangmen 529020, China.
| | - Suqin Guo
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China.
| |
Collapse
|
2
|
Nan X, Li W, Shao M, Cui Z, Wang H, Huo J, Chen L, Chen B, Ma Z. Shading Treatment Reduces Grape Sugar Content by Suppressing Photosynthesis-Antenna Protein Pathway Gene Expression in Grape Berries. Int J Mol Sci 2024; 25:5029. [PMID: 38732247 PMCID: PMC11084848 DOI: 10.3390/ijms25095029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
To explore the impact of shade treatment on grape berries, 'Marselan' grape berries were bagged under different light transmission rates (100% (CK), 75% (A), 50% (B), 25% (C), 0% (D)). It was observed that this treatment delayed the ripening of the grape berries. The individual weight of the grape berries, as well as the content of fructose, glucose, soluble sugars, and organic acids in the berries, was measured at 90, 100, and 125 days after flowering (DAF90, DAF100, DAF125). The results revealed that shading treatment reduced the sugar content in grape berries; the levels of fructose and glucose were higher in the CK treatment compared to the other treatments, and they increased with the duration of the shading treatment. Conversely, the sucrose content exhibited the opposite trend. Additionally, as the weight of the grape berries increased, the content of soluble solids and soluble sugars in the berries also increased, while the titratable acidity decreased. Furthermore, 16 differentially expressed genes (DEGs) were identified in the photosynthesis-antenna protein pathway from the transcriptome sequencing data. Correlation analysis revealed that the expression levels of genes VIT_08s0007g02190 (Lhcb4) and VIT_15s0024g00040 (Lhca3) were positively correlated with sugar content in the berries at DAF100, but negatively correlated at DAF125. qRT-PCR results confirmed the correlation analysis. This indicates that shading grape clusters inhibits the expression of genes in the photosynthesis-antenna protein pathway in the grape berries, leading to a decrease in sugar content. This finding contributes to a deeper understanding of the impact mechanisms of grape cluster shading on berry quality, providing important scientific grounds for improving grape berry quality.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zonghuan Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China (J.H.)
| |
Collapse
|
3
|
Yu M, Xiong J, Dong K, Quan X, Guo H, Huo J, Qin D, Wang Y, Lu X, Zhu C. AcMYB10 Involved in Anthocyanin Regulation of 'Hongyang' Kiwifruit Induced via Fruit Bagging and High-Postharvest-Temperature Treatments. Genes (Basel) 2024; 15:97. [PMID: 38254986 PMCID: PMC10815172 DOI: 10.3390/genes15010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Light and temperature are key factors influencing the accumulation of anthocyanin in fruit crops. To assess the effects of fruit bagging during development and high post-ripening temperature on 'Hongyang' kiwifruit, we compared the pigmentation phenotypes and expression levels of anthocyanin-related genes between bagged and unbagged treatments, and between 25 °C and 37 °C postharvest storage temperatures. Both the bagging and 25 °C treatments showed better pigmentation phenotypes with higher anthocyanin concentrations. The results of the qRT-PCR analysis revealed that the gene expression levels of LDOX (leucoanthocyanidin dioxygenase), F3GT (UDP-flavonoid 3-O-glycosyltransferase ), AcMYB10, and AcbHLH42 were strongly correlated and upregulated by both the bagging treatment and 25 °C storage. The results of bimolecular fluorescence complementation and luciferase complementation imaging assays indicated an interaction between AcMYB10 and AcbHLH42 in plant cells, whereas the results of a yeast one-hybrid assay further demonstrated that AcMYB10 activated the promoters of AcLODX and AcF3GT. These results strongly suggest that enhanced anthocyanin synthesis is caused by the promoted expression of AcLODX and AcF3GT, regulated by the complex formed by AcMYB10-AcbHLH42.
Collapse
Affiliation(s)
- Min Yu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jinyu Xiong
- College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Kun Dong
- Horticulture Branch, Heilongjiang Academy of Agricultural Sciences, Harbin 150040, China
| | - Xin Quan
- College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Hao Guo
- College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Junwei Huo
- College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| | - Dong Qin
- College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| | - Yanchang Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Xuemei Lu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Chenqiao Zhu
- College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| |
Collapse
|
4
|
Jue DW, Sang XL, Li ZX, Zhang WL, Liao QH, Tang J. Determination of the effects of pre-harvest bagging treatment on kiwifruit appearance and quality via transcriptome and metabolome analyses. Food Res Int 2023; 173:113276. [PMID: 37803588 DOI: 10.1016/j.foodres.2023.113276] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 10/08/2023]
Abstract
Bagging is an effective cultivation strategy to produce attractive and pollution-free kiwifruit. However, the effect and metabolic regulatory mechanism of bagging treatment on kiwifruit quality remain unclear. In this study, transcriptome and metabolome analyses were conducted to determine the regulatory network of the differential metabolites and genes after bagging. Using outer and inner yellow single-layer fruit bags, we found that bagging treatment improved the appearance of kiwifruit, increased the soluble solid content (SSC) and carotenoid and anthocyanin levels, and decreased the chlorophyll levels. We also identified 41 differentially expressed metabolites and 897 differentially expressed genes (DEGs) between the bagged and control 'Hongyang' fruit. Transcriptome and metabolome analyses revealed that the increase in SSC after bagging treatment was mainly due to the increase in D-glucosamine metabolite levels and eight DEGs involved in amino sugar and nucleotide sugar metabolic pathways. A decrease in glutamyl-tRNA reductase may be the main reason for the decrease in chlorophyll. Downregulation of lycopene epsilon cyclase and 9-cis-epoxycarotenoid dioxygenase increased carotenoid levels. Additionally, an increase in the levels of the taxifolin-3'-O-glucoside metabolite, flavonoid 3'-monooxygenase, and some transcription factors led to the increase in anthocyanin levels. This study provides novel insights into the effects of bagging on the appearance and internal quality of kiwifruit and enriches our theoretical knowledge on the regulation of color pigment synthesis in kiwifruit.
Collapse
Affiliation(s)
- Deng-Wei Jue
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan 402160, China; Southwest University, College of Horticulture and Landscape, Chongqing 400715, China
| | - Xue-Lian Sang
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan 402160, China.
| | - Zhe-Xin Li
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan 402160, China
| | - Wen-Lin Zhang
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan 402160, China
| | - Qin-Hong Liao
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan 402160, China
| | - Jianmin Tang
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan 402160, China.
| |
Collapse
|
5
|
Luo J, Abid M, Zhang Y, Cai X, Tu J, Gao P, Wang Z, Huang H. Genome-Wide Identification of Kiwifruit SGR Family Members and Functional Characterization of SGR2 Protein for Chlorophyll Degradation. Int J Mol Sci 2023; 24:ijms24031993. [PMID: 36768313 PMCID: PMC9917040 DOI: 10.3390/ijms24031993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
The STAY-GREEN (SGR) proteins play an important role in chlorophyll (Chl) degradation and are closely related to plant photosynthesis. However, the availability of inadequate studies on SGR motivated us to conduct a comprehensive study on the identification and functional dissection of SGR superfamily members in kiwifruit. Here, we identified five SGR genes for each of the kiwifruit species [Actinidia chinensis (Ac) and Actinidia eriantha (Ae)]. The phylogenetic analysis showed that the kiwifruit SGR superfamily members were divided into two subfamilies the SGR subfamily and the SGRL subfamily. The results of transcriptome data and RT-qPCR showed that the expression of the kiwifruit SGRs was closely related to light and plant developmental stages (regulated by plant growth regulators), which were further supported by the presence of light and the plant hormone-responsive cis-regulatory element in the promoter region. The subcellular localization analysis of the AcSGR2 protein confirmed its localization in the chloroplast. The Fv/Fm, SPAD value, and Chl contents were decreased in overexpressed AcSGR2, but varied in different cultivars of A. chinensis. The sequence analysis showed significant differences within AcSGR2 proteins. Our findings provide valuable insights into the characteristics and evolutionary patterns of SGR genes in kiwifruit, and shall assist kiwifruit breeders to enhance cultivar development.
Collapse
Affiliation(s)
- Juan Luo
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
- College of Life Science, Nanchang University, Nanchang 330031, China
| | - Muhammad Abid
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
| | - Yi Zhang
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
- College of Life Science, Nanchang University, Nanchang 330031, China
| | - Xinxia Cai
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
- College of Life Science, Nanchang University, Nanchang 330031, China
| | - Jing Tu
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
- College of Life Science, Nanchang University, Nanchang 330031, China
| | - Puxin Gao
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
| | - Zupeng Wang
- Engineering Laboratory for Kiwifruit Industrial Technology, Chinese Academy of Sciences, Wuhan 430074, China
- Correspondence: (Z.W.); (H.H.)
| | - Hongwen Huang
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
- College of Life Science, Nanchang University, Nanchang 330031, China
- Correspondence: (Z.W.); (H.H.)
| |
Collapse
|