1
|
Chowdhury C, Karthikraja E, Subramanian V. DFT and machine learning guided investigation into the design of new dual-atom catalysts based on α-2 graphyne. Phys Chem Chem Phys 2024; 26:25143-25155. [PMID: 39311924 DOI: 10.1039/d4cp03171g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
The realm of atomic catalysts has witnessed notable advancements; yet, the predominant focus remains on single atomic catalysts (SACs). The exploration and successful implementation of dual atomic catalysts (DACs) pose intricate challenges, primarily concerning thermodynamic stability and optimal metallic composition. To address these issues, we present a comprehensive theoretical investigation of α-2 graphyne (GPY)-based DACs, synthesized in-house with a keen focus on formation stability. Density functional theory (DFT) simulations were leveraged to ascertain each DAC structure's stability, considering numerous transition metal permutations totalling about 823 DACs. Furthermore, we developed a machine learning (ML) model that predicts stability based solely on the physical characteristics of the constituent elements in the DACs, thus eliminating the need for extensive DFT calculations. Our findings not only offer detailed insights into atomic interactions but also highlight promising candidates for DACs, pushing beyond traditional trial-and-error synthesis approaches. This study fosters a deeper understanding of DACs and paves new pathways for exploring atomic catalysts for practical applications.
Collapse
Affiliation(s)
- Chandra Chowdhury
- Advanced Materials Laboratory, CSIR-Central Leather Research Institute (CSIR-CLRI), Sardar Patel Road, Adyar, Chennai 600 020, India.
| | - Esackraj Karthikraja
- Advanced Materials Laboratory, CSIR-Central Leather Research Institute (CSIR-CLRI), Sardar Patel Road, Adyar, Chennai 600 020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Venkatesan Subramanian
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
- Indian Institute of Technology Madras, Sardar Patel Road, Adyar, Chennai 600 036, India
| |
Collapse
|
2
|
Akhtar K, Khan MSJ, Bakhsh EM, Kamal T, Asiri AM, Khan SB. Chitosan hydrogel anchored phthalocyanine supported metal nanoparticles: Bifunctional catalysts for pollutants reduction and hydrogen production. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121524. [PMID: 37003583 DOI: 10.1016/j.envpol.2023.121524] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/24/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
Metal nanoparticles possess high catalytic activity in various organic transformation reactions. A catalyst must be recovered and re-used effectively and economically to lower the overall reaction cost. The recovery of a catalyst remains a challenge due to their extreme small size. In this research work, catalytic metal nanoparticles were synthesized on Zn-phthalocyanine (ZnPc) and chitosan hydrogel (CH) composite which acts as catalyst support. The ZnPc-CH support facilitate the easy recovery of the loaded metal nanoparticles. Metal nanoparticles (M0) based on Cu0, Ag0, Ni0, Co0 and Fe0 were decorated inside and on ZnPc-CH hydrogel surface. The developed M0@ZnPc-CH were utilized for the enhanced selective reduction of toxins and hydrogen production by methanolysis and hydrolysis of NaBH4. Effective catalytic reduction and hydrogen generation was successfully achieved with Co0@ZnPc-CH and ZnPc-CH. Under optimized conditions, Co0@ZnPc-CH showed complete reduction of 4-nitrophenol (4-NP) in 8.0 min with the fast 4-NP reduction kinetics (K = 0.611 min-1). Among the developed catalysts, ZnPc-CH showed fast H2 generation with high H2 generation rate (HGR = 4100 mLg-1min-1) under optimized conditions. Metal leaching from Co0@ZnPc-CH was negligible during recycling of the catalyst, suggesting that it could be implemented to 4-NP treatment from real water samples. Similarly, ZnPc-CH could produce same quantity of H2 throughout 4 continuous cycles of durability testing without any deactivation and leaching and ZnPc-CH showed high stability, indicating the effectiveness of the catalyst to be applied for H2 production on large scale.
Collapse
Affiliation(s)
- Kalsoom Akhtar
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Mohammad Sherjeel Javed Khan
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia; Department of Chemistry, Bacha Khan University, Charsadda, P.O. Box 24420, KP, Pakistan
| | - Esraa M Bakhsh
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Tahseen Kamal
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia; Center of Excellence for Advanced Materials, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Abdullah M Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia; Center of Excellence for Advanced Materials, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Sher Bahadar Khan
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.
| |
Collapse
|
3
|
Jawhari AH, Hasan N. Nanocomposite Electrocatalysts for Hydrogen Evolution Reactions (HERs) for Sustainable and Efficient Hydrogen Energy-Future Prospects. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3760. [PMID: 37241385 PMCID: PMC10220912 DOI: 10.3390/ma16103760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023]
Abstract
Hydrogen is considered a good clean and renewable energy substitute for fossil fuels. The major obstacle facing hydrogen energy is its efficacy in meeting its commercial-scale demand. One of the most promising pathways for efficient hydrogen production is through water-splitting electrolysis. This requires the development of active, stable, and low-cost catalysts or electrocatalysts to achieve optimized electrocatalytic hydrogen production from water splitting. The objective of this review is to survey the activity, stability, and efficiency of various electrocatalysts involved in water splitting. The status quo of noble-metal- and non-noble-metal-based nano-electrocatalysts has been specifically discussed. Various composites and nanocomposite electrocatalysts that have significantly impacted electrocatalytic HERs have been discussed. New strategies and insights in exploring nanocomposite-based electrocatalysts and utilizing other new age nanomaterial options that will profoundly enhance the electrocatalytic activity and stability of HERs have been highlighted. Recommendations on future directions and deliberations for extrapolating information have been projected.
Collapse
Affiliation(s)
| | - Nazim Hasan
- Department of Chemistry, Faculty of Science, Jazan University, Jazan 45142, Saudi Arabia;
| |
Collapse
|
4
|
Ferreira R, Morawski FM, Pessanha EC, de Lima SLS, da Costa DS, Ribeiro GAC, Vaz J, Mouta R, Tanaka AA, Liu L, da Silva MIP, Tofanello A, Vitorino HA, da Silva AGM, Garcia MAS. Facile Gram-Scale Synthesis of NiO Nanoflowers for Highly Selective and Sensitive Electrocatalytic Detection of Hydrazine. ACS OMEGA 2023; 8:11978-11986. [PMID: 37033825 PMCID: PMC10077530 DOI: 10.1021/acsomega.2c07638] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/07/2023] [Indexed: 06/01/2023]
Abstract
The design and development of efficient and electrocatalytic sensitive nickel oxide nanomaterials have attracted attention as they are considered cost-effective, stable, and abundant electrocatalytic sensors. However, although innumerable electrocatalysts have been reported, their large-scale production with the same activity and sensitivity remains challenging. In this study, we report a simple protocol for the gram-scale synthesis of uniform NiO nanoflowers (approximately 1.75 g) via a hydrothermal method for highly selective and sensitive electrocatalytic detection of hydrazine. The resultant material was characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, and X-ray diffraction. For the production of the modified electrode, NiO nanoflowers were dispersed in Nafion and drop-cast onto the surface of a glassy carbon electrode (NiO NF/GCE). By cyclic voltammetry, it was possible to observe the excellent performance of the modified electrode toward hydrazine oxidation in alkaline media, providing an oxidation overpotential of only +0.08 V vs Ag/AgCl. In these conditions, the peak current response increased linearly with hydrazine concentration ranging from 0.99 to 98.13 μmol L-1. The electrocatalytic sensor showed a high sensitivity value of 0.10866 μA L μmol-1. The limits of detection and quantification were 0.026 and 0.0898 μmol L-1, respectively. Considering these results, NiO nanoflowers can be regarded as promising surfaces for the electrochemical determination of hydrazine, providing interesting features to explore in the electrocatalytic sensor field.
Collapse
Affiliation(s)
- Rayse
M. Ferreira
- Departamento
de Química, Centro de Ciências Exatas e Tecnologia, Universidade Federal do Maranhão (UFMA), Av. dos Portugueses, 1966 - Vila
Bacanga, 65080-805 São Luís, MA, Brazil
| | - Franciele M. Morawski
- Departamento
de Química, Universidade Federal
de Santa Catarina (UFSC), Eng. Agronômico Andrei Cristian Ferreira, s/n - Trindade, 88040-900 Florianópolis, SC, Brazil
| | - Emanuel C. Pessanha
- Departamento
de Engenharia Química e de Materiais - DEQM, Pontifícia Universidade Católica do Rio de Janeiro
(PUC-Rio), R. Marquês de São Vicente, 225 - Gávea, 22453-900 Rio de Janeiro, RJ, Brazil
| | - Scarllett L. S. de Lima
- Departamento
de Engenharia Química e de Materiais - DEQM, Pontifícia Universidade Católica do Rio de Janeiro
(PUC-Rio), R. Marquês de São Vicente, 225 - Gávea, 22453-900 Rio de Janeiro, RJ, Brazil
| | - Diana S. da Costa
- Departamento
de Química, Centro de Ciências Exatas e Tecnologia, Universidade Federal do Maranhão (UFMA), Av. dos Portugueses, 1966 - Vila
Bacanga, 65080-805 São Luís, MA, Brazil
| | - Geyse A. C. Ribeiro
- Departamento
de Química, Centro de Ciências Exatas e Tecnologia, Universidade Federal do Maranhão (UFMA), Av. dos Portugueses, 1966 - Vila
Bacanga, 65080-805 São Luís, MA, Brazil
| | - João Vaz
- Departamento
de Química, Centro de Ciências Exatas e Tecnologia, Universidade Federal do Maranhão (UFMA), Av. dos Portugueses, 1966 - Vila
Bacanga, 65080-805 São Luís, MA, Brazil
| | - Rodolpho Mouta
- Departamento
de Física, Universidade Federal do
Ceará (UFC), Av. Mister Hull, s/n − Pici, 60455-760 Fortaleza, CE, Brazil
| | - Auro A. Tanaka
- Departamento
de Química, Centro de Ciências Exatas e Tecnologia, Universidade Federal do Maranhão (UFMA), Av. dos Portugueses, 1966 - Vila
Bacanga, 65080-805 São Luís, MA, Brazil
| | - Liying Liu
- Centro
Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud, 150 - Urca, 22290-180 Rio de Janeiro, RJ, Brazil
| | - Maria I. P. da Silva
- Departamento
de Engenharia Química e de Materiais - DEQM, Pontifícia Universidade Católica do Rio de Janeiro
(PUC-Rio), R. Marquês de São Vicente, 225 - Gávea, 22453-900 Rio de Janeiro, RJ, Brazil
| | - Aryane Tofanello
- Center for
Natural and Human Sciences (CCNH), Universidade
Federal do ABC (UFABC), Av. dos Estados, 5001, - Bangú, 09210-170 Santo André, SP, Brazil
| | - Hector A. Vitorino
- Centro
de Investigación en Biodiversidad para la Salud, Universidad Privada Norbert Wiener, Jirón Larrabure y Unanue 110, Lima 15108, Perú
| | - Anderson G. M. da Silva
- Departamento
de Engenharia Química e de Materiais - DEQM, Pontifícia Universidade Católica do Rio de Janeiro
(PUC-Rio), R. Marquês de São Vicente, 225 - Gávea, 22453-900 Rio de Janeiro, RJ, Brazil
| | - Marco A. S. Garcia
- Departamento
de Química, Centro de Ciências Exatas e Tecnologia, Universidade Federal do Maranhão (UFMA), Av. dos Portugueses, 1966 - Vila
Bacanga, 65080-805 São Luís, MA, Brazil
| |
Collapse
|
5
|
de Lima SLS, Pereira FS, de Lima RB, de Freitas IC, Spadotto J, Connolly BJ, Barreto J, Stavale F, Vitorino HA, Fajardo HV, Tanaka AA, Garcia MAS, da Silva AGM. MnO 2-Ir Nanowires: Combining Ultrasmall Nanoparticle Sizes, O-Vacancies, and Low Noble-Metal Loading with Improved Activities towards the Oxygen Reduction Reaction. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12173039. [PMID: 36080076 PMCID: PMC9457901 DOI: 10.3390/nano12173039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 06/02/2023]
Abstract
Although clean energy generation utilizing the Oxygen Reduction Reaction (ORR) can be considered a promising strategy, this approach remains challenging by the dependence on high loadings of noble metals, mainly Platinum (Pt). Therefore, efforts have been directed to develop new and efficient electrocatalysts that could decrease the Pt content (e.g., by nanotechnology tools or alloying) or replace them completely in these systems. The present investigation shows that high catalytic activity can be reached towards the ORR by employing 1.8 ± 0.7 nm Ir nanoparticles (NPs) deposited onto MnO2 nanowires surface under low Ir loadings (1.2 wt.%). Interestingly, we observed that the MnO2-Ir nanohybrid presented high catalytic activity for the ORR close to commercial Pt/C (20.0 wt.% of Pt), indicating that it could obtain efficient performance using a simple synthetic procedure. The MnO2-Ir electrocatalyst also showed improved stability relative to commercial Pt/C, in which only a slight activity loss was observed after 50 reaction cycles. Considering our findings, the superior performance delivered by the MnO2-Ir nanohybrid may be related to (i) the significant concentration of reduced Mn3+ species, leading to increased concentration of oxygen vacancies at its surface; (ii) the presence of strong metal-support interactions (SMSI), in which the electronic effect between MnOx and Ir may enhance the ORR process; and (iii) the unique structure comprised by Ir ultrasmall sizes at the nanowire surface that enable the exposure of high energy surface/facets, high surface-to-volume ratios, and their uniform dispersion.
Collapse
Affiliation(s)
- Scarllett L. S. de Lima
- Departamento de Engenharia Química e de Materiais-DEQM, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rua Marquês de São Vicente, 225 Gávea, Rio de Janeiro 22453-900, RJ, Brazil
| | - Fellipe S. Pereira
- Departamento de Química, Centro de Ciências Exatas e Tecnologias, Universidade Federal do Maranhão (UFMA), Av. dos Portugueses, 1966 Vila Bacanga, São Luís 65080-805, MA, Brazil
| | - Roberto B. de Lima
- Departamento de Química, Centro de Ciências Exatas e Tecnologias, Universidade Federal do Maranhão (UFMA), Av. dos Portugueses, 1966 Vila Bacanga, São Luís 65080-805, MA, Brazil
| | - Isabel C. de Freitas
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo 05508-000, SP, Brazil
| | - Julio Spadotto
- Department of Materials, Henry Royce Institute, University of Manchester, Manchester M13 9PL, UK
| | - Brian J. Connolly
- Department of Materials, Henry Royce Institute, University of Manchester, Manchester M13 9PL, UK
| | - Jade Barreto
- Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro 22290-180, RJ, Brazil
| | - Fernando Stavale
- Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro 22290-180, RJ, Brazil
| | - Hector A. Vitorino
- South American Center for Education and Research in Public Health, Universidad Norbert Wiener, Lima 15108, Peru
| | - Humberto V. Fajardo
- Departamento de Química, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto 35400-000, MG, Brazil
| | - Auro A. Tanaka
- Departamento de Química, Centro de Ciências Exatas e Tecnologias, Universidade Federal do Maranhão (UFMA), Av. dos Portugueses, 1966 Vila Bacanga, São Luís 65080-805, MA, Brazil
| | - Marco A. S. Garcia
- Departamento de Química, Centro de Ciências Exatas e Tecnologias, Universidade Federal do Maranhão (UFMA), Av. dos Portugueses, 1966 Vila Bacanga, São Luís 65080-805, MA, Brazil
| | - Anderson G. M. da Silva
- Departamento de Engenharia Química e de Materiais-DEQM, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rua Marquês de São Vicente, 225 Gávea, Rio de Janeiro 22453-900, RJ, Brazil
| |
Collapse
|