1
|
Wang Y, Yang Y, Ding Q, Wang S, Zhuang D, Yang Y. Spatial and temporal distribution and influencing factor analysis of the malignant tumor mortality rate around the mining area. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:4647-4664. [PMID: 35254606 DOI: 10.1007/s10653-022-01231-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Mining activities can threaten residents' health even lives. Integrating spatial empirical Bayesian smoothing, joinpoint regression and spatiotemporal scanning methods, we analyzed aggregations and possible factors of four tumor mortality rates at township and village scales from 2012 to 2016 in Suxian district of Hunan Province, China. Results indicate: (1) Mortality rates were ranked: lung cancer > liver cancer > gastric cancer > colorectal cancer. (2) Lung cancer had a higher five-year mortality rate in the middle; relative risk (RR) of death from lung cancer from 2012 to 2015 in Xujiadong Village was 7.48. Liver cancer had a higher five-year mortality rate in the Middle West; RR in areas centered on Nanta Street with a radius of 9.87 km from 2015 to 2016, was 1.83. Gastric cancer had a higher five-year mortality rate in the east; RR in Xujiadong Village from 2012 to 2014 was 6.9. Five-year mortality rate of colorectal cancer was higher in the northwest; RR in regions centered on Huangcao Village with a radius of 12.11 km in 2016, was 2.88. (3) Pollution from ore mining and smelting, heavy metal and non-metallic, and mine transportation were the main possible factors. This research provides a method reference for studying spatiotemporal patterns of disease in China even the world.
Collapse
Affiliation(s)
- Yong Wang
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yu Yang
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qian Ding
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China.
| | - Shibo Wang
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dafang Zhuang
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yusen Yang
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
2
|
Earth Observation Data Supporting Non-Communicable Disease Research: A Review. REMOTE SENSING 2020. [DOI: 10.3390/rs12162541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A disease is non-communicable when it is not transferred from one person to another. Typical examples include all types of cancer, diabetes, stroke, or allergies, as well as mental diseases. Non-communicable diseases have at least two things in common—environmental impact and chronicity. These diseases are often associated with reduced quality of life, a higher rate of premature deaths, and negative impacts on a countries’ economy due to healthcare costs and missing work force. Additionally, they affect the individual’s immune system, which increases susceptibility toward communicable diseases, such as the flu or other viral and bacterial infections. Thus, mitigating the effects of non-communicable diseases is one of the most pressing issues of modern medicine, healthcare, and governments in general. Apart from the predisposition toward such diseases (the genome), their occurrence is associated with environmental parameters that people are exposed to (the exposome). Exposure to stressors such as bad air or water quality, noise, extreme heat, or an overall unnatural surrounding all impact the susceptibility to non-communicable diseases. In the identification of such environmental parameters, geoinformation products derived from Earth Observation data acquired by satellites play an increasingly important role. In this paper, we present a review on the joint use of Earth Observation data and public health data for research on non-communicable diseases. We analyzed 146 articles from peer-reviewed journals (Impact Factor ≥ 2) from all over the world that included Earth Observation data and public health data for their assessments. Our results show that this field of synergistic geohealth analyses is still relatively young, with most studies published within the last five years and within national boundaries. While the contribution of Earth Observation, and especially remote sensing-derived geoinformation products on land surface dynamics is on the rise, there is still a huge potential for transdisciplinary integration into studies. We see the necessity for future research and advocate for the increased incorporation of thematically profound remote sensing products with high spatial and temporal resolution into the mapping of exposomes and thus the vulnerability and resilience assessment of a population regarding non-communicable diseases.
Collapse
|
3
|
Kambunga SN, Candeias C, Hasheela I, Mouri H. The geochemistry of geophagic material consumed in Onangama Village, Northern Namibia: a potential health hazard for pregnant women in the area. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2019; 41:1987-2009. [PMID: 30778788 DOI: 10.1007/s10653-019-00253-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 01/27/2019] [Indexed: 06/09/2023]
Abstract
Ingestion of geophagic materials might affect human health and induce diseases by different ways. The purpose of this study is to determine the geochemical composition of geophagic material consumed especially by pregnant women in Onangama Village, Northern Namibia and to assess its possible health effects. X-ray fluorescence and inductively coupled plasma mass spectrometry were used in order to determine the major, and trace elements as well as anions concentrations of the consumed material. The geochemical analysis revealed high concentrations of aluminium (Al), calcium (Ca), iron (Fe), magnesium (Mg), manganese (Mn), potassium (K), sodium (Na), and silica (Si); and trace elements including arsenic (As), chromium (Cr), mercury (Hg), nickel (Ni) and vanadium (V) as well as sulphate (SO42-), nitrate (NO3-), and nitrite (NO2-) anions comparing to the recommended daily allowance for pregnant women. The pH for some of the studied samples is alkaline, which might increase the gastrointestinal tract pH (pH < 2) and cause a decrease in the bioavailability of elements. The calculated health risk index (HRI > 1) revealed that Al and Mn might be a potential risk for human consumption. Based on the results obtained from the geochemical analysis, the consumption of the studied material might present a potential health risk to pregnant women including concomitant detrimental maternal and foetal effects.
Collapse
Affiliation(s)
- Selma N Kambunga
- Department of Geology, University of Johannesburg, Johannesburg, South Africa
| | - Carla Candeias
- GeoBioTec, Geosciences Department, University of Aveiro, Aveiro, Portugal
- EpiUnit, Public Health Institute, University of Porto, Porto, Portugal
| | - Israel Hasheela
- Environmental and Engineering Geology Division, Geological Survey of Namibia, Windhoek, Namibia
| | - Hassina Mouri
- Department of Geology, University of Johannesburg, Johannesburg, South Africa.
| |
Collapse
|
4
|
Dietrich D, Dekova R, Davy S, Fahrni G, Geissbühler A. Applications of Space Technologies to Global Health: Scoping Review. J Med Internet Res 2018; 20:e230. [PMID: 29950289 PMCID: PMC6041558 DOI: 10.2196/jmir.9458] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/21/2018] [Accepted: 04/22/2018] [Indexed: 12/27/2022] Open
Abstract
Background Space technology has an impact on many domains of activity on earth, including in the field of global health. With the recent adoption of the United Nations’ Sustainable Development Goals that highlight the need for strengthening partnerships in different domains, it is useful to better characterize the relationship between space technology and global health. Objective The aim of this study was to identify the applications of space technologies to global health, the key stakeholders in the field, as well as gaps and challenges. Methods We used a scoping review methodology, including a literature review and the involvement of stakeholders, via a brief self-administered, open-response questionnaire. A distinct search on several search engines was conducted for each of the four key technological domains that were previously identified by the UN Office for Outer Space Affairs’ Expert Group on Space and Global Health (Domain A: remote sensing; Domain B: global navigation satellite systems; Domain C: satellite communication; and Domain D: human space flight). Themes in which space technologies are of benefit to global health were extracted. Key stakeholders, as well as gaps, challenges, and perspectives were identified. Results A total of 222 sources were included for Domain A, 82 sources for Domain B, 144 sources for Domain C, and 31 sources for Domain D. A total of 3 questionnaires out of 16 sent were answered. Global navigation satellite systems and geographic information systems are used for the study and forecasting of communicable and noncommunicable diseases; satellite communication and global navigation satellite systems for disaster response; satellite communication for telemedicine and tele-education; and global navigation satellite systems for autonomy improvement, access to health care, as well as for safe and efficient transportation. Various health research and technologies developed for inhabited space flights have been adapted for terrestrial use. Conclusions Although numerous examples of space technology applications to global health exist, improved awareness, training, and collaboration of the research community is needed.
Collapse
Affiliation(s)
- Damien Dietrich
- Hopitaux Universitaires de Genève, eHealth and Telemedicine Division, Geneva, Switzerland
| | - Ralitza Dekova
- Hopitaux Universitaires de Genève, eHealth and Telemedicine Division, Geneva, Switzerland
| | - Stephan Davy
- Hopitaux Universitaires de Genève, eHealth and Telemedicine Division, Geneva, Switzerland
| | - Guillaume Fahrni
- Hopitaux Universitaires de Genève, eHealth and Telemedicine Division, Geneva, Switzerland
| | - Antoine Geissbühler
- Hopitaux Universitaires de Genève, eHealth and Telemedicine Division, Geneva, Switzerland
| |
Collapse
|
5
|
Ding Q, Wang Y, Zhuang D. Comparison of the common spatial interpolation methods used to analyze potentially toxic elements surrounding mining regions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 212:23-31. [PMID: 29427938 DOI: 10.1016/j.jenvman.2018.01.074] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 01/18/2018] [Accepted: 01/26/2018] [Indexed: 06/08/2023]
Abstract
The appropriate spatial interpolation methods must be selected to analyze the spatial distributions of Potentially Toxic Elements (PTEs), which is a precondition for evaluating PTE pollution. The accuracy and effect of different spatial interpolation methods, which include inverse distance weighting interpolation (IDW) (power = 1, 2, 3), radial basis function interpolation (RBF) (basis function: thin-plate spline (TPS), spline with tension (ST), completely regularized spline (CRS), multiquadric (MQ) and inverse multiquadric (IMQ)) and ordinary kriging interpolation (OK) (semivariogram model: spherical, exponential, gaussian and linear), were compared using 166 unevenly distributed soil PTE samples (As, Pb, Cu and Zn) in the Suxian District, Chenzhou City, Hunan Province as the study subject. The reasons for the accuracy differences of the interpolation methods and the uncertainties of the interpolation results are discussed, then several suggestions for improving the interpolation accuracy are proposed, and the direction of pollution control is determined. The results of this study are as follows: (i) RBF-ST and OK (exponential) are the optimal interpolation methods for As and Cu, and the optimal interpolation method for Pb and Zn is RBF-IMQ. (ii) The interpolation uncertainty is positively correlated with the PTE concentration, and higher uncertainties are primarily distributed around mines, which is related to the strong spatial variability of PTE concentrations caused by human interference. (iii) The interpolation accuracy can be improved by increasing the sample size around the mines, introducing auxiliary variables in the case of incomplete sampling and adopting the partition prediction method. (iv) It is necessary to strengthen the prevention and control of As and Pb pollution, particularly in the central and northern areas. The results of this study can provide an effective reference for the optimization of interpolation methods and parameters for unevenly distributed soil PTE data in mining areas.
Collapse
Affiliation(s)
- Qian Ding
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Wang
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Dafang Zhuang
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
6
|
Gabarrón M, Faz A, Acosta JA. Use of multivariable and redundancy analysis to assess the behavior of metals and arsenic in urban soil and road dust affected by metallic mining as a base for risk assessment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 206:192-201. [PMID: 29065360 DOI: 10.1016/j.jenvman.2017.10.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/07/2017] [Accepted: 10/13/2017] [Indexed: 06/07/2023]
Abstract
The vicinity of abandoned mining ponds to populated areas may suppose a high environmental and health risk being necessary evaluate unreclaimed ponds as source of metal(loid)s. In order to evaluate the behaviour of metals and arsenic from tailing ponds and their effects in urban areas, 10 mine wastes samples, 10 urban soil and 10 urban road dust samples were collected from two mining districts (La Unión and Mazarrón, SE Spain). Physicochemical properties and total, available and water-soluble concentration of metals (Cd, Co, Cr, Cu, Fe, Ni, Mn, Pb, Zn) and As were analyzed. Results suggest enrichment in Fe, Mn, Pb and Zn of urban soil and road dust in both studied towns. Multivariable analysis indicated that Cd, Mn, Pb and Zn in La Unión urban soil, and As, Cd, Cu, Pb and Zn in soil and Fe in road dust of Mazarrón come from mining districts. In addition, redundancy analysis showed that mobility of metal(loid)s related to mining sources were more influenced by their total concentration, while metals with a lithogeny origin were more affected by physicochemical properties.
Collapse
Affiliation(s)
- M Gabarrón
- Sustainable Use, Management and Reclamation of Soil and Water Research Group, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203, Cartagena, Spain.
| | - A Faz
- Sustainable Use, Management and Reclamation of Soil and Water Research Group, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203, Cartagena, Spain
| | - J A Acosta
- Sustainable Use, Management and Reclamation of Soil and Water Research Group, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203, Cartagena, Spain
| |
Collapse
|
7
|
Ding Q, Cheng G, Wang Y, Zhuang D. Effects of natural factors on the spatial distribution of heavy metals in soils surrounding mining regions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 578:577-585. [PMID: 27839763 DOI: 10.1016/j.scitotenv.2016.11.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/31/2016] [Accepted: 11/01/2016] [Indexed: 05/07/2023]
Abstract
Various studies have shown that soils surrounding mining areas are seriously polluted with heavy metals. Determining the effects of natural factors on spatial distribution of heavy metals is important for determining the distribution characteristics of heavy metals in soils. In this study, an 8km buffer zone surrounding a typical non-ferrous metal mine in Suxian District of Hunan Province, China, was selected as the study area, and statistical, spatial autocorrelation and spatial interpolation analyses were used to obtain descriptive statistics and spatial autocorrelation characteristics of As, Pb, Cu, and Zn in soil. Additionally, the distributions of soil heavy metals under the influences of natural factors, including terrain (elevation and slope), wind direction and distance from a river, were determined. Layout of sampling sites, spatial changes of heavy metal contents at high elevations and concentration differences between upwind and downwind directions were then evaluated. The following results were obtained: (1) At low elevations, heavy metal concentrations decreased slightly, then increased considerably with increasing elevation. At high elevations, heavy metal concentrations first decreased, then increased, then decreased with increasing elevation. As the slope increased, heavy metal contents increased then decreased. (2) Heavy metal contents changed consistently in the upwind and downwind directions. Heavy metal contents were highest in 1km buffer zone and decreased with increasing distance from the mining area. The largest decrease in heavy metal concentrations was in 2km buffer zone. Perennial wind promotes the transport of heavy metals in downwind direction. (3) The spatial extent of the influence of the river on Pb, Zn and Cu in the soil was 800m. (4) The influence of the terrain on the heavy metal concentrations was greater than that of the wind. These results provide a scientific basis for preventing and mitigating heavy metal soil pollution in areas surrounding mines.
Collapse
Affiliation(s)
- Qian Ding
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Gong Cheng
- Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, Ministry of Education, School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
| | - Yong Wang
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Dafang Zhuang
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
8
|
Method for Assessing the Integrated Risk of Soil Pollution in Industrial and Mining Gathering Areas. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:14589-609. [PMID: 26580644 PMCID: PMC4661669 DOI: 10.3390/ijerph121114589] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/02/2015] [Accepted: 11/11/2015] [Indexed: 11/23/2022]
Abstract
Industrial and mining activities are recognized as major sources of soil pollution. This study proposes an index system for evaluating the inherent risk level of polluting factories and introduces an integrated risk assessment method based on human health risk. As a case study, the health risk, polluting factories and integrated risks were analyzed in a typical industrial and mining gathering area in China, namely, Binhai New Area. The spatial distribution of the risk level was determined using a Geographic Information System. The results confirmed the following: (1) Human health risk in the study area is moderate to extreme, with heavy metals posing the greatest threat; (2) Polluting factories pose a moderate to extreme inherent risk in the study area. Such factories are concentrated in industrial and urban areas, but are irregularly distributed and also occupy agricultural land, showing a lack of proper planning and management; (3) The integrated risks of soil are moderate to high in the study area.
Collapse
|
9
|
Song D, Zhuang D, Jiang D, Fu J, Wang Q. Integrated Health Risk Assessment of Heavy Metals in Suxian County, South China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:7100-17. [PMID: 26114243 PMCID: PMC4515644 DOI: 10.3390/ijerph120707100] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 06/16/2015] [Accepted: 06/18/2015] [Indexed: 11/16/2022]
Abstract
The purpose of this study was to assess soil heavy metal contamination and the potential risk for local residents in Suxian county of Hunan Province, southern China. Soil, rice and vegetable samples from the areas near the mining industrial districts were sampled and analyzed. The results indicate that the anthropogenic mining activities have caused local agricultural soil contamination with As, Pb, Cu and Cd in the ranges of 8.47-341.33 mg/kg, 19.91-837.52 mg/kg, 8.41-148.73 mg/kg and 0.35-6.47 mg/kg, respectively. GIS-based mapping shows that soil heavy metal concentrations abruptly diminish with increasing distance from the polluting source. The concentrations of As, Pb, Cu and Cd found in rice were in the ranges of 0.02-1.48 mg/kg, 0.66-5.78 mg/kg, 0.09-6.75 mg/kg, and up to 1.39 mg/kg, respectively. Most of these concentrations exceed their maximum permissible levels for contaminants in foods in China. Heavy metals accumulate to significantly different levels between leafy vegetables and non-leafy vegetables. Food consumption and soil ingestion exposure are the two routes that contribute to the average daily intake dose of heavy metals for local adults. Moreover, the total hazard indices of As, Pb and Cd are greater than or close to the safety threshold of 1. Long-term As, Pb and Cd exposure through the regular consumption of the soil, rice and vegetables in the investigated area poses potential health problems to residents in the vicinity of the mining industry.
Collapse
Affiliation(s)
- Daping Song
- Key Lab for Resources Use and Environmental Remediation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing 100101, China.
| | - Dafang Zhuang
- Key Lab for Resources Use and Environmental Remediation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing 100101, China.
| | - Dong Jiang
- Key Lab for Resources Use and Environmental Remediation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing 100101, China.
| | - Jingying Fu
- Key Lab for Resources Use and Environmental Remediation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing 100101, China.
| | - Qiao Wang
- Satellite Environmental Application Center, Ministry of Environmental Protection, Beijing 100094, China.
| |
Collapse
|