1
|
Li Y, Zhao Y, Du Y, Ren X, Ding H, Wang Z. Recent advances in the development and applications of luminescent bacteria-based biosensors. LUMINESCENCE 2024; 39:e4721. [PMID: 38501275 DOI: 10.1002/bio.4721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/20/2024]
Abstract
Luminescent bacteria-based biosensors are widely used for fast and sensitive monitoring of food safety, water quality, and other environmental pollutions. Recent advancements in biomedical engineering technology have led to improved portability, integration, and intelligence of these biotoxicity assays. Moreover, genetic engineering has played a significant role in the development of recombinant luminescent bacterial biosensors, enhancing both detection accuracy and sensitivity. This review provides an overview of recent advances in the development and applications of novel luminescent bacteria-based biosensors, and future perspectives and challenges in the cutting-edge research, market translation, and practical applications of luminescent bacterial biosensing are discussed.
Collapse
Affiliation(s)
- Yingying Li
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, China
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Yuankun Zhao
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, China
| | - Yiyang Du
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, China
| | - Xuechun Ren
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing, China
| | - He Ding
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing, China
| | - Zhimin Wang
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, China
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
2
|
Shen P, Jia Y, Shi S, Sun J, Han X. Analytical and biomedical applications of microfluidics in traditional Chinese medicine research. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
Cao J, Chande C, Köhler JM. Microtoxicology by microfluidic instrumentation: a review. LAB ON A CHIP 2022; 22:2600-2623. [PMID: 35678285 DOI: 10.1039/d2lc00268j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Microtoxicology is concerned with the toxic effects of small amounts of substances. This review paper discusses the application of small amounts of noxious substances for toxicological investigation in small volumes. The vigorous development of miniaturized methods in microfluidics over the last two decades involves chip-based devices, micro droplet-based procedures, and the use of micro-segmented flow for microtoxicological studies. The studies have shown that the microfluidic approach is particularly valuable for highly parallelized and combinatorial dose-response screenings. Accurate dosing and mixing of effector substances in large numbers of microcompartments supplies detailed data of dose-response functions by highly concentration-resolved assays and allows evaluation of stochastic responses in case of small separated cell ensembles and single cell experiments. The investigations demonstrate that very different biological targets can be studied using miniaturized approaches, among them bacteria, eukaryotic microorganisms, cell cultures from tissues of multicellular organisms, stem cells, and early embryonic states. Cultivation and effector exposure tests can be performed in small volumes over weeks and months, confirming that the microfluicial strategy is also applicable for slow-growing organisms. Here, the state of the art of miniaturized toxicology, particularly for studying antibiotic susceptibility, drug toxicity testing in the miniaturized system like organ-on-chip, environmental toxicology, and the characterization of combinatorial effects by two and multi-dimensional screenings, is discussed. Additionally, this review points out the practical limitations of the microtoxicology platform and discusses perspectives on future opportunities and challenges.
Collapse
Affiliation(s)
- Jialan Cao
- Techn. Univ. Ilmenau, Dept. Phys. Chem. and Microreaction Technology, Institute for Micro- und Nanotechnologies/Institute for Chemistry and Biotechnology, Ilmenau, Germany.
| | - Charmi Chande
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, USA
| | - J Michael Köhler
- Techn. Univ. Ilmenau, Dept. Phys. Chem. and Microreaction Technology, Institute for Micro- und Nanotechnologies/Institute for Chemistry and Biotechnology, Ilmenau, Germany.
| |
Collapse
|
4
|
Saez J, Catalan-Carrio R, Owens RM, Basabe-Desmonts L, Benito-Lopez F. Microfluidics and materials for smart water monitoring: A review. Anal Chim Acta 2021; 1186:338392. [PMID: 34756264 DOI: 10.1016/j.aca.2021.338392] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 01/03/2023]
Abstract
Water quality monitoring of drinking, waste, fresh and seawaters is of great importance to ensure safety and wellbeing for humans, fauna and flora. Researchers are developing robust water monitoring microfluidic devices but, the delivery of a cost-effective, commercially available platform has not yet been achieved. Conventional water monitoring is mainly based on laboratory instruments or sophisticated and expensive handheld probes for on-site analysis, both requiring trained personnel and being time-consuming. As an alternative, microfluidics has emerged as a powerful tool with the capacity to replace conventional analytical systems. Nevertheless, microfluidic devices largely use conventional pumps and valves for operation and electronics for sensing, that increment the dimensions and cost of the final platforms, reducing their commercialization perspectives. In this review, we critically analyze the characteristics of conventional microfluidic devices for water monitoring, focusing on different water sources (drinking, waste, fresh and seawaters), and their application in commercial products. Moreover, we introduce the revolutionary concept of using functional materials such as hydrogels, poly(ionic liquid) hydrogels and ionogels as alternatives to conventional fluidic handling and sensing tools, for water monitoring in microfluidic devices.
Collapse
Affiliation(s)
- Janire Saez
- Microfluidics Cluster UPV/EHU, Analytical Microsystems & Materials for Lab-on-a-Chip (AMMa-LOAC), Group, Analytical Chemistry, University of the Basque Country UPV/EHU, Spain; Bioelectronic Systems Technology Group, Department of Chemical Engineering and Biotechnology, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK.
| | - Raquel Catalan-Carrio
- Microfluidics Cluster UPV/EHU, Analytical Microsystems & Materials for Lab-on-a-Chip (AMMa-LOAC), Group, Analytical Chemistry, University of the Basque Country UPV/EHU, Spain; Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Róisín M Owens
- Bioelectronic Systems Technology Group, Department of Chemical Engineering and Biotechnology, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Lourdes Basabe-Desmonts
- Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain; Basque Foundation for Science, IKERBASQUE, Spain; Bioaraba Health Research Institute, Microfluidics Cluster UPV/EHU, Vitoria-Gasteiz, Spain; BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940, Leioa, Spain.
| | - Fernando Benito-Lopez
- Microfluidics Cluster UPV/EHU, Analytical Microsystems & Materials for Lab-on-a-Chip (AMMa-LOAC), Group, Analytical Chemistry, University of the Basque Country UPV/EHU, Spain; Bioaraba Health Research Institute, Microfluidics Cluster UPV/EHU, Vitoria-Gasteiz, Spain; BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940, Leioa, Spain.
| |
Collapse
|
5
|
Teixeira A, Paris JL, Roumani F, Diéguez L, Prado M, Espiña B, Abalde-Cela S, Garrido-Maestu A, Rodriguez-Lorenzo L. Multifuntional Gold Nanoparticles for the SERS Detection of Pathogens Combined with a LAMP-in-Microdroplets Approach. MATERIALS (BASEL, SWITZERLAND) 2020; 13:ma13081934. [PMID: 32325992 DOI: 10.1021/acsanm.9b01223] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 05/25/2023]
Abstract
We developed a droplet-based optofluidic system for the detection of foodborne pathogens. Specifically, the loop-mediated isothermal amplification (LAMP) technique was combined with surface-enhanced Raman scattering (SERS), which offers an excellent method for DNA ultradetection. However, the direct SERS detection of DNA compromises the simplicity of data interpretation due to the variability of its SERS fingerprints. Therefore, we designed an indirect SERS detection method using multifunctional gold nanoparticles (AuNPs) based on the formation of pyrophosphate generated during the DNA amplification by LAMP. Towards this goal, we prepared multifunctional AuNPs involving three components with key roles: (1) thiolated poly(ethylene glycol) as stabilizing agent, (2) 1-naphthalenethiol as Raman reporter, and (3) glutathione as a bioinspired chelating agent of magnesium (II) ions. Thus, the variation in the SERS signal of 1-naphthalenethiol was controlled by the aggregation of AuNPs triggered by the complexation of pyrophosphate and glutathione with free magnesium ions. Using this strategy, we detected Listeria monocytogenes, not only in buffer, but also in a food matrix (i.e., ultra-high temperaturemilk) enabled by the massive production of hotspots as a result of the self-assemblies that enhanced the SERS signal. This allowed the development of a microdroplet-LAMP-SERS platform with isothermal amplification and real-time identification capabilities.
Collapse
Affiliation(s)
- Alexandra Teixeira
- International Iberian Nanotechnology Laboratory (INL), Avda Mestre José Veiga, 4715-310 Braga, Portugal
| | - Juan L Paris
- International Iberian Nanotechnology Laboratory (INL), Avda Mestre José Veiga, 4715-310 Braga, Portugal
| | - Foteini Roumani
- International Iberian Nanotechnology Laboratory (INL), Avda Mestre José Veiga, 4715-310 Braga, Portugal
| | - Lorena Diéguez
- International Iberian Nanotechnology Laboratory (INL), Avda Mestre José Veiga, 4715-310 Braga, Portugal
| | - Marta Prado
- International Iberian Nanotechnology Laboratory (INL), Avda Mestre José Veiga, 4715-310 Braga, Portugal
| | - Begoña Espiña
- International Iberian Nanotechnology Laboratory (INL), Avda Mestre José Veiga, 4715-310 Braga, Portugal
| | - Sara Abalde-Cela
- International Iberian Nanotechnology Laboratory (INL), Avda Mestre José Veiga, 4715-310 Braga, Portugal
| | - Alejandro Garrido-Maestu
- International Iberian Nanotechnology Laboratory (INL), Avda Mestre José Veiga, 4715-310 Braga, Portugal
| | - Laura Rodriguez-Lorenzo
- International Iberian Nanotechnology Laboratory (INL), Avda Mestre José Veiga, 4715-310 Braga, Portugal
| |
Collapse
|
6
|
Teixeira A, Paris JL, Roumani F, Diéguez L, Prado M, Espiña B, Abalde-Cela S, Garrido-Maestu A, Rodriguez-Lorenzo L. Multifuntional Gold Nanoparticles for the SERS Detection of Pathogens Combined with a LAMP-in-Microdroplets Approach. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1934. [PMID: 32325992 PMCID: PMC7215531 DOI: 10.3390/ma13081934] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/31/2022]
Abstract
We developed a droplet-based optofluidic system for the detection of foodborne pathogens. Specifically, the loop-mediated isothermal amplification (LAMP) technique was combined with surface-enhanced Raman scattering (SERS), which offers an excellent method for DNA ultradetection. However, the direct SERS detection of DNA compromises the simplicity of data interpretation due to the variability of its SERS fingerprints. Therefore, we designed an indirect SERS detection method using multifunctional gold nanoparticles (AuNPs) based on the formation of pyrophosphate generated during the DNA amplification by LAMP. Towards this goal, we prepared multifunctional AuNPs involving three components with key roles: (1) thiolated poly(ethylene glycol) as stabilizing agent, (2) 1-naphthalenethiol as Raman reporter, and (3) glutathione as a bioinspired chelating agent of magnesium (II) ions. Thus, the variation in the SERS signal of 1-naphthalenethiol was controlled by the aggregation of AuNPs triggered by the complexation of pyrophosphate and glutathione with free magnesium ions. Using this strategy, we detected Listeria monocytogenes, not only in buffer, but also in a food matrix (i.e., ultra-high temperaturemilk) enabled by the massive production of hotspots as a result of the self-assemblies that enhanced the SERS signal. This allowed the development of a microdroplet-LAMP-SERS platform with isothermal amplification and real-time identification capabilities.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Laura Rodriguez-Lorenzo
- International Iberian Nanotechnology Laboratory (INL), Avda Mestre José Veiga, 4715-310 Braga, Portugal; (A.T.); (J.L.P.); (F.R.); (L.D.); (M.P.); (B.E.); (S.A.-C.); (A.G.-M.)
| |
Collapse
|
7
|
Smartphone colorimetric detection of calcium and magnesium in water samples using a flow injection system. Microchem J 2019. [DOI: 10.1016/j.microc.2019.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Heuschele J, Lode T, Andersen T, Borgå K, Titelman J. An affordable and automated imaging approach to acquire highly resolved individual data-an example of copepod growth in response to multiple stressors. PeerJ 2019; 7:e6776. [PMID: 31041153 PMCID: PMC6476288 DOI: 10.7717/peerj.6776] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/12/2019] [Indexed: 01/21/2023] Open
Abstract
Individual trait variation is essential for populations to cope with multiple stressors and continuously changing environments. The immense number of possible stressor combinations and the influence of phenotypic variation makes experimental testing for effects on organisms challenging. The acquisition of such data requires many replicates and is notoriously laborious. It is further complicated when responses occur over short time periods. To overcome such challenges, we developed an automated imaging platform to acquire temporally highly resolved individual data. We tested this platform by exposing copepods to a combination of a biotic stressor (predator cues) and a toxicant (copper) and measured the growth response of individual copepods. We tested the automatically acquired data against published manually acquired data with much lower temporal resolution. We find the same general potentiating effects of predator cues on the adverse effects of copper, and the influence of an individual’s clutch identity on its ability to resist stress, between the data obtained from low and high temporal resolution. However, when using the high temporal resolution, we also uncovered effects of clutch ID on the timing and duration of stage transitions, which highlights the importance of considering phenotypic variation in ecotoxicological testing. Phenotypic variation is usually not acknowledged in ecotoxicological testing. Our approach is scalable, affordable, and adjustable to accommodate both aquatic and terrestrial organisms, and a wide range of visually detectable endpoints. We discuss future extensions that would further widen its applicability.
Collapse
Affiliation(s)
- Jan Heuschele
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Torben Lode
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Tom Andersen
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Katrine Borgå
- Department of Biosciences, University of Oslo, Oslo, Norway
| | | |
Collapse
|
9
|
JIN XW, LI ZY, XU PP, ZHANG XY, REN NQ, Kurilenko VV, SUN K. Advances in Microfluidic Biosensors Based on Luminescent Bacteria. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1016/s1872-2040(19)61139-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
da Silva LFBA, Yang Z, Pires NMM, Dong T, Teien HC, Storebakken T, Salbu B. Monitoring Aquaculture Water Quality: Design of an Early Warning Sensor with Aliivibrio fischeri and Predictive Models. SENSORS (BASEL, SWITZERLAND) 2018; 18:E2848. [PMID: 30158465 PMCID: PMC6164392 DOI: 10.3390/s18092848] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/12/2018] [Accepted: 08/13/2018] [Indexed: 11/17/2022]
Abstract
A novel toxicity-warning sensor for water quality monitoring in recirculating aquaculture systems (RAS) is presented. The design of the sensor system mainly comprises a whole-cell biosensor. Aliivibrio fischeri, a luminescent bacterium widely used in toxicity analysis, was tested for a mixture of known fish-health stressors, namely nitrite, un-ionized ammonia, copper, aluminum and zinc. Two toxicity predictive models were constructed. Correlation, root mean squared error, relative error and toxic behavior were analyzed. The linear concentration addition (LCA) model was found suitable to ally with a machine learning algorithm for prediction of toxic events, thanks to additive behavior near the limit concentrations for these stressors, with a root-mean-squared error (RMSE) of 0.0623, and a mean absolute error of 4%. The model was proved to have a smaller relative deviation than other methods described in the literature. Moreover, the design of a novel microfluidic chip for toxicity testing is also proposed, which is to be integrated in a fluidic system that functions as a bypass of the RAS tank to enable near-real time monitoring. This chip was tested with simulated samples of RAS water spiked with zinc, with an EC50 of 6,46E-7 M. Future work will be extended to the analysis of other stressors with the novel chip.
Collapse
Affiliation(s)
- Luís F B A da Silva
- Institute of Applied Micro-Nano Science and Technology-IAMNST, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, Chongqing Engineering Laboratory for Detection, Control and Integrated System, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Nan'an District, Chongqing 400067, China.
- Department of Microsystems-IMS, Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway, Postboks 235, 3603 Kongsberg, Norway.
| | - Zhaochu Yang
- Institute of Applied Micro-Nano Science and Technology-IAMNST, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, Chongqing Engineering Laboratory for Detection, Control and Integrated System, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Nan'an District, Chongqing 400067, China.
| | - Nuno M M Pires
- Institute of Applied Micro-Nano Science and Technology-IAMNST, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, Chongqing Engineering Laboratory for Detection, Control and Integrated System, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Nan'an District, Chongqing 400067, China.
- Centre for Environmental Radioactivity (CERAD CoE), Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management, P.O. Box 5003, NO-1432 Ås, Norway.
| | - Tao Dong
- Institute of Applied Micro-Nano Science and Technology-IAMNST, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, Chongqing Engineering Laboratory for Detection, Control and Integrated System, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Nan'an District, Chongqing 400067, China.
| | - Hans-Christian Teien
- Centre for Environmental Radioactivity (CERAD CoE), Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management, P.O. Box 5003, NO-1432 Ås, Norway.
| | - Trond Storebakken
- Faculty of Biosciences, Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway.
| | - Brit Salbu
- Centre for Environmental Radioactivity (CERAD CoE), Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management, P.O. Box 5003, NO-1432 Ås, Norway.
| |
Collapse
|
11
|
Nakamura H. Current status of water environment and their microbial biosensor techniques - Part II: Recent trends in microbial biosensor development. Anal Bioanal Chem 2018; 410:3967-3989. [PMID: 29736704 DOI: 10.1007/s00216-018-1080-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/07/2018] [Accepted: 04/12/2018] [Indexed: 12/20/2022]
Abstract
In Part I of the present review series, I presented the current state of the water environment by focusing on Japanese cases and discussed the need to further develop microbial biosensor technologies for the actual water environment. I comprehensively present trends after approximately 2010 in microbial biosensor development for the water environment. In the first section, after briefly summarizing historical studies, recent studies on microbial biosensor principles are introduced. In the second section, recent application studies for the water environment are also introduced. Finally, I conclude the present review series by describing the need to further develop microbial biosensor technologies. Graphical abstract Current water pollution indirectly occurs by anthropogenic eutrophication (Part I). Recent trends in microbial biosensor development for water environment are described in part II of the present review series.
Collapse
Affiliation(s)
- Hideaki Nakamura
- Department of Liberal Arts, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo, 192-0982, Japan.
| |
Collapse
|
12
|
Optofluidic Technology for Water Quality Monitoring. MICROMACHINES 2018; 9:mi9040158. [PMID: 30424092 PMCID: PMC6187826 DOI: 10.3390/mi9040158] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 03/25/2018] [Accepted: 03/26/2018] [Indexed: 12/14/2022]
Abstract
Water quality-related incidents are attracting attention globally as they cause serious diseases and even threaten human lives. The current detection and monitoring methods are inadequate because of their long operation time, high cost, and complex process. In this context, there is an increasing demand for low-cost, multiparameter, real-time, and continuous-monitoring methods at a higher temporal and spatial resolution. Optofluidic water quality sensors have great potential to satisfy this requirement due to their distinctive features including high throughput, small footprint, and low power consumption. This paper reviews the current development of these sensors for heavy metal, organic, and microbial pollution monitoring, which will breed new research ideas and broaden their applications.
Collapse
|
13
|
Hárendarčíková L, Petr J. Smartphones & microfluidics: Marriage for the future. Electrophoresis 2018; 39:1319-1328. [DOI: 10.1002/elps.201700389] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 02/19/2018] [Accepted: 02/21/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Lenka Hárendarčíková
- Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Faculty of Science; Palacký University in Olomouc; Olomouc Czech Republic
| | - Jan Petr
- Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Faculty of Science; Palacký University in Olomouc; Olomouc Czech Republic
| |
Collapse
|
14
|
Campana O, Wlodkowic D. Ecotoxicology Goes on a Chip: Embracing Miniaturized Bioanalysis in Aquatic Risk Assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:932-946. [PMID: 29284083 DOI: 10.1021/acs.est.7b03370] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Biological and environmental sciences are, more than ever, becoming highly dependent on technological and multidisciplinary approaches that warrant advanced analytical capabilities. Microfluidic lab-on-a-chip technologies are perhaps one the most groundbreaking offshoots of bioengineering, enabling design of an entirely new generation of bioanalytical instrumentation. They represent a unique approach to combine microscale engineering and physics with specific biological questions, providing technological advances that allow for fundamentally new capabilities in the spatiotemporal analysis of molecules, cells, tissues, and even small metazoan organisms. While these miniaturized analytical technologies experience an explosive growth worldwide, with a substantial promise of a direct impact on biosciences, it seems that lab-on-a-chip systems have so far escaped the attention of aquatic ecotoxicologists. In this Critical Review, potential applications of the currently existing and emerging chip-based technologies for aquatic ecotoxicology and water quality monitoring are highlighted. We also offer suggestions on how aquatic ecotoxicology can benefit from adoption of microfluidic lab-on-a-chip devices for accelerated bioanalysis.
Collapse
Affiliation(s)
- Olivia Campana
- Instituto de Ciencias Marinas de Andalucía, CSIC , Puerto Real, 11519, Spain
| | - Donald Wlodkowic
- School of Science, RMIT University , Melbourne, Victoria 3083, Australia
| |
Collapse
|
15
|
Sivashankar S, Agambayev S, Mashraei Y, Li EQ, Thoroddsen ST, Salama KN. A "twisted" microfluidic mixer suitable for a wide range of flow rate applications. BIOMICROFLUIDICS 2016; 10:034120. [PMID: 27453767 PMCID: PMC4930447 DOI: 10.1063/1.4954812] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 06/14/2016] [Indexed: 05/05/2023]
Abstract
This paper proposes a new "twisted" 3D microfluidic mixer fabricated by a laser writing/microfabrication technique. Effective and efficient mixing using the twisted micromixers can be obtained by combining two general chaotic mixing mechanisms: splitting/recombining and chaotic advection. The lamination of mixer units provides the splitting and recombination mechanism when the quadrant of circles is arranged in a two-layered serial arrangement of mixing units. The overall 3D path of the microchannel introduces the advection. An experimental investigation using chemical solutions revealed that these novel 3D passive microfluidic mixers were stable and could be operated at a wide range of flow rates. This micromixer finds application in the manipulation of tiny volumes of liquids that are crucial in diagnostics. The mixing performance was evaluated by dye visualization, and using a pH test that determined the chemical reaction of the solutions. A comparison of the tornado-mixer with this twisted micromixer was made to evaluate the efficiency of mixing. The efficiency of mixing was calculated within the channel by acquiring intensities using ImageJ software. Results suggested that efficient mixing can be obtained when more than 3 units were consecutively placed. The geometry of the device, which has a length of 30 mm, enables the device to be integrated with micro total analysis systems and other lab-on-chip devices.
Collapse
Affiliation(s)
- Shilpa Sivashankar
- Computer, Electrical and Mathematical Science and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST) , Thuwal, Saudi Arabia
| | - Sumeyra Agambayev
- Computer, Electrical and Mathematical Science and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST) , Thuwal, Saudi Arabia
| | - Yousof Mashraei
- Computer, Electrical and Mathematical Science and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST) , Thuwal, Saudi Arabia
| | - Er Qiang Li
- Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST) , Thuwal, Saudi Arabia
| | - Sigurdur T Thoroddsen
- Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST) , Thuwal, Saudi Arabia
| | - Khaled Nabil Salama
- Computer, Electrical and Mathematical Science and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST) , Thuwal, Saudi Arabia
| |
Collapse
|
16
|
Feng S, Dong T, Yang Z. Detection of urinary tract infections on lab-on-chip device by measuring photons emitted from ATP bioluminescence. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2014:3114-7. [PMID: 25570650 DOI: 10.1109/embc.2014.6944282] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A microfluidic Lab-on-chip (LOC) platform for in vitro detecting Urinary Tract Infections (UTI) for clinical diagnostic applications has been built. Based on one commercial adenosine 5'-triphosphate (ATP) assay kit, one chip designed before was applied to detect UTI with the help of photomultiplier tube (PMT) and quantitative determination was made by measuring the photons of light emitted in the bioluminescent reaction of ATP with the enzyme luciferase. The chip had been tested and materials had been well prepared before testing the PMT detecting system. The data from PMT were visualized by the Labview™, appearing good linearity between voltage values and the concentration of the ATP ranging from 2×10(-12) M to 2×10(-8) M. Fresh urine sample with different amounts of Escherichia coli had been measured by the system, appearing good linearity trend between the voltage values and number of the E.coli. This study successfully expressed the concept of measuring ATP directly in the urine to quickly and accurately detect UTI on a microfluidic chip.
Collapse
|
17
|
Sanahuja D, Giménez-Gómez P, Vigués N, Ackermann TN, Guerrero-Navarro AE, Pujol-Vila F, Sacristán J, Santamaria N, Sánchez-Contreras M, Díaz-González M, Mas J, Muñoz-Berbel X. Microbial trench-based optofluidic system for reagentless determination of phenolic compounds. LAB ON A CHIP 2015; 15:1717-1726. [PMID: 25669844 DOI: 10.1039/c4lc01446d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Phenolic compounds are one of the main contaminants of soil and water due to their toxicity and persistence in the natural environment. Their presence is commonly determined with bulky and expensive instrumentation (e.g. chromatography systems), requiring sample collection and transport to the laboratory. Sample transport delays data acquisition, postponing potential actions to prevent environmental catastrophes. This article presents a portable, miniaturized, robust and low-cost microbial trench-based optofluidic system for reagentless determination of phenols in water. The optofluidic system is composed of a poly(methyl methacrylate) structure, incorporating polymeric optical elements and miniaturized discrete auxiliary components for optical transduction. An electronic circuit, adapted from a lock-in amplifier, is used for system control and interfering ambient light subtraction. In the trench, genetically modified bacteria are stably entrapped in an alginate hydrogel for quantitative determination of model phenol catechol. Alginate is also acting as a diffusion barrier for compounds present in the sample. Additionally, the superior refractive index of the gel (compared to water) confines the light in the lower level of the chip. Hence, the optical readout of the device is only altered by changes in the trench. Catechol molecules (colorless) in the sample diffuse through the alginate matrix and reach bacteria, which degrade them to a colored compound. The absorbance increase at 450 nm reports the presence of catechol simply, quickly (~10 min) and quantitatively without addition of chemical reagents. This miniaturized, portable and robust optofluidic system opens the possibility for quick and reliable determination of environmental contamination in situ, thus mitigating the effects of accidental spills.
Collapse
Affiliation(s)
- David Sanahuja
- Department of Genetics and Microbiology Universitat Autonòma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Dong T, Zhao X. Rapid identification and susceptibility testing of uropathogenic microbes via immunosorbent ATP-bioluminescence assay on a microfluidic simulator for antibiotic therapy. Anal Chem 2015; 87:2410-8. [PMID: 25584656 DOI: 10.1021/ac504428t] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The incorporation of pathogen identification with antimicrobial susceptibility testing (AST) was implemented on a concept microfluidic simulator, which is well suited for personalizing antibiotic treatment of urinary tract infections (UTIs). The microfluidic device employs a fiberglass membrane sandwiched between two polypropylene components, with capture antibodies immobilized on the membrane. The chambers in the microfluidic device share the same geometric distribution as the wells in a standard 384-well microplate, resulting in compatibility with common microplate readers. Thirteen types of common uropathogenic microbes were selected as the analytes in this study. The microbes can be specifically captured by various capture antibodies and then quantified via an ATP bioluminescence assay (ATP-BLA) either directly or after a variety of follow-up tests, including urine culture, antibiotic treatment, and personalized antibiotic therapy simulation. Owing to the design of the microfluidic device, as well as the antibody specificity and the ATP-BLA sensitivity, the simulator was proven to be able to identify UTI pathogen species in artificial urine samples within 20 min and to reliably and simultaneously verify the antiseptic effects of eight antibiotic drugs within 3-6 h. The measurement range of the device spreads from 1 × 10(3) to 1 × 10(5) cells/mL in urine samples. We envision that the medical simulator might be broadly employed in UTI treatment and could serve as a model for the diagnosis and treatment of other diseases.
Collapse
Affiliation(s)
- Tao Dong
- Institute of Applied Micro-Nano Science and Technology, Chongqing Engineering Laboratory for Detection, Control and Integrated System, Chongqing Technology and Business University , Nan'an District, Chongqing 400067, China
| | | |
Collapse
|
19
|
Design and experimental approach to the construction of a human signal-molecule-profiling database. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:6887-908. [PMID: 24351788 PMCID: PMC3881147 DOI: 10.3390/ijerph10126887] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 12/02/2013] [Accepted: 12/03/2013] [Indexed: 12/19/2022]
Abstract
The human signal-molecule-profiling database (HSMPD) is designed as a prospective medical database for translational bioinformatics (TBI). To explore the feasibility of low-cost database construction, we studied the roadmap of HSMPD. A HSMPD-oriented tool, called “signal-molecule-profiling (SMP) chip” was developed for data acquisition, which can be employed in the routine blood tests in hospitals; the results will be stored in the HSMPD system automatically. HSMPD system can provide data services for the TBI community, which generates a stable income to support the data acquisition. The small-scale experimental test was performed in the hospital to verify SMP chips and the demo HSMPD software. One hundred and eighty nine complete SMP records were collected, and the demo HSMPD system was also evaluated in the survey study on patients and doctors. The function of SMP chip was verified, whereas the demo HSMPD software needed to be improved. The survey study showed that patients would only accept free tests of SMP chips when they originally needed blood examinations. The study indicated that the construction of HSMPD relies on the self-motivated cooperation of the TBI community and the traditional healthcare system. The proposed roadmap potentially provides an executable solution to build the HSMPD without high costs.
Collapse
|