1
|
Xue Q, Xie L, Cheng C, Su X, Zhao Y. Different environmental factors drive the concentrations of microcystin in particulates, dissolved water, and sediments peaked at different times in a large shallow lake. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116833. [PMID: 36435125 DOI: 10.1016/j.jenvman.2022.116833] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/27/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Global distribution and health threats of microcystins (MCs) have received much more attention, but there are still significant knowledge gaps in the peak periods and driving factors of MC in different phases of freshwater ecosystems. Thus, we systematically analyzed the annual variation of different MC congeners (-LR, -RR, and -YR, where L, R, and Y respectively represent leucine, arginine, and tyrosine) in particulates, dissolved water, and sediments in three eutrophic bays of Lake Taihu, China. The results indicated that particulate MCs concentration was the highest, followed by dissolved and sediment MC, with the mean concentration of 7.58 μg/L, 1.48 μg/L, and 0.15 μg/g (DW), respectively. Except for particulate MC, the concentrations of the other two types of MC showed significant differences among the three bays. The dominant congeners of the three types of MCs were different, with the highest proportion of MC-LR being observed in sediment MCs and the lowest in particulate MCs. The peak period of the three types of MC was also different, with particulate MCs reaching their peak in July and October, dissolved MCs in May to July and October, and sediment MCs reaching their peak in September. Consistent with our hypothesis, the dynamics of different types of MCs were driven by different environmental factors. Particulate MCs were primarily related to biological parameters, followed by TP and dissolved carbon. By contrast, dissolved MCs strongly correlated with water temperature and dissolved oxygen. While sediment MCs were primarily driven by properties of sediments, followed by different forms of nitrogen in the water column. Our results suggested that particulate and dissolved MCs in northern Lake Taihu pose high health threats, especially in the peak period. Moreover, a more detailed and targeted risk management strategy should be designed to prevent the possible hazards posed by different types of MC.
Collapse
Affiliation(s)
- Qingju Xue
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Liqiang Xie
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Chen Cheng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaomei Su
- Jiangsu Provincial Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environmental Sciences, Nanjing 210036, China
| | - Yanyan Zhao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
2
|
Pham TL, Tran THY, Shimizu K, Li Q, Utsumi M. Toxic cyanobacteria and microcystin dynamics in a tropical reservoir: assessing the influence of environmental variables. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:63544-63557. [PMID: 32948940 DOI: 10.1007/s11356-020-10826-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 09/13/2020] [Indexed: 06/11/2023]
Abstract
Toxic cyanobacterial blooms (TCBs) have become a growing concern worldwide. The present study investigated the dynamic of toxic cyanobacteria and microcystin (MC) concentrations in the Tri An Reservoir (TAR), a tropical system in Vietnam, with quantitative real-time polymerase chain reaction (qPCR) and high-performance liquid chromatography (HPLC), respectively. The results of the qPCR quantification revealed that Microcystis was the dominant group and the primary MC producer in the TAR. Potentially toxigenic cyanobacteria varied from 1.2 × 104 to 1.58 × 107 cells/mL, and the mean proportion of toxic Microcystis to that of the total toxic cyanobacteria varied from 21 to 88%. Microcystin concentrations in raw water and sediment samples often peaked during June to October as blooms occurred and varied from 0.27 to 6.59 μg/L and from 1.79 to 544.9 ng/g in wet weight, respectively. The results of this study indicated that conditions favoring Microcystis proliferation lead to the selection of more toxic genotypes. Water temperature and light availability were not driving factor in the formation of TCBs in the TAR. However, the high loads of total nitrogen (TN), phosphate, and total phosphorus (TP) into the water via rainfall runoff in combination with a high total suspended solid (TSS) and decreased water level during the early months of the rainy seasons did lead to a shift in Microcystis blooms and higher proportions of toxic genotypes of Microcystis in the TAR. This research may provide more insight into the occurrence mechanism of TCBs in tropical waters. The strategy to control TCB problems in tropical regions should be focused on these limnological and hydrological parameters, in addition to a reduction in nitrogen and phosphorus loading.
Collapse
Affiliation(s)
- Thanh-Luu Pham
- Ho Chi Minh City University of Technology (HUTECH), 475A Dien Bien Phu Street, Ward 25, Binh Thanh District, Ho Chi Minh City, 700000, Vietnam.
- Institute of Tropical Biology, Vietnam Academy of Science and Technology (VAST), 85 Tran Quoc Toan Street, District 3, Ho Chi Minh City, 700000, Vietnam.
| | - Thi Hoang Yen Tran
- Institute of Tropical Biology, Vietnam Academy of Science and Technology (VAST), 85 Tran Quoc Toan Street, District 3, Ho Chi Minh City, 700000, Vietnam
| | - Kazuya Shimizu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Qintong Li
- Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma, 374-0193, Japan
| | - Motoo Utsumi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| |
Collapse
|
3
|
Seasonal Distribution of Cyanobacteria in Three Urban Eutrophic Lakes Results from an Epidemic-like Response to Environmental Conditions. Curr Microbiol 2021; 78:2298-2316. [PMID: 33904973 DOI: 10.1007/s00284-021-02498-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/16/2021] [Indexed: 10/21/2022]
Abstract
Cyanobacterial communities of three co-located eutrophic sandpit lakes were surveyed during 2016 and 2017 over season and depth using high-throughput DNA sequencing of the 16S rRNA gene. All three lakes were stratified except during April 2017 when the lakes were recovering from a strong mixing event. 16S rRNA gene V4 sequences were parsed into operational taxonomic units (OTUs) at 99% sequence identity. After rarefaction of 139 samples to 25,000 sequences per sample, a combined total of 921,529 partial 16S rRNA gene sequences were identified as cyanobacteria. They were binned into 19,588 unique cyanobacterial OTUs. Of these OTUs, 11,303 were Cyanobium. Filamentous Planktothrix contributed 1537 and colonial Microcystis contributed 265. The remaining 6482 OTUs were considered unclassified. For Planktothrix and Microcystis one OTU accounted for greater than 95% of the total sequences for each genus. However, in both cases the non-dominant OTUs clustered with the dominant OTUs by date, lake, and depth. All Planktothrix OTUs and a single Cyanobium OTU were detected below the oxycline. All other Cyanobium and Microcystis OTUs were detected above the oxycline. The distribution of Cyanobium OTUs between lakes and seasons can be explained by an epidemic-like response where individual OTUs clonally rise from a diverse hypolimnion population when conditions are appropriate. The importance of using 99% identity over the more commonly used 97% is discussed with respect to cyanobacterial community structure. The approach described here can provide another valuable tool for assessing cyanobacterial populations and provide greater insight into the controls of cyanobacterial blooms.
Collapse
|
4
|
Selvarajan R, Sibanda T, Tekere M, Nyoni H, Meddows-Taylor S. Diversity Analysis and Bioresource Characterization of Halophilic Bacteria Isolated from a South African Saltpan. Molecules 2017; 22:E657. [PMID: 28425950 PMCID: PMC6154464 DOI: 10.3390/molecules22040657] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 12/25/2022] Open
Abstract
Though intensive research has been channeled towards the biotechnological applications of halophiles and other extremophilic microbes, these studies have not been, by any means, exhaustive. Saline environments still offer a vast diversity of microbes with potential to produce an array of natural products which can only be unlocked by concerted research efforts. In this study, a combination of culture and molecular approaches were employed to characterize halophilic bacteria from saltpan water samples and profile their potential biotechnological applications. Physicochemical analysis of the water samples showed that pH was alkaline (pH 8.8), with a salinity of 12.8%. 16S rRNA gene targeted amplicon analysis produced 10 bacterial phyla constituting of Bacteroidetes (30.57%), Proteobacteria (15.27%), Actinobacteria (9.05%), Planctomycetes (5.52%) and Cyanobacteria (3.18%). Eighteen strains were identified using sequencing analysis of the culturable bacterial strains. From these, the strains SP7 and SP9 were positive for cellulase production while the strains SP4, SP8 and SP22 were positive for lipase production. Quantitative enzyme assays showed moderate extracellular cellulase activity (1.95 U/mL) and lipase activity (3.71 U/mL) by the isolate SP9 and SP4 respectively. Further, of the six isolates, the isolate SP9 exhibited exploitable potential in the bioremediation of hydrocarbon pollution as demonstrated by its fairly high activity against benzanthracene (70% DCPIP reduction). Elucidation of the isolates secondary metabolites showed the production of the molecules 2,3-butanediol, hexahydro-3-(2-methylpropyl)pyrrole[1,2a]pyrazine-1,4-dione, aziridine, dimethylamine and ethyl acetate (GC-MS) and oxypurinol and 5-hydroxydecanoic acid (LC-MS), particularly by the isolate Salinivibrio sp. SP9. Overall, the study showed that the isolated halophiles can produce secondary metabolites with potential industrial and pharmaceutical application.
Collapse
Affiliation(s)
- Ramganesh Selvarajan
- Department of Environmental Sciences, College of Agriculture and Environmental Sciences, UNISA Science Campus, P.O. Box X6, Florida 1710, South Africa.
| | - Timothy Sibanda
- Department of Environmental Sciences, College of Agriculture and Environmental Sciences, UNISA Science Campus, P.O. Box X6, Florida 1710, South Africa.
| | - Memory Tekere
- Department of Environmental Sciences, College of Agriculture and Environmental Sciences, UNISA Science Campus, P.O. Box X6, Florida 1710, South Africa.
| | - Hlengilizwe Nyoni
- Department of Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, UNISA Science Campus, P.O. Box X6, Florida 1710, South Africa.
| | - Stephen Meddows-Taylor
- College of Agriculture and Environmental Sciences Laboratories, UNISA Science Campus, P.O. Box X6, Florida 1710, South Africa.
| |
Collapse
|
5
|
Temporal Patterns in Bacterioplankton Community Composition in Three Reservoirs of Similar Trophic Status in Shenzhen, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13060599. [PMID: 27322295 PMCID: PMC4924056 DOI: 10.3390/ijerph13060599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/03/2016] [Accepted: 06/08/2016] [Indexed: 11/16/2022]
Abstract
The bacterioplankton community composition's (BCC) spatial and temporal variation patterns in three reservoirs (Shiyan, Xikeng, and LuoTian Reservoir) of similar trophic status in Bao'an District, Shenzhen (China), were investigated using PCR amplification of the 16S rDNA gene and the denaturing gradient gel electrophoresis (DGGE) techniques. Water samples were collected monthly in each reservoir during 12 consecutive months. Distinct differences were detected in band number, pattern, and density of DGGE at different sampling sites and time points. Analysis of the DGGE fingerprints showed that changes in the bacterial community structure mainly varied with seasons, and the patterns of change indicated that seasonal forces might have a more significant impact on the BCC than eutrophic status in the reservoirs, despite the similar Shannon-Weiner index among the three reservoirs. The sequences obtained from excised bands were affiliated with Cyanobacteria, Firmicutes, Bacteriodetes, Acidobacteria, Actinobacteria, Planctomycetes, and Proteobacteria.
Collapse
|