Sharifi A. Co-benefits and synergies between urban climate change mitigation and adaptation measures: A literature review.
THE SCIENCE OF THE TOTAL ENVIRONMENT 2021;
750:141642. [PMID:
32858298 DOI:
10.1016/j.scitotenv.2020.141642]
[Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/08/2020] [Accepted: 08/09/2020] [Indexed: 05/24/2023]
Abstract
Accounting for over 70% of global CO2 emissions, cities are major contributors to climate change. Acknowledging this, urban climate change adaptation and mitigation plans are increasingly developed to make progress toward enhancing climate resilience. While there is consensus that focusing on both adaptation and mitigation is necessary for addressing climate change impacts, better understanding of their interactions is needed to efficiently maximize their potentials. This paper, first, provides a bibliographic analysis to map existing knowledge regarding adaptation-mitigation interactions. This is done using methods such as bibliographic coupling, co-citation analysis, and co-occurrence analysis. Then, drawing on the literature, this study explores two types of interactions between adaptation and mitigation measures, namely co-benefits and synergies. These interactions are explored through analyzing evidence reported in the literature on different measures related to sectors such as energy, transportation, waste, water, green infrastructure, urban planning, and governance. Results of the bibliographic analysis show that there is a lack of research in the Global South. Results of the detailed content analysis show that many measures can provide co-benefits and synergies. Measures related to green infrastructure, buildings, energy systems, and, transportation are particularly capable of providing co-benefits. In addition, it was found that appropriate levels of density, promotion of public transportation, and urban greenery are measures that are more likely to provide synergistic benefits if combined with other adaptation and/or mitigation measures. This study highlights the need for more empirical research to better understand the magnitude of synergistic benefits between different measures.
Collapse