1
|
Guan L, Babujee L, Presler R, Pattinson D, Nguyen HLK, Hoang VMP, Le MQ, van Bakel H, Kawaoka Y, Neumann G. Avian H6 Influenza Viruses in Vietnamese Live Bird Markets during 2018-2021. Viruses 2024; 16:367. [PMID: 38543733 PMCID: PMC10975462 DOI: 10.3390/v16030367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/13/2024] [Accepted: 02/17/2024] [Indexed: 04/01/2024] Open
Abstract
Avian influenza viruses of the H6 subtype are prevalent in wild ducks and likely play an important role in the ecology of influenza viruses through reassortment with other avian influenza viruses. Yet, only 152 Vietnamese H6 virus sequences were available in GISAID (Global Initiative on Sharing All Influenza Data) prior to this study with the most recent sequences being from 2018. Through surveillance in Vietnamese live bird markets from 2018 to 2021, we identified 287 samples containing one or several H6 viruses and other influenza A virus subtypes, demonstrating a high rate of co-infections among birds in Vietnamese live bird markets. For the 132 H6 samples with unique influenza virus sequences, we conducted phylogenetic and genetic analyses. Most of the H6 viruses were similar to each other and closely related to other H6 viruses; however, signs of reassortment with other avian influenza viruses were evident. At the genetic level, the Vietnamese H6 viruses characterized in our study encode a single basic amino acid at the HA cleavage site, consistent with low pathogenicity in poultry. The Vietnamese H6 viruses analyzed here possess an amino acid motif in HA that confers binding to both avian- and human-type receptors on host cells, consistent with their ability to infect mammals. The frequent detection of H6 viruses in Vietnamese live bird markets, the high rate of co-infections of birds with different influenza viruses, and the dual receptor-binding specificity of these viruses warrant their close monitoring for potential infection and spread among mammals.
Collapse
Affiliation(s)
- Lizheng Guan
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin—Madison, Madison, WI 53711, USA; (L.G.); (L.B.); (D.P.)
| | - Lavanya Babujee
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin—Madison, Madison, WI 53711, USA; (L.G.); (L.B.); (D.P.)
| | - Robert Presler
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin—Madison, Madison, WI 53711, USA; (L.G.); (L.B.); (D.P.)
| | - David Pattinson
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin—Madison, Madison, WI 53711, USA; (L.G.); (L.B.); (D.P.)
| | - Hang Le Khanh Nguyen
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam; (H.L.K.N.); (V.M.P.H.); (M.Q.L.)
| | - Vu Mai Phuong Hoang
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam; (H.L.K.N.); (V.M.P.H.); (M.Q.L.)
| | - Mai Quynh Le
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam; (H.L.K.N.); (V.M.P.H.); (M.Q.L.)
| | - Harm van Bakel
- Department of Genetics and Genomic Services, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin—Madison, Madison, WI 53711, USA; (L.G.); (L.B.); (D.P.)
- Division of Virology, Department of Microbiology and Immunology, and International Research Center for Infectious Diseases, The Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- Research Center for Global Viral Diseases, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
- Infection and Advanced Research (UTOPIA) Center, The University of Tokyo Pandemic Preparedness, Tokyo 108-8639, Japan
| | - Gabriele Neumann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin—Madison, Madison, WI 53711, USA; (L.G.); (L.B.); (D.P.)
| |
Collapse
|
2
|
Islam A, Hossain ME, Amin E, Islam S, Islam M, Sayeed MA, Hasan MM, Miah M, Hassan MM, Rahman MZ, Shirin T. Epidemiology and phylodynamics of multiple clades of H5N1 circulating in domestic duck farms in different production systems in Bangladesh. Front Public Health 2023; 11:1168613. [PMID: 37483933 PMCID: PMC10358836 DOI: 10.3389/fpubh.2023.1168613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/30/2023] [Indexed: 07/25/2023] Open
Abstract
Waterfowl are considered to be natural reservoirs of the avian influenza virus (AIV). However, the dynamics of transmission and evolutionary patterns of AIV and its subtypes within duck farms in Bangladesh remain poorly documented. Hence, a cross-sectional study was conducted in nine districts of Bangladesh between 2019 and 2021, to determine the prevalence of AIV and its subtypes H5 and H9, as well as to identify risk factors and the phylodynamics of H5N1 clades circulating in domestic duck farms. The oropharyngeal and cloacal swab samples were tested for the AIV Matrix gene (M-gene) followed by H5, H7, and H9 subtypes using rRT-PCR. The exploratory analysis was performed to estimate AIV and its subtype prevalence in different production systems, and multivariable logistic regression model was used to identify the risk factors that influence AIV infection in ducks. Bayesian phylogenetic analysis was conducted to generate a maximum clade credibility (MCC) tree and the maximum likelihood method to determine the phylogenetic relationships of the H5N1 viruses isolated from ducks. AIV was detected in 40% (95% CI: 33.0-48.1) of the duck farms. The prevalence of AIV was highest in nomadic ducks (39.8%; 95% CI: 32.9-47.1), followed by commercial ducks (24.6%; 95% CI: 14.5-37.3) and backyard ducks (14.4%; 95% CI: 10.5-19.2). The H5 prevalence was also highest in nomadic ducks (19.4%; 95% CI: 14.0-25.7). The multivariable logistic regression model revealed that ducks from nomadic farms (AOR: 2.4; 95% CI: 1.45-3.93), juvenile (AOR: 2.2; 95% CI: 1.37-3.61), and sick ducks (AOR: 11.59; 95% CI: 4.82-32.44) had a higher risk of AIV. Similarly, the likelihood of H5 detection was higher in sick ducks (AOR: 40.8; 95% CI: 16.3-115.3). Bayesian phylogenetic analysis revealed that H5N1 viruses in ducks belong to two distinct clades, 2.3.2.1a, and 2.3.4.4b. The clade 2.3.2.1a (reassorted) has been evolving silently since 2015 and forming at least nine subgroups based on >90% posterior probability. Notably, clade 2.3.4.4b was introduced in ducks in Bangladesh by the end of the year 2020, which was genetically similar to viruses detected in wild birds in Japan, China, and Africa, indicating migration-associated transmission of an emerging panzootic clade. We recommend continuing AIV surveillance in the duck production system and preventing the intermingling of domestic ducks with migratory waterfowl in wetlands.
Collapse
Affiliation(s)
- Ariful Islam
- EcoHealth Alliance, New York, NY, United States
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia
| | - Mohammad Enayet Hossain
- One Health Laboratory, International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Emama Amin
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh
| | - Shariful Islam
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh
| | - Monjurul Islam
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh
| | - Md Abu Sayeed
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh
| | - Md Mehedi Hasan
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh
| | - Mojnu Miah
- One Health Laboratory, International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Mohammad Mahmudul Hassan
- Queensland Alliance for One Health Sciences, School of Veterinary Science, University of Queensland, Brisbane, QLD, Australia
| | - Mohammed Ziaur Rahman
- One Health Laboratory, International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Tahmina Shirin
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh
| |
Collapse
|
3
|
Ren W, Pei S, Jiang W, Zhao M, Jiang L, Liu H, Yi Y, Hui M, Li J. A replication-deficient H9N2 influenza virus carrying H5 hemagglutinin conferred protection against H9N2 and H5N1 influenza viruses in mice. Front Microbiol 2022; 13:1042916. [PMID: 36458187 PMCID: PMC9705590 DOI: 10.3389/fmicb.2022.1042916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 10/26/2022] [Indexed: 05/07/2024] Open
Abstract
H5N1 and H9N2 influenza viruses have been reported to cause human infections and are believed to have pandemic potential. The vaccine is an effective tool to prevent influenza virus infection. However, inactivated influenza vaccines sometimes result in low antigenicity as result leads to generating of incomplete immune protection in the form of low cellular and humoral immunity. While the low temperature adapted, traditional live attenuated influenza vaccine (LAIV) is associated with the potential risk to revert to a virulent phenotype, there appears an essential need for an alternative potent methodology to design and develop influenza vaccines with substantial safety and efficacy which may confer solid protection against H9N2 or H5N1 influenza virus infections. In the present study, a replication-deficient recombinant influenza virus, WM01ma-HA(H5), expressing hemagglutinin (HA) of both H9N2 and H5N1 subtypes was developed. The chimeric gene segment expressing HA(H5), was designed using the sequence of an open reading frame (ORF) of HA adopted from A/wild duck/Hunan/021/2005(H5N1)(HN021ma) which was flanked by the NA packaging signals of mouse-adapted strain A/Mink/Shandong/WM01/2014(H9N2)(WM01ma). Due to the absence of ORF of structural protein NA, the replication of this engineered H9N2 influenza viruses WM01ma-HA(H5) was hampered in vitro and in vivo but was well competent in MDCK cells stably expressing the NA protein of WM01ma. Intranasal vaccination of mice with WM01ma-HA(H5) stimulated robust immune response without any clinical signs and conferred complete protection from infection by H5N1 or H9N2 subtype influenza viruses.
Collapse
Affiliation(s)
- Weigang Ren
- School of Life Science, Northeast Agricultural University, Harbin, China
| | - Shuli Pei
- Henan Vocational College of Agriculture, Zhongmu, China
| | - Wenming Jiang
- Laboratory of Surveillance for Avian Diseases, China Animal Health and Epidemiology Center, Qingdao, China
| | - Meixia Zhao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Le Jiang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Honggang Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Yongxiang Yi
- Department of Infectious Diseases, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
- The Clinical Infectious Disease Center of Nanjing, Nanjing, China
| | - Mizhou Hui
- School of Life Science, Northeast Agricultural University, Harbin, China
| | - Junwei Li
- Department of Infectious Diseases, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
- The Clinical Infectious Disease Center of Nanjing, Nanjing, China
| |
Collapse
|
4
|
Regional Distribution of Non-human H7N9 Avian Influenza Virus Detections in China and Construction of a Predictive Model. J Vet Res 2021; 65:253-264. [PMID: 34917836 PMCID: PMC8643092 DOI: 10.2478/jvetres-2021-0034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 06/10/2021] [Indexed: 11/24/2022] Open
Abstract
Introduction H7N9 avian influenza has broken out in Chinese poultry 10 times since 2013 and impacted the industry severely. Although the epidemic is currently under control, there is still a latent threat. Material and Methods Epidemiological surveillance data for non-human H7N9 avian influenza from April 2013 to April 2020 were used to analyse the regional distribution and spatial correlations of positivity rates in different months and years and before and after comprehensive immunisation. In addition, positivity rate monitoring data were disaggregated into a low-frequency and a high-frequency trend sequence by wavelet packet decomposition (WPD). The particle swarm optimisation algorithm was adopted to optimise the least squares support-vector machine (LS-SVM) model parameters to predict the low-frequency trend sequence, and the autoregressive integrated moving average (ARIMA) model was used to predict the high-frequency one. Ultimately, an LS-SVM-ARIMA combined model based on WPD was constructed. Results The virus positivity rate was the highest in late spring and early summer, and overall it fell significantly after comprehensive immunisation. Except for the year 2015 and the single month of December from 2013 to 2020, there was no significant spatiotemporal clustering in cumulative non-human H7N9 avian influenza virus detections. Compared with the ARIMA and LS-SVM models, the LS-SVM-ARIMA combined model based on WPD had the highest prediction accuracy. The mean absolute and root mean square errors were 2.4% and 2.0%, respectively. Conclusion Low error measures prove the validity of this new prediction method and the combined model could be used for inference of future H7N9 avian influenza virus cases. Live poultry markets should be closed in late spring and early summer, and comprehensive H7N9 immunisation continued.
Collapse
|
5
|
Yousefinaghani S, Dara R, Poljak Z, Song F, Sharif S. A framework for the risk prediction of avian influenza occurrence: An Indonesian case study. PLoS One 2021; 16:e0245116. [PMID: 33449934 PMCID: PMC7810353 DOI: 10.1371/journal.pone.0245116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 12/23/2020] [Indexed: 12/21/2022] Open
Abstract
Avian influenza viruses can cause economically devastating diseases in poultry and have the potential for zoonotic transmission. To mitigate the consequences of avian influenza, disease prediction systems have become increasingly important. In this study, we have proposed a framework for the prediction of the occurrence and spread of avian influenza events in a geographical area. The application of the proposed framework was examined in an Indonesian case study. An extensive list of historical data sources containing disease predictors and target variables was used to build spatiotemporal and transactional datasets. To combine disparate sources, data rows were scaled to a temporal scale of 1-week and a spatial scale of 1-degree × 1-degree cells. Given the constructed datasets, underlying patterns in the form of rules explaining the risk of occurrence and spread of avian influenza were discovered. The created rules were combined and ordered based on their importance and then stored in a knowledge base. The results suggested that the proposed framework could act as a tool to gain a broad understanding of the drivers of avian influenza epidemics and may facilitate the prediction of future disease events.
Collapse
Affiliation(s)
| | - Rozita Dara
- School of Computer Science, University of Guelph, Guelph, Ontario, Canada
- * E-mail:
| | - Zvonimir Poljak
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Fei Song
- School of Computer Science, University of Guelph, Guelph, Ontario, Canada
| | - Shayan Sharif
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
6
|
Kandeil A, Hicks JT, Young SG, El Taweel AN, Kayed AS, Moatasim Y, Kutkat O, Bagato O, McKenzie PP, Cai Z, Badra R, Kutkat M, Bahl J, Webby RJ, Kayali G, Ali MA. Active surveillance and genetic evolution of avian influenza viruses in Egypt, 2016-2018. Emerg Microbes Infect 2020; 8:1370-1382. [PMID: 31526249 PMCID: PMC6758608 DOI: 10.1080/22221751.2019.1663712] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Egypt is a hotspot for avian influenza virus (AIV) due to the endemicity of H5N1 and H9N2 viruses. AIVs were isolated from 329 samples collected in 2016–2018; 48% were H9N2, 37.1% were H5N8, 7.6% were H5N1, and 7.3% were co-infections with 2 of the 3 subtypes. The 32 hemagglutinin (HA) sequences of the H5N1 viruses formed a well-defined lineage within clade 2.2.1.2. The 10 HA sequences of the H5N8 viruses belonged to a subclade within 2.3.4.4. The 11 HA of H9N2 isolates showed high sequence homology with other Egyptian G1-like H9N2 viruses. The prevalence of H5N8 viruses in ducks (2.4%) was higher than in chickens (0.94%). Genetic reassortment was detected in H9N2 viruses. Antigenic analysis showed that H9N2 viruses are homogenous, antigenic drift was detected among H5N1 viruses. AI H5N8 showed higher replication rate followed by H9N2 and H5N1, respectively. H5N8 was more common in Southern Egypt, H9N2 in the Nile Delta, and H5N1 in both areas. Ducks and chickens played a significant role in transmission of H5N1 viruses. The endemicity and co-circulation of H5N1, H5N8, and H9N2 AIV coupled with the lack of a clear control strategy continues to provide avenues for further virus evolution in Egypt.
Collapse
Affiliation(s)
- Ahmed Kandeil
- Center of Scientific Excellence for Influenza Viruses, Water Pollution Research Department, National Research Centre , Giza , Egypt
| | - Joseph T Hicks
- University of Texas Health Sciences Center , Houston , TX , USA.,Center for the Ecology of Infectious Diseases, University of Georgia , Athens , USA
| | - Sean G Young
- University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Ahmed N El Taweel
- Center of Scientific Excellence for Influenza Viruses, Water Pollution Research Department, National Research Centre , Giza , Egypt
| | - Ahmed S Kayed
- Center of Scientific Excellence for Influenza Viruses, Water Pollution Research Department, National Research Centre , Giza , Egypt
| | - Yassmin Moatasim
- Center of Scientific Excellence for Influenza Viruses, Water Pollution Research Department, National Research Centre , Giza , Egypt
| | - Omnia Kutkat
- Center of Scientific Excellence for Influenza Viruses, Water Pollution Research Department, National Research Centre , Giza , Egypt
| | - Ola Bagato
- Center of Scientific Excellence for Influenza Viruses, Water Pollution Research Department, National Research Centre , Giza , Egypt
| | | | - Zhipeng Cai
- Georgia State University , Atlanta , GA , USA
| | | | - Mohamed Kutkat
- Poultry Diseases Department, National Research Centre , Giza , Egypt
| | - Justin Bahl
- University of Texas Health Sciences Center , Houston , TX , USA.,Center for the Ecology of Infectious Diseases, University of Georgia , Athens , USA
| | | | - Ghazi Kayali
- University of Texas Health Sciences Center , Houston , TX , USA.,Human Link , Hazmieh , Lebanon
| | - Mohamed A Ali
- Center of Scientific Excellence for Influenza Viruses, Water Pollution Research Department, National Research Centre , Giza , Egypt
| |
Collapse
|
7
|
Shehata AA, Sedeik ME, Elbestawy AR, Zain El-Abideen MA, Ibrahim HH, Kilany WH, Ali A. Co-infections, genetic, and antigenic relatedness of avian influenza H5N8 and H5N1 viruses in domestic and wild birds in Egypt. Poult Sci 2019; 98:2371-2379. [PMID: 30668795 PMCID: PMC7107238 DOI: 10.3382/ps/pez011] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/04/2019] [Indexed: 12/28/2022] Open
Abstract
A total of 50 poultry farms of commercial broilers (N = 39) and commercial layers (N = 11) suffered from respiratory problems and mortality during the period from January 2016 to December 2017 were investigated. Also, samples were collected from quail (N = 4), Bluebird (Sialis, N = 1), and Greenfinch (Chloris chloris, N = 1) for analysis. Respiratory viral pathogens were screened by PCR and positive samples were subjected to virus isolation and genetic identification. Antigenic relatedness of isolated avian influenza (AI) H5 subtype was evaluated using cross-hemagglutination inhibition. Results revealed that the incidence of single virus infections in commercial broilers was 64.1% (25/39), with the highest incidence for ND (33.3%) and H9N2 (20.5%), followed by H5N1 (7.7%) and H5N8 (2.7). Meanwhile, H9N2/ND mixed infection was the most observed case (7.7%). Other mixed infections H5N1/ND, H5N1/H9N2/ND, H5N1/H9N2/ND/IB, H9N2/IB, and H9N2/ILT were also observed (2.6% each). In commercial layers, H5N1 and ILT were the only detected single infections (18.1% each). Mixed H9N2/ND was the most predominant infection in layers (27.3%). Other mixed infections of H9N2/IB, H5N1/H5N8/H9N2, and H9N2/ND/IB were observed in 3 separate farms (9.1% each). The H5N8 virus was detected in one quail farm and 2 out of 3 wild bird's samples. Partial HA gene sequence analysis showed the clustering of the selected AI H5N8 within the 2.3.4.4 clade, while H5N1 clustered with the clade 2.2.1.2. Interestingly, the H5N8 isolated from chickens possessed 6 amino acids substitutions at HA1 compared to those isolated from wild birds with low antigenic relatedness to AI H5N1 clades 2.2.1 or 2.2.1.2. In conclusion, mixed viral infections were observed in both broiler and layer chickens in Egypt. The detected triple H5N1, H9N2, and H5N8 influenza co-infection raises the concern of potential AI epidemic strain emergence. The low genetic and antigenic relatedness between AI H5N1 and H5N8 viruses suggest the need for modification of vaccination strategies of avian influenza in Egypt along with strict biosecurity measures.
Collapse
Affiliation(s)
- Awad A Shehata
- Avian and Rabbit Diseases Department, Faculty of Veterinary Medicine, University of Sadat City, Egypt
| | - Mahmoud E Sedeik
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Ahmed R Elbestawy
- Poultry Diseases Department, Faculty of Veterinary medicine, Damanhur University, Behaira, Egypt
| | - Mohamed A Zain El-Abideen
- Veterinary Quality Control on Poultry Production (RLQP), Animal Health Research Institute (AHRI), Dokki, Giza, Egypt
| | - Hytham H Ibrahim
- Poultry Diseases Department, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt
| | - Walid H Kilany
- Veterinary Quality Control on Poultry Production (RLQP), Animal Health Research Institute (AHRI), Dokki, Giza, Egypt
| | - Ahmed Ali
- Poultry Diseases Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| |
Collapse
|
8
|
Eladl AH, Alzayat AA, Ali HS, Fahmy HA, Ellakany HF. Comparative molecular characterization, pathogenicity and seroprevalence of avian influenza virus H9N2 in commercial and backyard poultry flocks. Comp Immunol Microbiol Infect Dis 2019; 64:81-89. [PMID: 31174705 DOI: 10.1016/j.cimid.2019.02.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/24/2019] [Accepted: 02/26/2019] [Indexed: 10/27/2022]
Abstract
This study was conducted to perform the comparative molecular characterization of avian influenza virus (AIV) H9N2, pathogenicity and seroprevalence in commercial and backyard poultry flocks. Fifty commercial poultry flocks were investigated between 2012 and 2015. Eighteen flocks (36%) out of 50 were positive HA. Seven (38.9%) out of 18 were positive by chromatographic strip test for AI common antigen. By Real-time RT-PCR, only two flocks were positive H9. The molecular characterization of two different AI-H9N2 viruses, one isolated from a broiler flock (A/chicken/Egypt/Mansoura-18/2013) and the other from a layer flock (A/chicken/Egypt/Mansoura-36/2015) was conducted on HA gene. Moreover, a higher seroprevalence, using the broiler strain as a known antigen, was shown in backyard chicken flocks 15/26 (57.7%) than duck flocks 9/74 (12.2%). Interestingly, the pathogenicity index (PI) of the H9N2 broiler strain in inoculated experimental chickens ranged from 1.2 (oculonasal route) to 1.9 (Intravenous route). The PI indicated a highly pathogenic effect, with high mortality (up to 100%) in the inoculated chickens correlated with the high mortality (80%) in the flock where the virus was isolated. The firstly recorded clinical signs, including cyanosis in the combs and wattles and subcutaneous haemorrhages in the leg shanks and lesions, as well as histopathology and immunohistochemistry, revealed a systemic infection of the high pathogenicity with the H9N2 virus. Conversely, the H9N2 layer strain showed a low pathogenicity. In conclusion, as a first report, the molecular analysis and pathogenicity of the tested strains confirmed the presence of a high pathogenicity AIV-H9N2 with systemic infections.
Collapse
Affiliation(s)
- Abdelfattah H Eladl
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Mansoura University, Egypt.
| | - Asmaa A Alzayat
- Department of Poultry Diseases, Animal Health Research Institute, Mansoura branch, Egypt
| | - Hanaa S Ali
- Department of Pathology, Animal Health Research Institute, Mansoura branch, Egypt
| | - Hanan A Fahmy
- Department of Biotechnology, Animal Health Research Institute, Dokki, Egypt
| | - Hany F Ellakany
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Damanhour University, Egypt
| |
Collapse
|
9
|
Enhanced infection of avian influenza virus H9N2 with infectious laryngeotracheitis vaccination in chickens. Vet Microbiol 2018; 219:8-16. [PMID: 29778208 DOI: 10.1016/j.vetmic.2018.04.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 11/21/2022]
Abstract
Avian influenza and infectious laryngeotracheitis viruses are common causes of respiratory diseases in chickens with economical importance worldwide. In this study, we investigated the effect of experimental co-infection of avian influenza virus-H9N2 (AIV-H9N2) with infectious laryngeotracheitis virus (ILTV) live-attenuated vaccine (LAR-VAC®) on chickens. Four experimental groups were included in this study: negative control group, AIV-H9N2 group, AIV-H9N2+LAR-VAC® group, and LAR-VAC® group. AIV-H9N2 was inoculated intranasally to challenged groups at 35 days of age. On the same day, LAR-VAC® was ocularly administered to vaccinated groups. Chickens were observed for clinical signs, changes in body weight and mortality rates. Tissue samples, sera, tracheal and cloacal swabs, and blood were also collected at 3, 6, 9 and 12 days post-infection (PI). A significant increase in clinical signs and mortality rates were observed in the AIV-H9N2 + LAR-VAC® group. Moreover, chickens coinfected with AIV-H9N2 and LAR-VAC® showed a significant decrease in body weight and lymphoid organs indices. The tracheal gross and histopathological lesions and the shedding titer and period of AIV-H9N2 were significantly higher in AIV-H9N2 + LAR-VAC® group when compared to other groups. Furthermore, AIV-H9N2 infection leads to humoral and cellular immunosuppression as shown by a significant decrease in the CD4+/CD8+ ratio and antibody responses to ILTV and a significant increase in H/L ratio. In conclusion, this is the first report of co-infection of AIV-H9N2 and ILTV vaccine in chickens, which leads to increased pathogenicity, pathological lesions, and AIV-H9N2 shedding titer and period, which can lead to severe economic losses due to poor weight gain and mortality.
Collapse
|
10
|
Abstract
Highly pathogenic avian influenza (HPAI) H5N1 viruses are currently endemic in poultry in Egypt. Eradication of the viruses has been unsuccessful due to improper application of vaccine-based control strategies among other preventive measures. The viruses have evolved rapidly with increased bird-to-human transmission efficacy, thus affecting both animal and public health. Subsequent spread of potentially zoonotic low pathogenic avian influenza (LPAI) H9N2 in poultry has also hindered efficient control of avian influenza. The H5N1 viruses acquired enhanced bird-to-human transmissibility by (1) altering amino acids in hemagglutinin (HA) that enable binding affinity to human-type receptors, (2) loss of the glycosylation site and 130 loop in the HA protein and (3) mutation of E627K in the PB2 protein to enhance viral replication in mammalian hosts. The receptor binding site of HA of Egyptian H9N2 viruses has been shown to contain the Q234L substitution along with a H191 mutation, which can increase human-like receptor specificity. Therefore, co-circulation of H5N1 and H9N2 viruses in poultry farming and live bird markets has increased the risk of human exposure, resulting in complication of the epidemiological situation and raising a concern for potential emergence of a new influenza A virus pandemic. For efficient control of infection and transmission, the efficacy of vaccine and vaccination needs to be improved with a comprehensive control strategy, including enhanced biosecurity, education, surveillance, rapid diagnosis and culling of infected poultry.
Collapse
|
11
|
Wei K, Li Y. Global genetic variation and transmission dynamics of H9N2 avian influenza virus. Transbound Emerg Dis 2017; 65:504-517. [PMID: 29086491 DOI: 10.1111/tbed.12733] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Indexed: 11/29/2022]
Abstract
The H9N2 influenza viruses are extensively circulating in the poultry population, and variable genotypes can be generated through mutation, recombination and reassortment, which may be better adapted to infect a new host, resist drug treatment or escape immune pressure. The LPAI H9N2 viruses have the potential to evolve towards high levels of virulence in human. Some studies about the regional dispersal were reported, but global dissemination and the drivers of the virus are poorly understood, particularly at the genome scale. Here, we have analysed all eight gene segments of 168 H9N2 genomes sampled randomly aiming to provide a panoramic framework for better understanding the genesis and genetic variation of the viruses, and utilized phylogeography and spatial epidemiology approaches to uncover the effects of the genetic variation, predictors and spread of H9N2 viruses. We found that more frequent reassortment events involve segments PA, NP and NS, and 21 isolates have possible mosaic structure resulting from recombination events. Estimates of gene-specific global dN/dS ratios showed that all genes were subject to purifying selection. However, a total of 13 sites were detected under positive selection by at least two of three methods, which located within segments HA, NA, M2, NS1 and PA. Additionally, we inferred that NA segment has the highest rate of nucleotide substitution, and its tMRCA estimate is the youngest than the remaining segments' inference. About the spatial history, air transportation of human was identified as the predominant driver of global viral migration using GLM analysis, and economic factors and geographical distance were the modest predictors. Higher migration rates were estimated between five pairs of regions (>0.01) indicating the frequent migration of the viruses between discrete geographical locations. Further, our Markov jumps analysis showed that viral migration is more frequent between Southern China and Northern China, and high rate of gene flow was observed between America and East Asia. Moreover, the America together with Southeast Asia acted as the primary hubs of global transmission, forming the trunk of evolutionary tree. These findings suggested a complex interaction between virus evolution, epidemiology and human behaviour.
Collapse
Affiliation(s)
- K Wei
- School of Biological Sciences and Biotechnology, Minnan Normal University, Zhangzhou, China
| | - Y Li
- School of Biological Sciences and Biotechnology, Minnan Normal University, Zhangzhou, China
| |
Collapse
|
12
|
Buliva E, Elhakim M, Tran Minh NN, Elkholy A, Mala P, Abubakar A, Malik SMMR. Emerging and Reemerging Diseases in the World Health Organization (WHO) Eastern Mediterranean Region-Progress, Challenges, and WHO Initiatives. Front Public Health 2017; 5:276. [PMID: 29098145 PMCID: PMC5653925 DOI: 10.3389/fpubh.2017.00276] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/27/2017] [Indexed: 11/22/2022] Open
Abstract
The Eastern Mediterranean Region (EMR) of the World Health Organization (WHO) continues to be a hotspot for emerging and reemerging infectious diseases and the need to prevent, detect, and respond to any infectious diseases that pose a threat to global health security remains a priority. Many risk factors contribute in the emergence and rapid spread of epidemic diseases in the Region including acute and protracted humanitarian emergencies, resulting in fragile health systems, increased population mobility, rapid urbanization, climate change, weak surveillance and limited laboratory diagnostic capacity, and increased human-animal interaction. In EMR, several infectious disease outbreaks were detected, investigated, and rapidly contained over the past 5 years including: yellow fever in Sudan, Middle East respiratory syndrome in Bahrain, Oman, Qatar, Saudi Arabia, United Arab Emirates, and Yemen, cholera in Iraq, avian influenza A (H5N1) infection in Egypt, and dengue fever in Yemen, Sudan, and Pakistan. Dengue fever remains an important public health concern, with at least eight countries in the region being endemic for the disease. The emergence of MERS-CoV in the region in 2012 and its continued transmission currently poses one of the greatest threats. In response to the growing frequency, duration, and scale of disease outbreaks, WHO has worked closely with member states in the areas of improving public health preparedness, surveillance systems, outbreak response, and addressing critical knowledge gaps. A Regional network for experts and technical institutions has been established to facilitate support for international outbreak response. Major challenges are faced as a result of protracted humanitarian crises in the region. Funding gaps, lack of integrated approaches, weak surveillance systems, and absence of comprehensive response plans are other areas of concern. Accelerated efforts are needed by Regional countries, with the continuous support of WHO, to build and maintain a resilient public health system for detection and response to all acute public health events.
Collapse
Affiliation(s)
- Evans Buliva
- Regional Office for the Eastern Mediterranean, World Health Organization, Cairo, Egypt
| | - Mohamed Elhakim
- Regional Office for the Eastern Mediterranean, World Health Organization, Cairo, Egypt
| | - Nhu Nguyen Tran Minh
- Regional Office for the Eastern Mediterranean, World Health Organization, Cairo, Egypt
| | - Amgad Elkholy
- Regional Office for the Eastern Mediterranean, World Health Organization, Cairo, Egypt
| | - Peter Mala
- Regional Office for the Eastern Mediterranean, World Health Organization, Cairo, Egypt
| | - Abdinasir Abubakar
- Regional Office for the Eastern Mediterranean, World Health Organization, Cairo, Egypt
| | | |
Collapse
|
13
|
Naguib MM, Grund C, Arafa AS, Abdelwhab EM, Beer M, Harder TC. Heterologous post-infection immunity against Egyptian avian influenza virus (AIV) H9N2 modulates the course of subsequent infection by highly pathogenic AIV H5N1, but vaccination immunity does not. J Gen Virol 2017; 98:1169-1173. [DOI: 10.1099/jgv.0.000767] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Mahmoud M. Naguib
- The Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Suedufer 10, Greifswald Insel-Riems 17493, Germany
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Giza 12618, Egypt
| | - Christian Grund
- The Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Suedufer 10, Greifswald Insel-Riems 17493, Germany
| | - Abdel-Satar Arafa
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Giza 12618, Egypt
| | - E. M. Abdelwhab
- The Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Suedufer 10, Greifswald Insel-Riems 17493, Germany
| | - Martin Beer
- The Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Suedufer 10, Greifswald Insel-Riems 17493, Germany
| | - Timm C. Harder
- The Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Suedufer 10, Greifswald Insel-Riems 17493, Germany
| |
Collapse
|
14
|
Remote Sensing, Crowd Sensing, and Geospatial Technologies for Public Health: An Editorial. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14040405. [PMID: 28398268 PMCID: PMC5409606 DOI: 10.3390/ijerph14040405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 04/07/2017] [Accepted: 04/08/2017] [Indexed: 11/29/2022]
|
15
|
How's the Flu Getting Through? Landscape genetics suggests both humans and birds spread H5N1 in Egypt. INFECTION GENETICS AND EVOLUTION 2017; 49:293-299. [PMID: 28179143 DOI: 10.1016/j.meegid.2017.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/01/2017] [Accepted: 02/03/2017] [Indexed: 11/22/2022]
Abstract
First introduced to Egypt in 2006, H5N1 highly pathogenic avian influenza has resulted in the death of millions of birds and caused over 350 infections and at least 117 deaths in humans. After a decade of viral circulation, outbreaks continue to occur and diffusion mechanisms between poultry farms remain unclear. Using landscape genetics techniques, we identify the distance models most strongly correlated with the genetic relatedness of the viruses, suggesting the most likely methods of viral diffusion within Egyptian poultry. Using 73 viral genetic sequences obtained from infected birds throughout northern Egypt between 2009 and 2015, we calculated the genetic dissimilarity between H5N1 viruses for all eight gene segments. Spatial correlation was evaluated using Mantel tests and correlograms and multiple regression of distance matrices within causal modeling and relative support frameworks. These tests examine spatial patterns of genetic relatedness, and compare different models of distance. Four models were evaluated: Euclidean distance, road network distance, road network distance via intervening markets, and a least-cost path model designed to approximate wild waterbird travel using niche modeling and circuit theory. Samples from backyard farms were most strongly correlated with least cost path distances. Samples from commercial farms were most strongly correlated with road network distances. Results were largely consistent across gene segments. Results suggest wild birds play an important role in viral diffusion between backyard farms, while commercial farms experience human-mediated diffusion. These results can inform avian influenza surveillance and intervention strategies in Egypt.
Collapse
|