1
|
Zhang H, Li L, Liu X, Duan L, Zhang X, Dong L, Liu X, Li P, Li B, Xue M, Xia G. The Overlooked Role of Humin in Dark Hydroxyl Radical Production during Oxygenation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18033-18040. [PMID: 39325111 DOI: 10.1021/acs.est.4c06101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Humin, endowed with abundant redox functional groups, can be reduced anaerobically under dark. When reduced humin encounters O2, the possibility of ·OH formation arises. However, the exploration of ·OH generation mediated by humin has not been comprehensively conducted. The study found that O2 oxidized the reduced humin, generating 8.61 μmol/g of ·OH. After isolating humin using the methyl isobutyl ketone (MIBK) method, the lipid component was identified as the primary contributor to ·OH generation. Subsequent polar separation revealed that the lipid fraction extracted from the ethanol-water mixture with a volume ratio of 7:3 (LFEW7:3) played the most significant role in ·OH production. Further characterization confirmed that the simultaneous presence of aromatic C═C and C═O were the predominant features contributing to the ·OH generation. The ·OH generation experiments with humin-pyridine analogue compound demonstrated that polycyclic pyridine N (≥3 rings) played a significant role in promoting the ·OH generation. Most importantly, the study compared the ·OH production by humin and homologous humic acid, indicating that ·OH generated by humin was higher than that of humic acid. Overall, these affirmative findings manifested the overlooked role of humin in ·OH production and offered valuable insights into the mechanism of ·OH generation by humin in the dark.
Collapse
Affiliation(s)
- Handan Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
- Research and Development Center for Watershed Environmental Eco-Engineering, Beijing Normal University, Zhuhai 519087, PR China
| | - Liping Li
- Research and Development Center for Watershed Environmental Eco-Engineering, Beijing Normal University, Zhuhai 519087, PR China
| | - Xinhui Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
- Research and Development Center for Watershed Environmental Eco-Engineering, Beijing Normal University, Zhuhai 519087, PR China
| | - Linshuai Duan
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Xin Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
- Research and Development Center for Watershed Environmental Eco-Engineering, Beijing Normal University, Zhuhai 519087, PR China
| | - Lu Dong
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
- Research and Development Center for Watershed Environmental Eco-Engineering, Beijing Normal University, Zhuhai 519087, PR China
| | - Xiqin Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Pengcheng Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
- Research and Development Center for Watershed Environmental Eco-Engineering, Beijing Normal University, Zhuhai 519087, PR China
| | - Bohan Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
- Research and Development Center for Watershed Environmental Eco-Engineering, Beijing Normal University, Zhuhai 519087, PR China
| | - Mengzhu Xue
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
- Research and Development Center for Watershed Environmental Eco-Engineering, Beijing Normal University, Zhuhai 519087, PR China
| | - Guohui Xia
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
- Research and Development Center for Watershed Environmental Eco-Engineering, Beijing Normal University, Zhuhai 519087, PR China
| |
Collapse
|
2
|
Chen D, Li Y, Jiang Q, Chen C, Xiao Z. Biogenic ferrihydrite-humin coprecipitate as an electron donor for the enhancement of microbial denitrification by Pseudomonas stutzeri. ENVIRONMENTAL RESEARCH 2023; 216:114837. [PMID: 36400223 DOI: 10.1016/j.envres.2022.114837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/30/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Nitrate pollution of groundwater has become an increasingly serious environmental problem that poses a great threat to aquatic ecosystems and to human health. Previous studies have shown that solid-phase humin (HM) can act as an additional electron donor to support microbial denitrification in the bioremediation of nitrate-contaminated groundwater where electron donor is deficient. However, the electron-donating capacities of HMs vary widely. In this study, we introduced ferrihydrite and prepared ferrihydrite-humin (Fh-HM) coprecipitates via biotic means to strengthen their electron-donating capacities. The spectroscopic results showed that the crystal phase of Fh did not change after coprecipitation with HM in the presence of Shewanella oneidensis MR-1, and iron may have complexed with the organic groups of HM. The Fh-HM coprecipitate prepared with an optimal initial Fh-HM mass ratio of 14:1 enhanced the microbial denitrification of Pseudomonas stutzeri with an electron-donating capacity 2.4-fold higher than that of HM alone, and the enhancement was not caused by greater bacterial growth. The alginate bead embedding assay indicated that the oxidation pathway of Fh-HM coprecipitate was mainly through direct contact between P. stutzeri and the coprecipitate. Further analyses suggested that quinone and organic-complexed Fe were the main electron-donating fractions of the coprecipitate. The results of the column experiments demonstrated that the column filled with Fh-HM-coated quartz sand exhibited a higher denitrification rate than the one filled with quartz sand, indicating its potential for practical applications.
Collapse
Affiliation(s)
- Dan Chen
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, PR China
| | - Yi Li
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, PR China
| | - Qitao Jiang
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, PR China
| | - Chuang Chen
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, PR China
| | - Zhixing Xiao
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, PR China.
| |
Collapse
|
3
|
Hu T, Pham DM, Kasai T, Katayama A. The Emergence of Extracellular Electron Mediating Functionality in Rice Straw-Artificial Soil Mixture during Humification. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15173. [PMID: 36429897 PMCID: PMC9691237 DOI: 10.3390/ijerph192215173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
This study aimed to elucidate the origin of extracellular electron mediating (EEM) functionality and redox-active center(s) in humic substances, where they are ubiquitously distributed. Here, we show the emergence of EEM functionality during the humification of rice straw in artificial soil (kaolin and sand) with a matric potential of -100 cm at 20 °C for one year. We used the dechlorination activity of an EEM material-dependent pentachlorophenol-dechlorinating anaerobic microbial consortium as an index of the EEM functionality. Although rice straw and its mixture with artificial soil did not initially have EEM functionality, it emerged after one month of humification and increased until six months after which the functionality was maintained for one year. Chemical and electrochemical characterizations demonstrated that the emergence and increase in EEM functionality were correlated with the degradation of rice straw, formation of quinone structures, a decrease in aromatic structures, an increase in nitrogenous and aliphatic structures, and specific electric capacitance during humification. The newly formed quinone structure was suggested as a potential redox-active center for the EEM functionality. These findings provide novel insights into the dynamic changes in EEM functionality during the humification of organic materials.
Collapse
Affiliation(s)
- Tingting Hu
- Graduate School of Engineering, Nagoya University, Tokai National Higher Education and Research System, Nagoya 464-8603, Japan
| | - Duyen Minh Pham
- Institute of Materials and Systems for Sustainability, Nagoya University, Tokai National Higher Education and Research System, Nagoya 464-8603, Japan
| | - Takuya Kasai
- Graduate School of Engineering, Nagoya University, Tokai National Higher Education and Research System, Nagoya 464-8603, Japan
- Institute of Materials and Systems for Sustainability, Nagoya University, Tokai National Higher Education and Research System, Nagoya 464-8603, Japan
| | - Arata Katayama
- Graduate School of Engineering, Nagoya University, Tokai National Higher Education and Research System, Nagoya 464-8603, Japan
- Institute of Materials and Systems for Sustainability, Nagoya University, Tokai National Higher Education and Research System, Nagoya 464-8603, Japan
| |
Collapse
|
4
|
Pham DM, Dey S, Katayama A. Activation of extracellular electron network in non-electroactive bacteria by Bombyx mori silk. Int J Biol Macromol 2022; 195:1-11. [PMID: 34871655 DOI: 10.1016/j.ijbiomac.2021.11.190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/18/2021] [Accepted: 11/27/2021] [Indexed: 11/05/2022]
Abstract
Extracellular electron transfer material (EETM) has increasingly attracted attentions for the enhancing effect on multiple microbial reactions. Especially, EETM is known to be essential to activate the energy network in non-electroactive bacteria. It is motivated to find out an EETM which is natural-based, environmentally friendly, and easily produced at large-scale. In this study, Bombyx mori silk is found, for the first time, to function as an EETM by using an EETM-dependent pentachlorophenol (PCP) dechlorinating anaerobic microbial culture. Subsequently, by dividing fibroin fiber into different soluble/insoluble fractions and correlating their EET functions with their structural properties based on various spectroscopic analyses, the β-sheet configuration is suggested as an essential structure supporting the EET function of silk materials. The analyses also suggested the involvement of sulfur-containing amino acids in this function. The EET function is not degraded by boiling or acid/alkaline treatments and the material can be utilized multiple times, although it is susceptible to UV irradiation. Bombyx mori silk also enhance other microbial reactions, including Fe(III)OOH reduction, CO2 reduction to acetate, and nitrogen fixation. This discovery provides a basis for developing biotechnology for environmental remediation, global warming reduction, and biofertilizer production using Bombyx mori silk and its wastes.
Collapse
Affiliation(s)
- Duyen M Pham
- Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya 464-8603, Japan.
| | - Sujan Dey
- Department of Civil Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Arata Katayama
- Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya 464-8603, Japan; Department of Civil Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan.
| |
Collapse
|
5
|
Pham DM, Kasai T, Yamaura M, Katayama A. Humin: No longer inactive natural organic matter. CHEMOSPHERE 2021; 269:128697. [PMID: 33139048 DOI: 10.1016/j.chemosphere.2020.128697] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
The discovery of the function of humin (HM), an insoluble fraction of humic substances (HSs), as an extracellular electron mediator (EEM) in 2012 has provided insight into the role of HM in nature and its potential for in situ bioremediation of pollutants. The EEM function is thought to enable the energy network of various microorganisms using HM. Recently, a number of studies on the application of HM as EEM in anaerobic microbial cultures have been conducted. Even so, there is a need for developing a holistic view of HM EEM function. In this paper, we summarize all the available information on the properties of HM EEM function, its applications, possible redox-active structures, and the interaction between HM and microbial cells. We also suggest scopes for future HM research.
Collapse
Affiliation(s)
- Duyen Minh Pham
- Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya, 464-8603, Japan
| | - Takuya Kasai
- Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya, 464-8603, Japan; Department of Civil Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Mirai Yamaura
- Department of Civil Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Arata Katayama
- Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya, 464-8603, Japan; Department of Civil Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan.
| |
Collapse
|
6
|
Chen M, Tong H, Qiao J, Lv Y, Jiang Q, Gao Y, Liu C. Microbial community response to the toxic effect of pentachlorophenol in paddy soil amended with an electron donor and shuttle. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111328. [PMID: 32950805 DOI: 10.1016/j.ecoenv.2020.111328] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/21/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
Understanding the degradation of pentachlorophenol (PCP) by indigenous microorganisms stimulated by an electron donor and shuttle in paddy soil, and the influences of PCP/electron donor/shuttle on the native microbial community are important for biodegradation and ecological and environmental safety. Previous studies focused on the kinetics and the microbial actions of PCP degradation, however, the effects of toxic and antimicrobial PCP and electron donor/shuttle on the microbial community diversity and composition in paddy soil are poorly understood. In this study, the effects of PCP, an electron donor (lactate), and the electron shuttle (anthraquinone-2, 6-disulfonate, AQDS) on the microbial community in paddy soil were investigated. The results showed that the presence of PCP reduced the microbial diversity compared to the control during PCP degradation, while increased the microbial diversity was observed in response to lactate and AQDS. The addition of PCP stimulated the microorganisms involved in PCP dechlorination, including Clostridium, Desulfitobacterium, Pandoraea, and unclassified Veillonellaceae, which were dormant in raw soil without PCP stress. In all of the treatments with PCP, the addition of lactate or AQDS enhanced PCP dechlorination by stimulating the growth of functional groups involved in PCP dechlorination and by changing the microbial community during dechlorination process. The microbial community tended to be uniform after complete PCP degradation (28 days). However, when lactate and AQDS were present simultaneously in PCP-contaminated soil, lactate acted as a carbon source or electron donor to promote the activities of microbial community, and AQDS changed the redox potential because of the production of reduced AQDS. These findings enhance our understanding of the effect of PCP and a biostimulation method for PCP biodegradation in soil ecosystems at the microbial community level, and suggest the appropriate selection of an electron donor/shuttle for accelerating the bioremediation of PCP-contaminated soils.
Collapse
Affiliation(s)
- Manjia Chen
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Science, Guangzhou, 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou, 510650, China
| | - Hui Tong
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Science, Guangzhou, 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou, 510650, China
| | - Jiangtao Qiao
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Science, Guangzhou, 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou, 510650, China
| | - Yahui Lv
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Science, Guangzhou, 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou, 510650, China
| | - Qi Jiang
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Science, Guangzhou, 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou, 510650, China
| | - Yuanxue Gao
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Science, Guangzhou, 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou, 510650, China
| | - Chengshuai Liu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Science, Guangzhou, 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou, 510650, China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| |
Collapse
|