1
|
Obanya HE, Khan FR, Carrasco-Navarro V, Rødland ES, Walker-Franklin I, Thomas J, Cooper A, Molden N, Amaeze NH, Patil RS, Kukkola A, Michie L, Green-Ojo B, Rauert C, Couceiro F, Hutchison GR, Tang J, Ugor J, Lee S, Hofmann T, Ford AT. Priorities to inform research on tire particles and their chemical leachates: A collective perspective. ENVIRONMENTAL RESEARCH 2024; 263:120222. [PMID: 39490547 DOI: 10.1016/j.envres.2024.120222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/04/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
Concerns over the ecological impacts of urban road runoff have increased, partly due to recent research into the harmful impacts of tire particles and their chemical leachates. This study aimed to help the community of researchers, regulators and policy advisers in scoping out the priority areas for further study. To improve our understanding of these issues an interdisciplinary, international network consisting of experts (United Kingdom, Norway, United States, Australia, South Korea, Finland, Austria, China and Canada) was formed. We synthesised the current state of the knowledge and highlighted priority research areas for tire particles (in their different forms) and their leachates. Ten priority research questions with high importance were identified under four themes (environmental presence and detection; chemicals of concern; biotic impacts; mitigation and regulation). The priority research questions include the importance of increasing the understanding of the fate and transport of these contaminants; better alignment of toxicity studies; obtaining the holistic understanding of the impacts; and risks they pose across different ecosystem services. These issues have to be addressed globally for a sustainable solution. We highlight how the establishment of the intergovernmental science-policy panel on chemicals, waste, and pollution prevention could further address these issues on a global level through coordinated knowledge transfer of car tire research and regulation. We hope that the outputs from this research paper will reduce scientific uncertainty in assessing and managing environmental risks from TP and their leachates and aid any potential future policy and regulatory development.
Collapse
Affiliation(s)
- Henry E Obanya
- School of Biological Sciences, University of Portsmouth, Portsmouth, Hampshire, PO1 2DY, UK
| | - Farhan R Khan
- Norwegian Research Centre (NORCE), Nygårdsporten 112, NO-5008, Bergen, Norway
| | - Victor Carrasco-Navarro
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio Campus, PO Box 1627, 70211, Kuopio, Finland
| | | | | | - Jomin Thomas
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH, 44325, USA
| | - Adam Cooper
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Nick Molden
- Emissions Analytics, Unit 2 CR Bates Industrial Estate, Stokenchurch, High Wycombe, Buckinghamshire, HP14 3PD, UK
| | - Nnamdi H Amaeze
- School of the Environment, Memorial Hall, University of Windsor, 401 Sunset Avenue Windsor, Ontario, N9B 3P4, Canada
| | - Renuka S Patil
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH, 44325, USA
| | - Anna Kukkola
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Laura Michie
- School of Biological Sciences, University of Portsmouth, Portsmouth, Hampshire, PO1 2DY, UK
| | - Bidemi Green-Ojo
- School of Biological Sciences, University of Portsmouth, Portsmouth, Hampshire, PO1 2DY, UK
| | - Cassandra Rauert
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102, QLD, Australia
| | - Fay Couceiro
- School of Civil Engineering and Surveying at the University of Portsmouth, Hampshire, PO1 3AH, UK
| | - Gary R Hutchison
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, EH11 4BN, UK
| | - Jinglong Tang
- School of Public Health, Qingdao University, Qingdao, 266071, China
| | - Joshua Ugor
- School of the Environment, Geography and Geosciences, University of Portsmouth, UK
| | - Seokhwan Lee
- Environment System Research Division, Korea Institute of Machinery and Materials, 156, Gajeongbuk-ro, Yuseong-gu, Daejeon, 34103, Republic of Korea
| | - Thilo Hofmann
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Department for Environmental Geosciences, Josef-Holaubek-Platz 2, 1090, Vienna, Austria; University of Vienna, Research Platform Plastics in the Environment and Society (Plenty), Josef-Holaubek-Platz 2, 1090, Vienna, Austria
| | - Alex T Ford
- School of Biological Sciences, University of Portsmouth, Portsmouth, Hampshire, PO1 2DY, UK.
| |
Collapse
|
2
|
García-Regalado A, Herrera A, Almeda R. Microplastic and mesoplastic pollution in surface waters and beaches of the Canary Islands: A review. MARINE POLLUTION BULLETIN 2024; 201:116230. [PMID: 38479326 DOI: 10.1016/j.marpolbul.2024.116230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/27/2024] [Accepted: 03/03/2024] [Indexed: 04/07/2024]
Abstract
The Canary Archipelago is a group of volcanic islands located in the North Atlantic Ocean with high marine biodiversity. This archipelago intercepts the Canary Current, the easternmost branch of the Azores Current in the North Atlantic Subtropical Gyre, which brings large amounts of litter from remote sources via oceanic transportation. It is, therefore, particularly vulnerable to marine plastic pollution. Here, we present a review of the available studies on mesoplastics and microplastics in the Canary Islands over the last decade to evaluate the level and distribution of plastic pollution in this archipelago. Specifically, we focused on data from beaches and surface waters to assess the pollution level among the different islands as well as between windward and leeward zones, and the main characteristics (size, type, colour, and polymer) of the plastics found in the Canary Islands. The concentrations of meso- and MPs on beaches ranged from 1.5 to 2972 items/m2 with a mean of 381 ± 721 items/m2. The concentration of MPs (>200 μm) in surface waters was highly variable with mean values of 998 × 103 ± 3364 × 103 items/km2 and 10 ± 31 items/m3. Plastic pollution in windward beaches was one order of magnitude significantly higher than in leeward beaches. The accumulation of MPs in surface waters was higher in the leeward zones of the high-elevation islands, corresponding to the Special Areas of Conservation (ZECs) and where the presence of marine litter windrows (MLW) has been reported. Microplastic fragments of polyethylene of the colour category "white/clear/uncoloured" were the most common type of plastic reported in both beaches and surface waters. More studies on the occurrence of MLW in ZECS and plastic pollution in the water column and sediments, including small-size fractions (<200 μm), are needed to better assess the level of plastic pollution and its fate in the Canary Islands. Overall, this review confirms that the Canary Archipelago is a hotspot of oceanic plastic pollution, with concentrations of MPs in surface waters in the highest range reported for oceanic islands and one of the highest recorded mean concentrations of beached meso- and microplastics in the world.
Collapse
Affiliation(s)
| | - Alicia Herrera
- EOMAR, ECOAQUA, Universidad de Las Palmas de Gran Canaria, Spain
| | - Rodrigo Almeda
- EOMAR, ECOAQUA, Universidad de Las Palmas de Gran Canaria, Spain.
| |
Collapse
|
3
|
Astner AF, Gillmore AB, Yu Y, Flury M, DeBruyn JM, Schaeffer SM, Hayes DG. Formation, behavior, properties and impact of micro- and nanoplastics on agricultural soil ecosystems (A Review). NANOIMPACT 2023; 31:100474. [PMID: 37419450 DOI: 10.1016/j.impact.2023.100474] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
Micro and nanoplastics (MPs and NPs, respectively) in agricultural soil ecosystems represent a pervasive global environmental concern, posing risks to soil biota, hence soil health and food security. This review provides a comprehensive and current summary of the literature on sources and properties of MNPs in agricultural ecosystems, methodology for the isolation and characterization of MNPs recovered from soil, MNP surrogate materials that mimic the size and properties of soil-borne MNPs, and transport of MNPs through the soil matrix. Furthermore, this review elucidates the impacts and risks of agricultural MNPs on crops and soil microorganisms and fauna. A significant source of MPs in soil is plasticulture, involving the use of mulch films and other plastic-based implements to provide several agronomic benefits for specialty crop production, while other sources of MPs include irrigation water and fertilizer. Long-term studies are needed to address current knowledge gaps of formation, soil surface and subsurface transport, and environmental impacts of MNPs, including for MNPs derived from biodegradable mulch films, which, although ultimately undergoing complete mineralization, will reside in soil for several months. Because of the complexity and variability of agricultural soil ecosystems and the difficulty in recovering MNPs from soil, a deeper understanding is needed for the fundamental relationships between MPs, NPs, soil biota and microbiota, including ecotoxicological effects of MNPs on earthworms, soil-dwelling invertebrates, and beneficial soil microorganisms, and soil geochemical attributes. In addition, the geometry, size distribution, fundamental and chemical properties, and concentration of MNPs contained in soils are required to develop surrogate MNP reference materials that can be used across laboratories for conducting fundamental laboratory studies.
Collapse
Affiliation(s)
- Anton F Astner
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN 37996-4531, United States of America
| | - Alexis B Gillmore
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN 37996-4531, United States of America
| | - Yingxue Yu
- Department of Crops and Soil Sciences, Washington State University, Pullman, WA 99164, and Puyallup, WA 98371, United States of America
| | - Markus Flury
- Department of Crops and Soil Sciences, Washington State University, Pullman, WA 99164, and Puyallup, WA 98371, United States of America
| | - Jennifer M DeBruyn
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN 37996-4531, United States of America
| | - Sean M Schaeffer
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN 37996-4531, United States of America
| | - Douglas G Hayes
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN 37996-4531, United States of America.
| |
Collapse
|
4
|
More SL, Miller JV, Thornton SA, Chan K, Barber TR, Unice KM. Refinement of a microfurnace pyrolysis-GC-MS method for quantification of tire and road wear particles (TRWP) in sediment and solid matrices. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162305. [PMID: 36801409 DOI: 10.1016/j.scitotenv.2023.162305] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/01/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Tire and road wear particles (TRWP) are produced by abrasion at the interface of the pavement and tread surface and contain tread rubber with road mineral encrustations. Quantitative thermoanalytical methods capable of estimating TRWP concentrations are needed to assess the prevalence and environmental fate of these particles. However, the presence of complex organic constituents in sediment and other environmental samples presents a challenge to the reliable determination of TRWP concentrations using current pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) methodologies. We are unaware of a published study evaluating pretreatment and other method refinements for microfurnace Py-GC-MS analysis of the elastomeric polymers in TRWP including polymer-specific deuterated internal standards as specified in ISO Technical Specification (ISO/TS) 20593:2017 and ISO/TS 21396:2017. Thus, potential method refinements were evaluated for microfurnace Py-GC-MS, including chromatography parameter modification, chemical pretreatment, and thermal desorption for cryogenically-milled tire tread (CMTT) samples in an artificial sediment matrix and a sediment field sample. The tire tread dimer markers used for quantification were 4-vinylcyclohexene (4-VCH), a marker for styrene-butadiene rubber (SBR) and butadiene rubber (BR), 4-phenylcyclohexene (4-PCH), a marker for SBR, and dipentene (DP), a marker for natural rubber (NR) or isoprene. The resultant modifications included optimization of GC temperature and mass analyzer settings, along with sample pretreatment with potassium hydroxide (KOH) and thermal desorption. Peak resolution was improved while minimizing matrix interferences with overall accuracy and precision consistent with those typically observed in environmental sample analysis. The initial method detection limit for an artificial sediment matrix was approximately 180 mg/kg for a 10 mg sediment sample. A sediment and a retained suspended solids sample were also analyzed to illustrate the applicability of microfurnace Py-GC-MS towards complex environmental sample analysis. These refinements should help encourage the adoption of pyrolysis techniques for mass-based measurements of TRWP in environmental samples both near and distant from roadways.
Collapse
Affiliation(s)
- Sharlee L More
- Stantec (ChemRisk), Portland, OR, United States of America.
| | - Julie V Miller
- Stantec (ChemRisk), Pittsburgh, PA, United States of America
| | | | - Kathy Chan
- Stantec (ChemRisk), Arlington, VA, United States of America
| | - Timothy R Barber
- Environmental Resources Management, Cleveland, OH, United States of America
| | - Kenneth M Unice
- Stantec (ChemRisk), Pittsburgh, PA, United States of America
| |
Collapse
|
5
|
Thomas J, Moosavian SK, Cutright T, Pugh C, Soucek MD. Method Development for Separation and Analysis of Tire and Road Wear Particles from Roadside Soil Samples. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11910-11921. [PMID: 35980850 DOI: 10.1021/acs.est.2c03695] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A comprehensive understanding of tire and road wear particles (TRWPs) and their detection and quantification in soils is still challenged by the lack of well-set standardized methods, inherent technological inconsistencies, and generalized protocols. Our protocol includes soil sampling, size separation, and organic matter removal by using hydrogen peroxide followed by density separation and analysis. In this context, roadside soil samples from different sites in Kansas and Ohio, USA, were collected and analyzed. Tire cryogrinds analogous to TRWPs were used to evaluate various density separation media, and collected particles more than 1 mm in size were then subjected to infrared spectroscopy (IR), thermogravimetric analysis (TGA), and scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDX) to confirm TRWP presence. Particles smaller than 1 mm were Soxhlet extracted, followed by gas chromatography-mass spectrometry (GC-MS) to validate the presence of tire-related intermediates. SEM-EDX validated the presence of elemental combinations (S + Zn/Na) ± (Al, Ca, Mg, K, Si) attributed to tires. Ketones, carboxylic acids, epoxies, cyclohexane, and benzothiazole sulfenamide (BTS) intermediates were the most probable tire-related intermediates observed in the roadside soil samples. Thus, this simple, widely applicable, cost-effective sample preparation protocol for TRWP analysis can assist TRWP research advancement in terrestrial environments.
Collapse
Affiliation(s)
- Jomin Thomas
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
| | - Seyed Kasra Moosavian
- Civil Engineering, College of Engineering and Polymer Science, University of Akron, Akron, Ohio 44325, United States
| | - Teresa Cutright
- Civil Engineering, College of Engineering and Polymer Science, University of Akron, Akron, Ohio 44325, United States
| | - Coleen Pugh
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, Kansas 67260, United States
| | - Mark D Soucek
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
6
|
Campanale C, Galafassi S, Savino I, Massarelli C, Ancona V, Volta P, Uricchio VF. Microplastics pollution in the terrestrial environments: Poorly known diffuse sources and implications for plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150431. [PMID: 34818779 DOI: 10.1016/j.scitotenv.2021.150431] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 05/23/2023]
Abstract
Research on microplastics (MPs) in the terrestrial environment is currently at a still embryonal stage. The current knowledge concerning poorly known diffuse sources of MPs pollution in terrestrial ecosystems have been considered in this work. In addition, a particular focus on the presence, mechanism of absorption and effects of MPs in plants has also been provided. Research concerning microplastics in urban areas and their intake by Tyre and Road Wear Particulates (TWRP) demonstrated a high contribution of this plastic debris to microplastic pollution, although quantification of these inputs is challenging to assess because studies are still very few. Around 50% of particles are expected to remain in the roadside soil, while the rest is transported away by the runoff with high concentrations of TRWP with a size ranging between 0.02 and 0.1 mm. Natural and anthropic environments like temporary ponds, stormwater retention ponds and small waterbodies were considered sensitive connecting ecosystems rich in biodiversity between terrestrial and aquatic environments. Even if studies are not yet exhaustive and just eight studies were currently published concerning these ecosystems, considerable values of MPs were already observed both in the sediment and water phase of ponds. Although still poorly explored, agricultural environments were already demonstrated to hide a significant number of microplastics linked mainly to agricultural activities and practices (e.g. mulch, sewage and compost fertilisation). However, the microplastics transportation processes into the soil are still understudied, and a few works are available. Microplastics and primarily nanoplastics presence was also observed in common edible plants (fruit and vegetables) with alarming Estimated Daily Intakes ranging from 2.96 × 1004 to 4.62 × 1005 (p kg-1 day-1) for adults depending on species. In addition, adverse effects on plants growth, photosynthetic activity, antioxidant system and nutritional values of several common fruits and vegetables were also demonstrated by several studies.
Collapse
Affiliation(s)
- Claudia Campanale
- CNR Water Research Institute, V.le F. De Blasio 5, 70132 Bari, Italy.
| | - Silvia Galafassi
- CNR Water Research Institute, L.go Tonolli 50, 28922 Verbania, Italy
| | - Ilaria Savino
- CNR Water Research Institute, V.le F. De Blasio 5, 70132 Bari, Italy
| | | | - Valeria Ancona
- CNR Water Research Institute, V.le F. De Blasio 5, 70132 Bari, Italy
| | - Pietro Volta
- CNR Water Research Institute, L.go Tonolli 50, 28922 Verbania, Italy
| | | |
Collapse
|
7
|
Kniazev K, Pavlovetc IM, Zhang S, Kim J, Stevenson RL, Doudrick K, Kuno M. Using Infrared Photothermal Heterodyne Imaging to Characterize Micro- and Nanoplastics in Complex Environmental Matrices. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15891-15899. [PMID: 34747612 DOI: 10.1021/acs.est.1c05181] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A key challenge for addressing micro- and nanoplastics (MNPs) in the environment is being able to characterize their chemical properties, morphologies, and quantities in complex matrices. Current techniques, such as Fourier transform infrared spectroscopy, provide these broad characterizations but are unsuitable for studying MNPs in spectrally congested or complex chemical environments. Here, we introduce a new, super-resolution infrared absorption technique to characterize MNPs, called infrared photothermal heterodyne imaging (IR-PHI). IR-PHI has a spatial resolution of ∼300 nm and can determine the chemical identity, morphology, and quantity of MNPs in a single analysis with high sensitivity. Specimens are supported on CaF2 coverslips under ambient conditions from where we (1) quantify MNPs from nylon tea bags after steeping in ultrapure water at 25 and 95 °C, (2) identify MNP chemical or morphological changes after steeping at 95 °C, and (3) chemically identify MNPs in sieved road dust. In all cases, no special sample preparation was required. MNPs released from nylon tea bags at 25 °C were fiber-like and had characteristic IR frequencies corresponding to thermally extruded nylon. At 95 °C, degradation of the nylon chemical structure was observed via the disappearance of amide group IR frequencies, indicating chain scission of the nylon backbone. This degradation was also observed through morphological changes, where MNPs altered shape from fiber-like to quasi-spherical. In road dust, IR-PHI analysis reveals the presence of numerous aggregate and single-particle (<3 μm) MNPs composed of rubber and nylon.
Collapse
Affiliation(s)
- Kirill Kniazev
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Ilia M Pavlovetc
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Shuang Zhang
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Junyeol Kim
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Civil and Environmental Engineering, Wayne State University, Detroit, Michigan 48202, United States
| | - Robert L Stevenson
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Kyle Doudrick
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Masaru Kuno
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
8
|
Mengistu D, Heistad A, Coutris C. Tire wear particles concentrations in gully pot sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:144785. [PMID: 33477049 DOI: 10.1016/j.scitotenv.2020.144785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 05/24/2023]
Abstract
While tire wear and tear is known to be a major source of microplastics in the environment, its monitoring is still hampered by the lack of analytical methods able to provide concentrations in environmental matrices. Tire wear particles (TWP) present in road runoff enter the drainage system through gully pots, built to prevent sediment deposition in the drainage system, and eventually protect downstream receiving waters. The aim of this study was to detect and quantify TWP in gully pot sediments, by using a novel method combining Simultaneous Thermal Analysis (STA), Fourier Transform Infrared (FTIR) spectroscopy and Parallel Factor Analysis (PARAFAC). The method was applied to samples from five sites in Southern Norway, characterized by different traffic densities and patterns. The method involved no sample pretreatment, the whole sediment sample was submitted to thermal decomposition in STA, and gases generated during pyrolysis were continuously transferred to FTIR. The FTIR data were arranged in a trilinear multi-way dataset (samples × IR spectra wavenumber × pyrolysis temperature) and then analyzed by PARAFAC. The results showed that TWP concentrations in gully pots varied greatly across sites, ranging from below 1 mg TWP/g sediment in streets with the lowest traffic densities, to 150 mg TWP/g sediment at the most trafficked study site. The results also indicated that other traffic conditions, such as driving patterns influence TWP concentrations. Finally, by enabling quantification of TWP in gully pot sediments, the approach presented here supports environmental monitoring of TWP and safe disposal of gully pot sediments, which is critical for environmental pollution management.
Collapse
Affiliation(s)
- Demmelash Mengistu
- Norwegian University of Life Sciences (NMBU), Faculty of Science and Technology, Ås, Norway.
| | - Arve Heistad
- Norwegian University of Life Sciences (NMBU), Faculty of Science and Technology, Ås, Norway
| | - Claire Coutris
- Norwegian Institute of Bioeconomy Research (NIBIO), Division of Environment and Natural Resources, Ås, Norway
| |
Collapse
|
9
|
Piscitello A, Bianco C, Casasso A, Sethi R. Non-exhaust traffic emissions: Sources, characterization, and mitigation measures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:144440. [PMID: 33421784 DOI: 10.1016/j.scitotenv.2020.144440] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/24/2020] [Accepted: 12/07/2020] [Indexed: 05/12/2023]
Abstract
Non-exhaust emissions (NEE) of particulate matter (PM) from brake, tyre, road pavement and railway wear, as well as resuspension of already deposited road dust, account for up to 90% by mass of total traffic-related PM emitted. This review aims at analysing the current knowledge on road traffic NEE regarding sources, particle generation processes, chemical and physical characterization, and mitigation strategies. The literature on this matter often presents highly variable and hardly comparable results due to the heterogeneity of NEE sources and the absence of standardized sampling and measurement protocols. As evidence, emission factors (EFs) were found to range from 1 mg km-1 veh-1 to 18.5 mg km-1 veh-1 for brake wear, and from 0.3 mg km-1 veh-1 to 7.4 mg km-1 veh-1 for tyre wear. Resuspended dust, which varies in even wider ranges (from 5.4 mg km-1 veh-1 to 330 mg km-1 veh-1 for cars), is considered the prevailing NEE source. The lack of standardized monitoring approaches resulted in the impossibility of setting international regulations to limit NEE. Therefore, up until now the abatement of NEE has only been achieved by mitigation and prevention strategies. However, the effectiveness of these measures still needs to be improved and further investigated. As an example, mitigation strategies, such as street washing or sweeping, proved effective in reducing PM levels, but only in the short term. The replacement of internal combustion engines vehicles with electric ones was instead proposed as a prevention strategy, but there are still concerns regarding the increase of NEE deriving from the extra weight of the batteries. The data reported in this review highlighted the need for future studies to broaden their research area, and to focus not only on the standardization of methods and the introduction of regulations, but also on improving already existing technologies and mitigating strategies.
Collapse
Affiliation(s)
- Amelia Piscitello
- Department of Environment, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Carlo Bianco
- Department of Environment, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Alessandro Casasso
- Department of Environment, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Rajandrea Sethi
- Department of Environment, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| |
Collapse
|
10
|
Yakovenko N, Carvalho A, ter Halle A. Emerging use thermo-analytical method coupled with mass spectrometry for the quantification of micro(nano)plastics in environmental samples. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115979] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|