1
|
Procopio N, Sguazzi G, Eriksson EV, Ogbanga N, McKell FC, Newton EP, Magni PA, Bonicelli A, Gino S. Transferability of Human and Environmental Microbiome on Clothes as a Tool for Forensic Investigations. Genes (Basel) 2024; 15:375. [PMID: 38540435 PMCID: PMC10970523 DOI: 10.3390/genes15030375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 06/14/2024] Open
Abstract
Considering the growing importance of microbiome analyses in forensics for identifying individuals, this study explores the transfer of the skin microbiome onto clothing, its persistence on fabrics over time, and its transferability from the environment and between different garments. Furthermore, this project compares three specific QIAGEN microbiome extraction kits to test their extraction efficiency on fabric samples. Additionally, this study aims to check if these extracts contain human DNA, providing a chance to obtain more information from the same evidence for personal identification. The results obtained show: (1) variations in the skin microbiome between the volunteers, potentially due to their different sex; (2) differences in microbial composition between worn and unworn clothing; (3) the influence of the environment on the microbial signature of unworn clothing; (4) the potential use of certain phyla as biomarkers to differentiate between worn and unworn garments, even over extended periods; (5) a tendency towards extraction biases in the QIAampMP® DNA microbiome kit among the three tested ones; and (6) none of the extraction kits allow for the typing of human genetic profiles suitable for comparison. In conclusion, our study offers supplementary insights into the potential utility of time-transferred microbiome analysis on garments for forensic applications.
Collapse
Affiliation(s)
- Noemi Procopio
- School of Law and Policing, Research Centre for Field Archaeology and Forensic Taphonomy, University of Central Lancashire, Preston PR1 2HE, UK; (N.P.); (A.B.)
| | - Giulia Sguazzi
- CRIMEDIM—Center for Research and Training in Disaster Medicine, Humanitarian Aid and Global Health, Università del Piemonte Orientale, Via Lanino 1, 28100 Novara, Italy;
- Department of Health Science, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Emma V. Eriksson
- Department of Immunology, Genetics and Pathology, Uppsala University, Dag Hammarskjölds Väg 20, 75185 Uppsala, Sweden;
| | - Nengi Ogbanga
- Forensic Science Research Group, Faculty of Health and Life Sciences, Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK;
| | - Frazer C. McKell
- School of Medical, Molecular & Forensic Sciences, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; (F.C.M.); (E.P.N.); (P.A.M.)
| | - Eleanor P. Newton
- School of Medical, Molecular & Forensic Sciences, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; (F.C.M.); (E.P.N.); (P.A.M.)
| | - Paola A. Magni
- School of Medical, Molecular & Forensic Sciences, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; (F.C.M.); (E.P.N.); (P.A.M.)
| | - Andrea Bonicelli
- School of Law and Policing, Research Centre for Field Archaeology and Forensic Taphonomy, University of Central Lancashire, Preston PR1 2HE, UK; (N.P.); (A.B.)
| | - Sarah Gino
- Department of Health Science, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| |
Collapse
|
2
|
Itzek A, Weißbach V, Meintrup D, Rieß B, van der Linden M, Borgmann S. Epidemiological and Clinical Features of Streptococcus dysgalactiae ssp. equisimilis stG62647 and Other emm Types in Germany. Pathogens 2023; 12:pathogens12040589. [PMID: 37111475 PMCID: PMC10143538 DOI: 10.3390/pathogens12040589] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/31/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
(1) Background: Streptococcus dysgalactiae subspecies equisimilis (SDSE) is an important β-hemolytic pathogen historically described as mainly affecting animals. Studies epidemiologically assessing the pathogenicity in the human population in Germany are rare. (2) Methods: the present study combines national surveillance data from 2010 to 2022 with a single-center clinical study conducted from 2016 to 2022, focusing on emm type, Lancefield antigen, antimicrobial resistance, patient characteristics, disease severity, and clinical infection markers. (3) Results: The nationwide reported invasive SDSE infections suggest an increasing infection burden for the German population. One particular emm type, stG62647, increased over the study period, being the dominant type in both study cohorts, suggesting a mutation-driven outbreak of a virulent clone. The patient data show that men were more affected than women, although in the single-center cohort, this trend was reversed for patients with stG62647 SDSE. Men affected by stG62647 developed predominantly fascial infections, whereas women suffering from superficial and fascial non-stG62647 SDSE infections were significantly younger than other patients. Increasing age was a general risk factor for invasive SDSE infections. (4) Conclusions: further studies are needed to further elucidate the raised questions regarding outbreak origin, underlying molecular mechanisms as well as sex-dependent pathogen adaptation.
Collapse
Affiliation(s)
- Andreas Itzek
- German National Reference Center for Streptococci, Institute of Medical Microbiology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Victoria Weißbach
- Department of Infectious Diseases and Infection Control, Ingolstadt Hospital, 85049 Ingolstadt, Germany
| | - David Meintrup
- Faculty of Engineering and Management, University of Applied Sciences Ingolstadt, 85049 Ingolstadt, Germany
| | - Beate Rieß
- Department of Infectious Diseases and Infection Control, Ingolstadt Hospital, 85049 Ingolstadt, Germany
| | - Mark van der Linden
- German National Reference Center for Streptococci, Institute of Medical Microbiology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Stefan Borgmann
- Department of Infectious Diseases and Infection Control, Ingolstadt Hospital, 85049 Ingolstadt, Germany
| |
Collapse
|
3
|
Haertl T, Owsienko D, Schwinn L, Hirsch C, Eskofier BM, Lang R, Wirtz S, Loos HM. Exploring the interrelationship between the skin microbiome and skin volatiles: A pilot study. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1107463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Unravelling the interplay between a human’s microbiome and physiology is a relevant task for understanding the principles underlying human health and disease. With regard to human chemical communication, it is of interest to elucidate the role of the microbiome in shaping or generating volatiles emitted from the human body. In this study, we characterized the microbiome and volatile organic compounds (VOCs) sampled from the neck and axilla of ten participants (five male, five female) on two sampling days, by applying different methodological approaches. Volatiles emitted from the respective skin site were collected for 20 min using textile sampling material and analyzed on two analytical columns with varying polarity of the stationary phase. Microbiome samples were analyzed by a culture approach coupled with MALDI-TOF-MS analysis and a 16S ribosomal RNA gene (16S RNA) sequencing approach. Statistical and advanced data analysis methods revealed that classification of body sites was possible by using VOC and microbiome data sets. Higher classification accuracy was achieved by combination of both data pools. Cutibacterium, Staphylococcus, Micrococcus, Streptococcus, Lawsonella, Anaerococcus, and Corynebacterium species were found to contribute to classification of the body sites by the microbiome. Alkanes, esters, ethers, ketones, aldehydes and cyclic structures were used by the classifier when VOC data were considered. The interdisciplinary methodological platform developed here will enable further investigations of skin microbiome and skin VOCs alterations in physiological and pathological conditions.
Collapse
|
4
|
Ta LDH, Tay CJX, Lay C, de Sessions PF, Tan CPT, Tay MJY, Lau HX, Zulkifli AB, Yap GC, Tham EH, Ho EXP, Goh AEN, Godfrey KM, Eriksson JG, Knol J, Gluckman PD, Chong YS, Chan JKY, Tan KH, Chong KW, Goh SH, Cheng ZR, Lee BW, Shek LPC, Loo EXL. Household environmental microbiota influences early-life eczema development. Environ Microbiol 2021; 23:7710-7722. [PMID: 34309161 DOI: 10.1111/1462-2920.15684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/20/2021] [Accepted: 07/19/2021] [Indexed: 11/28/2022]
Abstract
Exposure to a diverse microbial environment during pregnancy and early postnatal period is important in determining predisposition towards allergy. However, the effect of environmental microbiota exposure during preconception, pregnancy and postnatal life on development of allergy in the child has not been investigated so far. In the S-PRESTO (Singapore PREconception Study of long Term maternal and child Outcomes) cohort, we collected house dust during all three critical window periods and analysed microbial composition using 16S rRNA gene sequencing. At 6 and 18 months, the child was assessed for eczema by clinicians. In the eczema group, household environmental microbiota was characterized by presence of human-associated bacteria Actinomyces, Anaerococcus, Finegoldia, Micrococcus, Prevotella and Propionibacterium at all time points, suggesting their possible contributions to regulating host immunity and increasing the susceptibility to eczema. In the home environment of the control group, putative protective effect of an environmental microbe Planomicrobium (Planococcaceae family) was observed to be significantly higher than that in the eczema group. Network correlation analysis demonstrated inverse relationships between beneficial Planomicrobium and human-associated bacteria (Actinomyces, Anaerococcus, Finegoldia, Micrococcus, Prevotella and Propionibacterium). Exposure to natural environmental microbiota may be beneficial to modulate shed human-associated microbiota in an indoor environment.
Collapse
Affiliation(s)
- Le Duc Huy Ta
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Carina Jing Xuan Tay
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Christophe Lay
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Danone Nutricia Research, Singapore, Singapore
| | - Paola Florez de Sessions
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Cheryl Pei Ting Tan
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Michelle Jia Yu Tay
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hui Xing Lau
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Atiqa Binte Zulkifli
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Gaik Chin Yap
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Elizabeth Huiwen Tham
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, National University Health System, Singapore, Singapore
| | - Eliza Xin Pei Ho
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Anne Eng Neo Goh
- Allergy Service, Department of Paediatrics, KK Women's and Children's Hospital, Singapore, Singapore
| | - Keith M Godfrey
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK.,Medical Research Council Life course Epidemiology Unit, Southampton, SO16 6YD, UK
| | - Johan G Eriksson
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore.,Folkhälsan Research Center, Helsinki, Finland.,Department of General Practice and Primary Health Care, University of Helsinki, Finland
| | - Jan Knol
- Danone Nutricia Research, Utrecht, The Netherlands.,Wageningen University, Wageningen, The Netherlands
| | - Peter D Gluckman
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Liggins Institute, University of Auckland, New Zealand
| | - Yap Seng Chong
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Jerry Kok Yen Chan
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore
| | - Kok Hian Tan
- Department of Maternal Fetal Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Kok Wee Chong
- Allergy Service, Department of Paediatrics, KK Women's and Children's Hospital, Singapore, Singapore
| | - Si Hui Goh
- Allergy Service, Department of Paediatrics, KK Women's and Children's Hospital, Singapore, Singapore
| | - Zai Ru Cheng
- Respiratory Medicine Service, Department of Paediatrics, KK Women's and Children's Hospital, Singapore, Singapore
| | - Bee Wah Lee
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Lynette Pei-Chi Shek
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, National University Health System, Singapore, Singapore
| | - Evelyn Xiu Ling Loo
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
6
|
A New Benchmark to Determine What Healthy Western Skin Looks Like in Terms of Biodiversity Using Standardised Methodology. COSMETICS 2020. [DOI: 10.3390/cosmetics7040079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A significant loss of microbial biodiversity on the skin has been linked to an increased prevalence of skin problems in the western world. The primary objective of this study was to obtain a benchmark value for the microbial diversity found on healthy western skin, using the Chao1 index. This benchmark was used to update our 2017 skin health measuring mechanism in line with standardised methodology. It used 50 human participants from Graz in Austria and at a read depth of 6600 sequences, we found the average Chao1 diversity to be ~180, with upper and lower quartiles of ~208 and ~150, respectively. Previous work with a larger sample size was unsatisfactory to use as a benchmark because different diversity indices and evaluation methodologies were used. The Medical University of Graz used the most recent version of the Chao1 index to obtain diversity results. Because of this study, we can transfer other benchmarks of skin microbiome diversity to the methodology used in this work from our 2017 study, such as “unhealthy western skin” and “caveman/perfect skin”. This could aid with the diagnostic assessment of susceptibility to cutaneous conditions or diseases and treatment. We also investigated the effect of sex and age, which are two known skin microbiome affecting factors. Although no statistical significance is seen for sex- and age-related changes in diversity, there appear to be changes related to both. Our preliminary results (10 in each of the five age groups) show adults aged 28–37 have the highest average diversity, and adults aged 48–57 have the lowest average diversity. In future work, this could be improved by obtaining benchmark diversity values from a larger sample size for any age, sex, body site, and area of residence, to which subjects can be compared. These improvements could help to investigate the ultimate question regarding which environmental factors in the western world are the main cause of the huge rise in skin problems. This could lead to future restrictions of certain synthetic chemicals or products found to be particularly harmful to the skin.
Collapse
|
7
|
Lemoine L, Dieckmann R, Al Dahouk S, Vincze S, Luch A, Tralau T. Microbially competent 3D skin: a test system that reveals insight into host-microbe interactions and their potential toxicological impact. Arch Toxicol 2020; 94:3487-3502. [PMID: 32681188 PMCID: PMC7502063 DOI: 10.1007/s00204-020-02841-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/09/2020] [Indexed: 02/06/2023]
Abstract
The skin`s microbiome is predominantly commensalic, harbouring a metabolic potential far exceeding that of its host. While there is clear evidence that bacteria-dependent metabolism of pollutants modulates the toxicity for the host there is still a lack of models for investigating causality of microbiome-associated pathophysiology or toxicity. We now report on a biologically characterised microbial-skin tissue co-culture that allows studying microbe-host interactions for extended periods of time in situ. The system is based on a commercially available 3D skin model. In a proof-of-concept, this model was colonised with single and mixed cultures of two selected skin commensals. Two different methods were used to quantify the bacteria on the surface of the skin models. While Micrococcus luteus established a stable microbial-skin tissue co-culture, Pseudomonas oleovorans maintained slow continuous growth over the 8-day cultivation period. A detailed skin transcriptome analysis showed bacterial colonisation leading to up to 3318 significant changes. Additionally, FACS, ELISA and Western blot analyses were carried out to analyse secretion of cytokines and growth factors. Changes found in colonised skin varied depending on the bacterial species used and comprised immunomodulatory functions, such as secretion of IL-1α/β, Il-6, antimicrobial peptides and increased gene transcription of IL-10 and TLR2. The colonisation also influenced the secretion of growth factors such as VFGFA and FGF2. Notably, many of these changes have already previously been associated with the presence of skin commensals. Concomitantly, the model gained first insights on the microbiome's influence on skin xenobiotic metabolism (i.e., CYP1A1, CYP1B1 and CYP2D6) and olfactory receptor expression. The system provides urgently needed experimental access for assessing the toxicological impact of microbiome-associated xenobiotic metabolism in situ.
Collapse
Affiliation(s)
- Lisa Lemoine
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany.
- Department of Biology, Chemistry, Pharmacy, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany.
| | - Ralf Dieckmann
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Diedersdorfer Weg 1, 12277, Berlin, Germany
| | - Sascha Al Dahouk
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Diedersdorfer Weg 1, 12277, Berlin, Germany
| | - Szilvia Vincze
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Diedersdorfer Weg 1, 12277, Berlin, Germany
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
- Department of Biology, Chemistry, Pharmacy, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Tewes Tralau
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| |
Collapse
|