1
|
Li X, Wu L, Macharia DK, He M, Han C, He H, Li M, Zhang L, Chen Z. Growth of sulfur-doped bismuth oxybromide nanosheets on carbon fiber cloth for photocatalytically purifying antibiotic wastewater. J Colloid Interface Sci 2025; 678:959-969. [PMID: 39226836 DOI: 10.1016/j.jcis.2024.08.197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/30/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024]
Abstract
Bismuth oxybromide (BiOBr) nanomaterials are well-known efficient powder-shaped photocatalyst for degrading antibiotic wastewater, but their practical applications have been limited by unsatisfactory photo-absorption, weak photocatalytic activity and poor recyclability. To address these issues, we demonstrate that the growing of S-doped BiOBr nanosheets on carbon fiber cloth (CFC) can lead to efficient photocatalysis with recyclable features. With carbon fiber cloth as the substrate, S-doped BiOBr (BiOBr-Sx) nanosheets (diameter: ∼500 nm, thicknesses: ∼5-90 nm) was prepared by solvothermal method with thiourea as dopant. With the increase of thiourea (0-0.2 g) in the precursor solution, BiOBr-Sx nanosheets exhibit a significant shift in the photo-absorption edge from 420 to 461 nm and decreased thicknesses from 90 to 5 nm, accompanying by the increased proportion of (010) exposed surface. Amony them, CFC/BiOBr-S0.5 can degrade various contaminants (such as 98.7 % levofloxacin (LVFX), 95.6 % ciprofloxacin (CIP) and 95.9 % tetracycline (TC)) with most degradation efficiency within 120 min of visible light irradiation, which are 1.6, 1.9 and 1.4 times than that of CFC/BiOBr (61.4 % LVFX, 49.5 % CIP and 67.1 % TC), respectively. Significantly, when CFC/BiOBr-S0.05 photocatalytic fabric is combined with a multi-stage flow device to treat the flowing wastewater (10 mg/L LVFX, rate: 1 L/h), 91.0 % LVFX can be degraded after tenth grade. Therefore, this study not only demonstrates the controllable preparation of S-doped BiOBr nanosheets with different thickness on CFC but also highlights the practical applications of fabric-based photocatalysts for purifying the flowing sewage efficiently.
Collapse
Affiliation(s)
- Xiaolong Li
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Lilin Wu
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Daniel K Macharia
- College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Mengqiang He
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Chen Han
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hui He
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Maoquan Li
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Lisha Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Zhigang Chen
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
2
|
Wang L, Lu W, Song Y, Liu S, Fu YV. Using machine learning to identify environmental factors that collectively determine microbial community structure of activated sludge. ENVIRONMENTAL RESEARCH 2024; 260:119635. [PMID: 39025351 DOI: 10.1016/j.envres.2024.119635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Activated sludge (AS) microbial communities are influenced by various environmental variables. However, a comprehensive analysis of how these variables jointly and nonlinearly shape the AS microbial community remains challenging. In this study, we employed advanced machine learning techniques to elucidate the collective effects of environmental variables on the structure and function of AS microbial communities. Applying Dirichlet multinomial mixtures analysis to 311 global AS samples, we identified four distinct microbial community types (AS-types), each characterized by unique microbial compositions and metabolic profiles. We used 14 classical linear and nonlinear machine learning methods to select a baseline model. The extremely randomized trees demonstrated optimal performance in learning the relationship between environmental factors and AS types (with an accuracy of 71.43%). Feature selection identified critical environmental factors and their importance rankings, including latitude (Lat), longitude (Long), precipitation during sampling (Precip), solids retention time (SRT), effluent total nitrogen (Effluent TN), average temperature during sampling month (Avg Temp), mixed liquor temperature (Mixed Temp), influent biochemical oxygen demand (Influent BOD), and annual precipitation (Annual Precip). Significantly, Lat, Long, Precip, Avg Temp, and Annual Precip, influenced metabolic variations among AS types. These findings emphasize the pivotal role of environmental variables in shaping microbial community structures and enhancing metabolic pathways within activated sludge. Our study encourages the application of machine learning techniques to design artificial activated sludge microbial communities for specific environmental purposes.
Collapse
Affiliation(s)
- Lu Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weilai Lu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yang Song
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shuangjiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yu Vincent Fu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Branco RHR, Meulepas RJW, Rijnaarts HHM, Sutton NB. Exploring long-term retention and reactivation of micropollutant biodegradation capacity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:47055-47070. [PMID: 38985427 PMCID: PMC11296967 DOI: 10.1007/s11356-024-34186-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024]
Abstract
The factors limiting micropollutant biodegradation in the environment and how to stimulate this process have often been investigated. However, little information is available on the capacity of microbial communities to retain micropollutant biodegradation capacity in the absence of micropollutants or to reactivate micropollutant biodegradation in systems with fluctuating micropollutant concentrations. This study investigated how a period of 2 months without the addition of micropollutants and other organic carbon affected micropollutant biodegradation by a micropollutant-degrading microbial community. Stimulation of micropollutant biodegradation was performed by adding different types of dissolved organic carbon (DOC)-extracted from natural sources and acetate-increasing 10 × the micropollutant concentration, and inoculating with activated sludge. The results show that the capacity to biodegrade 3 micropollutants was permanently lost. However, the biodegradation activity of 2,4-D, antipyrine, chloridazon, and its metabolites restarted when these micropollutants were re-added to the community. Threshold concentrations similar to those obtained before the period of no substrate addition were achieved, but biodegradation rates were lower for some compounds. Through the addition of high acetate concentrations (108 mg-C/L), gabapentin biodegradation activity was regained, but 2,4-D biodegradation capacity was lost. An increase of bentazon concentration from 50 to 500 µg/L was necessary for biodegradation to be reactivated. These results provide initial insights into the longevity of micropollutant biodegradation capacity in the absence of the substance and strategies for reactivating micropollutant biodegrading communities.
Collapse
Affiliation(s)
- Rita H R Branco
- Environmental Technology, Wageningen University & Research, P.O. Box 47, 6700 AA, Wageningen, the Netherlands
- Wetsus, European Centre of Excellence for Sustainable Water Technology, P.O. Box 1113, 8900 CC, Leeuwarden, the Netherlands
| | - Roel J W Meulepas
- Wetsus, European Centre of Excellence for Sustainable Water Technology, P.O. Box 1113, 8900 CC, Leeuwarden, the Netherlands
| | - Huub H M Rijnaarts
- Environmental Technology, Wageningen University & Research, P.O. Box 47, 6700 AA, Wageningen, the Netherlands
| | - Nora B Sutton
- Environmental Technology, Wageningen University & Research, P.O. Box 47, 6700 AA, Wageningen, the Netherlands.
| |
Collapse
|
4
|
Pedroza-Camacho LD, Ospina-Sánchez PA, Romero-Perdomo FA, Infante-González NG, Paredes-Céspedes DM, Quevedo-Hidalgo B, Gutiérrez-Romero V, Rivera-Hoyos CM, Pedroza-Rodríguez AM. Wastewater treatment from a science faculty during the COVID-19 pandemic by using ammonium-oxidising and heterotrophic bacteria. 3 Biotech 2024; 14:129. [PMID: 38601881 PMCID: PMC11003938 DOI: 10.1007/s13205-024-03961-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 02/22/2024] [Indexed: 04/12/2024] Open
Abstract
During and after the pandemic caused by the SARS-CoV-2 virus, the use of personal care products and disinfectants increased in universities worldwide. Among these, quaternary ammonium-based products stand out; these compounds and their intermediates caused substantial changes in the chemical composition of the wastewater produced by these institutions. For this reason, improvements and environmentally sustainable biological alternatives were introduced in the existing treatment systems so that these institutions could continue their research and teaching activities. For this reason, the objective of this study was to develop an improved culture medium to cultivate ammonium oxidising bacteria (AOB) to increase the biomass and use them in the treatment of wastewater produced in a faculty of sciences in Bogotá, D.C., Colombia. A Plackett Burman Experimental Design (PBED) and growth curves served for oligotrophic culture medium, and production conditions improved for the AOB. Finally, these bacteria were used with total heterotrophic bacteria (THB) for wastewater treatment in a pilot plant. Modification of base ammonium broth and culture conditions (6607 mg L-1 of (NH4)2SO4, 84 mg L-1 CaCO3, 40 mg L-1 MgSO4·7H2O, 40 mg L-1 CaCl2·2H2O and 200 mg L-1 KH2PO4, 10% (w/v) inoculum, no copper addition, pH 7.0 ± 0.2, 200 r.p.m., 30 days) favoured the growth of Nitrosomonas europea, Nitrosococcus oceani, and Nitrosospira multiformis with values of 8.23 ± 1.9, 7.56 ± 0.7 and 4.2 ± 0.4 Log10 CFU mL-1, respectively. NO2- production was 0.396 ± 0.0264, 0.247 ± 0.013 and 0.185 ± 0.003 mg L-1 for Nitrosomonas europea, Nitrosococcus oceani and Nitrosospira multiformis. After the 5-day wastewater treatment (WW) by co-inoculating the three studied bacteria in the wastewater (with their self-microorganisms), the concentrations of AOB and THB were 5.92 and 9.3 Log10 CFU mL-1, respectively. These values were related to the oxidative decrease of Chemical Oxygen Demand (COD), (39.5 mg L-1), Ammonium ion (NH4+), (6.5 mg L-1) Nitrite (NO2-), (2.0 mg L-1) and Nitrate (NO3-), (1.5 mg L-1), respectively in the five days of treatment. It was concluded, with the improvement of a culture medium and production conditions for three AOB through biotechnological strategies at the laboratory scale, being a promising alternative to bio-augment of the biomass of the studied bacteria under controlled conditions that allow the aerobic removal of COD and nitrogen cycle intermediates present in the studied wastewater. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-03961-4.
Collapse
Affiliation(s)
- Lucas D. Pedroza-Camacho
- Laboratorio de Microbiología Ambiental y Suelos, Unidad de Investigaciones Agropecuarias (UNIDIA), Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7ma No 43-82, Edifício 50 Lab. 106, P.O. Box 110-23, Bogotá, DC Colombia
| | - Paula A. Ospina-Sánchez
- Laboratorio de Microbiología Ambiental y Suelos, Unidad de Investigaciones Agropecuarias (UNIDIA), Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7ma No 43-82, Edifício 50 Lab. 106, P.O. Box 110-23, Bogotá, DC Colombia
| | - Felipe A. Romero-Perdomo
- Laboratorio de Microbiología Ambiental y Suelos, Unidad de Investigaciones Agropecuarias (UNIDIA), Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7ma No 43-82, Edifício 50 Lab. 106, P.O. Box 110-23, Bogotá, DC Colombia
| | - Nury G. Infante-González
- Laboratorio de Microbiología Ambiental y Suelos, Unidad de Investigaciones Agropecuarias (UNIDIA), Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7ma No 43-82, Edifício 50 Lab. 106, P.O. Box 110-23, Bogotá, DC Colombia
| | - Diana M. Paredes-Céspedes
- Laboratorio de Microbiología Ambiental y Suelos, Unidad de Investigaciones Agropecuarias (UNIDIA), Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7ma No 43-82, Edifício 50 Lab. 106, P.O. Box 110-23, Bogotá, DC Colombia
| | - Balkys Quevedo-Hidalgo
- Laboratorio de Biotecnología Aplicada, Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, P.O. Box 110-23, Bogotá, DC Colombia
| | | | - Claudia M. Rivera-Hoyos
- Laboratorio de Biotecnología Molecular, Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, P.O. Box 110-23, Bogotá, DC Colombia
| | - Aura M. Pedroza-Rodríguez
- Laboratorio de Microbiología Ambiental y Suelos, Unidad de Investigaciones Agropecuarias (UNIDIA), Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7ma No 43-82, Edifício 50 Lab. 106, P.O. Box 110-23, Bogotá, DC Colombia
| |
Collapse
|
5
|
Abbasi HN, Ahmad W, Shahzad KA, Lu X. Evaluating the potential of Abelmoschus esculentus, Solanum melongena, and Capsicum annuum spp. for nutrient and microbial reduction from wastewater in hybrid constructed wetland. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:293. [PMID: 38383675 DOI: 10.1007/s10661-024-12474-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/17/2024] [Indexed: 02/23/2024]
Abstract
Utilizing engineered wetlands for the cultivation of vegetables can help to overcome the problems of water and food scarcity. These wetlands are primarily designed for wastewater treatment, and their efficiency and effectiveness can be improved by selecting an appropriate substrate. To investigate the potential for nutrient and microbial removal, the Abelmoschus esculentus, Solanum melongena, and Capsicum annuum L. plants were selected to grow in a hybrid constructed wetland (CW) under natural conditions. The removal efficiency of the A. esculentus, S. melongena, and C. annuum L. in the CW system varied between 59.8 to 68.5% for total phosphorous (TP), 40.3 to 53.1% for ammonium (NH4+), and 33.6 to 45.1% for total nitrogen (TN). The influent sample contained multiple pathogenic bacteria, including Alcaligenes faecalis, Staphylococcus aureus, and Escherichia coli, with Capsicum annuum exhibiting a positive association with 7 of the 11 detected species, whereas microbial removal efficiency was notably higher in the S. melongena bed, potentially attributed to temperature variations and plant-facilitated oxygen release rates. While utilizing constructed wetlands for vegetable cultivation holds promising potential to address the disparity between water and food supply and yield various environmental, economic, and social benefits, it is crucial to note that the wastewater source may contain heavy metals, posing a risk of their transmission to humans through the food chain.
Collapse
Affiliation(s)
- Haq Nawaz Abbasi
- Department of Environmental Science, Federal Urdu University of Arts, Science and Technology, Karachi, Pakistan.
- School of Ennery and Environment, Southeast University, Nanjing, China.
| | - Waqar Ahmad
- Department of Environmental Science, Federal Urdu University of Arts, Science and Technology, Karachi, Pakistan
| | - Khawar Ali Shahzad
- Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.
| | - Xiwu Lu
- School of Ennery and Environment, Southeast University, Nanjing, China
| |
Collapse
|
6
|
H R Branco R, Meulepas RJW, van Veelen HPJ, Rijnaarts HHM, Sutton NB. Influence of redox condition and inoculum on micropollutant biodegradation by soil and activated sludge communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165233. [PMID: 37394071 DOI: 10.1016/j.scitotenv.2023.165233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/04/2023]
Abstract
Micropollutant biodegradation is selected by the interplay among environmental conditions and microbial community composition. This study investigated how different electron acceptors, and different inocula with varying microbial diversity, pre-exposed to distinct redox conditions and micropollutants, affect micropollutant biodegradation. Four tested inocula comprised of agricultural soil (Soil), sediment from a ditch in an agricultural field (Ditch), activated sludge from a municipal WWTP (Mun AS), and activated sludge from an industrial WWTP (Ind AS). Removal of 16 micropollutants was investigated for each inoculum under aerobic, nitrate reducing, iron reducing, sulfate reducing, and methanogenic conditions. Micropollutant biodegradation was highest under aerobic conditions with removal of 12 micropollutants. Most micropollutants were biodegraded by Soil (n = 11) and Mun AS inocula (n = 10). A positive correlation was observed between inoculum community richness and the number of different micropollutants a microbial community initially degraded. The redox conditions to which a microbial community had been exposed appeared to positively affect micropollutant biodegradation performance more than pre-exposure to micropollutants. Additionally, depletion of the organic carbon present in the inocula resulted in lower micropollutant biodegradation and overall microbial activities, suggesting that i) an additional carbon source is needed to promote micropollutant biodegradation; and ii) overall microbial activity can be a good indirect indicator for micropollutant biodegradation activity. These results could help to develop novel micropollutant removal strategies.
Collapse
Affiliation(s)
- Rita H R Branco
- Environmental Technology, Wageningen University & Research, 47, 6700 AA Wageningen, the Netherlands; Wetsus, European Centre of Excellence for Sustainable Water Technology, 1113, 8900 CC Leeuwarden, the Netherlands
| | - Roel J W Meulepas
- Wetsus, European Centre of Excellence for Sustainable Water Technology, 1113, 8900 CC Leeuwarden, the Netherlands
| | - H Pieter J van Veelen
- Wetsus, European Centre of Excellence for Sustainable Water Technology, 1113, 8900 CC Leeuwarden, the Netherlands
| | - Huub H M Rijnaarts
- Environmental Technology, Wageningen University & Research, 47, 6700 AA Wageningen, the Netherlands
| | - Nora B Sutton
- Environmental Technology, Wageningen University & Research, 47, 6700 AA Wageningen, the Netherlands.
| |
Collapse
|
7
|
Wang H, Sun C, Chen X, Yan K, He H. Isolation of Pseudomonas oleovorans Carrying Multidrug Resistance Proteins MdtA and MdtB from Wastewater. Molecules 2023; 28:5403. [PMID: 37513278 PMCID: PMC10383778 DOI: 10.3390/molecules28145403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
The pollution of industrial wastewater has become a global issue in terms of economic development and ecological protection. Pseudomonas oleovorans has been studied as a bacterium involved in the treatment of petroleum pollutants. Our study aimed to investigate the physicochemical properties and drug resistance of Pseudomonas oleovorans isolated from industrial wastewater with a high concentration of sulfate compounds. Firstly, Pseudomonas oleovorans was isolated and then identified using matrix-assisted flight mass spectrometry and 16S rDNA sequencing. Then, biochemical and antibiotic resistance analyses were performed on the Pseudomonas oleovorans, and a microbial high-throughput growth detector was used to assess the growth of the strain. Finally, PCR and proteomics analyses were conducted to determine drug-resistance-related genes/proteins. Based on the results of the spectrum diagram and sequencing, the isolated bacteria were identified as Pseudomonas oleovorans and were positive to reactions of ADH, MTE, CIT, MLT, ONPG, and ACE. Pseudomonas oleovorans was sensitive to most of the tested antibiotics, and its resistance to SXT and CHL and MIN and TIM was intermediate. The growth experiment showed that Pseudomonas oleovorans had a good growth rate in nutrient broth. Additionally, gyrB was the resistance gene, and mdtA2, mdtA3, mdtB2, mdaB, and emrK1 were the proteins that were closely associated with the drug resistance of Pseudomonas oleovorans. Our results show the biochemical properties of Pseudomonas oleovorans from industrial wastewater with a high concentration of sulfate compounds and provide a new perspective for Pseudomonas oleovorans to participate in biological removal of chemical pollutants in industrial wastewater.
Collapse
Affiliation(s)
- Haifeng Wang
- School of Environmental Engineering, Yellow River Conservancy Technical Institute, Kaifeng Key Laboratory of Food Composition and Quality Assessment, Kaifeng 475004, China
| | - Chenyang Sun
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang 453007, China
| | - Xing Chen
- School of Environmental Engineering, Yellow River Conservancy Technical Institute, Kaifeng Key Laboratory of Food Composition and Quality Assessment, Kaifeng 475004, China
| | - Kai Yan
- School of Environmental Engineering, Yellow River Conservancy Technical Institute, Kaifeng Key Laboratory of Food Composition and Quality Assessment, Kaifeng 475004, China
| | - Hongxuan He
- National Research Center for Wildlife-Borne Diseases, Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
8
|
Liu X, Nie Y, Wu XL. Predicting microbial community compositions in wastewater treatment plants using artificial neural networks. MICROBIOME 2023; 11:93. [PMID: 37106397 PMCID: PMC10142226 DOI: 10.1186/s40168-023-01519-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 03/16/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND Activated sludge (AS) of wastewater treatment plants (WWTPs) is one of the world's largest artificial microbial ecosystems and the microbial community of the AS system is closely related to WWTPs' performance. However, how to predict its community structure is still unclear. RESULTS Here, we used artificial neural networks (ANN) to predict the microbial compositions of AS systems collected from WWTPs located worldwide. The predictive accuracy R21:1 of the Shannon-Wiener index reached 60.42%, and the average R21:1 of amplicon sequence variants (ASVs) appearing in at least 10% of samples and core taxa were 35.09% and 42.99%, respectively. We also found that the predictability of ASVs was significantly positively correlated with their relative abundance and occurrence frequency, but significantly negatively correlated with potential migration rate. The typical functional groups such as nitrifiers, denitrifiers, polyphosphate-accumulating organisms (PAOs), glycogen-accumulating organisms (GAOs), and filamentous organisms in AS systems could also be well recovered using ANN models, with R21:1 ranging from 32.62% to 56.81%. Furthermore, we found that whether industry wastewater source contained in inflow (IndConInf) had good predictive abilities, although its correlation with ASVs in the Mantel test analysis was weak, which suggested important factors that cannot be identified using traditional methods may be highlighted by the ANN model. CONCLUSIONS We demonstrated that the microbial compositions and major functional groups of AS systems are predictable using our approach, and IndConInf has a significant impact on the prediction. Our results provide a better understanding of the factors affecting AS communities through the prediction of the microbial community of AS systems, which could lead to insights for improved operating parameters and control of community structure. Video Abstract.
Collapse
Affiliation(s)
- Xiaonan Liu
- College of Engineering, Peking University, Beijing, 100871, China
| | - Yong Nie
- College of Engineering, Peking University, Beijing, 100871, China.
| | - Xiao-Lei Wu
- College of Engineering, Peking University, Beijing, 100871, China.
- Institute of Ocean Research, Peking University, Beijing, 100871, China.
- Institute of Ecology, Peking University, Beijing, 100871, China.
| |
Collapse
|
9
|
khalidi-idrissi A, Madinzi A, Anouzla A, Pala A, Mouhir L, Kadmi Y, Souabi S. Recent advances in the biological treatment of wastewater rich in emerging pollutants produced by pharmaceutical industrial discharges. INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY : IJEST 2023; 20:1-22. [PMID: 37360558 PMCID: PMC10019435 DOI: 10.1007/s13762-023-04867-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/19/2022] [Accepted: 02/22/2023] [Indexed: 06/28/2023]
Abstract
Pharmaceuticals and personal care products present potential risks to human health and the environment. In particular, wastewater treatment plants often detect emerging pollutants that disrupt biological treatment. The activated sludge process is a traditional biological method with a lower capital cost and limited operating requirements than more advanced treatment methods. In addition, the membrane bioreactor combines a membrane module and a bioreactor, widely used as an advanced method for treating pharmaceutical wastewater with good pollution performance. Indeed, the fouling of the membrane remains a major problem in this process. In addition, anaerobic membrane bioreactors can treat complex pharmaceutical waste while recovering energy and producing nutrient-rich wastewater for irrigation. Wastewater characterizations have shown that wastewater's high organic matter content facilitates the selection of low-cost, low-nutrient, low-surface-area, and effective anaerobic methods for drug degradation and reduces pollution. However, to improve the biological treatment, researchers have turned to hybrid processes in which all physical, chemical, and biological treatment methods are integrated to remove various emerging contaminants effectively. Hybrid systems can generate bioenergy, which helps reduce the operating costs of the pharmaceutical waste treatment system. To find the most effective treatment technique for our research, this work lists the different biological treatment techniques cited in the literature, such as activated sludge, membrane bioreactor, anaerobic treatment, and hybrid treatment, combining physicochemical and biological techniques.
Collapse
Affiliation(s)
- A. khalidi-idrissi
- Laboratory of Process Engineering and Environment, Faculty of Science and Technology, Mohammedia, University Hassan II of Casablanca, BP. 146, Mohammedia, Morocco
| | - A. Madinzi
- Laboratory of Process Engineering and Environment, Faculty of Science and Technology, Mohammedia, University Hassan II of Casablanca, BP. 146, Mohammedia, Morocco
| | - A. Anouzla
- Laboratory of Process Engineering and Environment, Faculty of Science and Technology, Mohammedia, University Hassan II of Casablanca, BP. 146, Mohammedia, Morocco
| | - A. Pala
- Environmental Research and Development Center (CEVMER), Dokuz Eylul University, Izmir, Turkey
| | - L. Mouhir
- Laboratory of Process Engineering and Environment, Faculty of Science and Technology, Mohammedia, University Hassan II of Casablanca, BP. 146, Mohammedia, Morocco
| | - Y. Kadmi
- CNRS, UMR 8516 - LASIR, University Lille, 59000 Lille, France
| | - S. Souabi
- Laboratory of Process Engineering and Environment, Faculty of Science and Technology, Mohammedia, University Hassan II of Casablanca, BP. 146, Mohammedia, Morocco
| |
Collapse
|
10
|
Poopedi E, Singh T, Gomba A. Potential Exposure to Respiratory and Enteric Bacterial Pathogens among Wastewater Treatment Plant Workers, South Africa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4338. [PMID: 36901349 PMCID: PMC10002314 DOI: 10.3390/ijerph20054338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Wastewater handling has been associated with an increased risk of developing adverse health effects, including respiratory and gastrointestinal illnesses. However, there is a paucity of information in the literature, and occupational health risks are not well quantified. Grab influent samples were analysed using Illumina Miseq 16S amplicon sequencing to assess potential worker exposure to bacterial pathogens occurring in five municipal wastewater treatment plants (WWTPs). The most predominant phyla were Bacteroidota, Campilobacterota, Proteobacteria, Firmicutes, and Desulfobacterota, accounting for 85.4% of the total bacterial community. Taxonomic analysis showed a relatively low diversity of bacterial composition of the predominant genera across all WWTPs, indicating a high degree of bacterial community stability in the influent source. Pathogenic bacterial genera of human health concern included Mycobacterium, Coxiella, Escherichia/Shigella, Arcobacter, Acinetobacter, Streptococcus, Treponema, and Aeromonas. Furthermore, WHO-listed inherently resistant opportunistic bacterial genera were identified. These results suggest that WWTP workers may be occupationally exposed to several bacterial genera classified as hazardous biological agents for humans. Therefore, there is a need for comprehensive risk assessments to ascertain the actual risks and health outcomes among WWTP workers and inform effective intervention strategies to reduce worker exposure.
Collapse
Affiliation(s)
- Evida Poopedi
- National Institute for Occupational Health, National Health Laboratory Service, Johannesburg 2000, South Africa
- Department of Clinical Microbiology and Infectious Diseases, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Tanusha Singh
- National Institute for Occupational Health, National Health Laboratory Service, Johannesburg 2000, South Africa
- Department of Clinical Microbiology and Infectious Diseases, University of the Witwatersrand, Johannesburg 2050, South Africa
- Department of Environmental Health, University of Johannesburg, Doornfontein 2028, South Africa
| | - Annancietar Gomba
- National Institute for Occupational Health, National Health Laboratory Service, Johannesburg 2000, South Africa
| |
Collapse
|
11
|
Roman MD, Sava C, Iluțiu-Varvara DA, Mare R, Pruteanu LL, Pică EM, Jäntschi L. Biological Activated Sludge from Wastewater Treatment Plant before and during the COVID-19 Pandemic. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11323. [PMID: 36141596 PMCID: PMC9517470 DOI: 10.3390/ijerph191811323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
The COVID-19 pandemic and the related measures brought a change in daily life that affected the characteristics of the municipal wastewater and further, of the biological activated sludge. The activated sludge process is the most widely used biological wastewater treatment process in developed areas. In this paper, we aim to show the situation of specific investigations concerning the variation of the physicochemical parameters and biological composition of the activated sludge from one conventional wastewater treatment plant from a metropolitan area. The investigations were carried out for three years: 2019, 2020 and 2021. The results showed the most representative taxa of microorganisms: Microtrix, Aspidisca cicada, Vorticella convallaria, Ciliata free of the unknown and Epistylis and Rotifers. Even if other microorganisms were found in the sludge flocs, their small presence did not influence in any way the quality of the activated sludge and of the wastewater treatment process. That is why we conclude that protozoa (especially Flagellates and Ciliates) and rotifers were the most important. Together with the values and variation of the physicochemical parameters, they indicated a good, healthy, and stable activated sludge, along with an efficient purifying treatment process, no matter the loading conditions.
Collapse
Affiliation(s)
- Marius-Daniel Roman
- Faculty of Building Services Engineering, Technical University of Cluj-Napoca, 28 Memorandumului Street, 400114 Cluj-Napoca, Romania
| | - Cornel Sava
- Faculty of Engineering Materials and the Environment, Technical University of Cluj-Napoca, 28 Memorandumului Street, 400114 Cluj-Napoca, Romania
| | - Dana-Adriana Iluțiu-Varvara
- Faculty of Building Services Engineering, Technical University of Cluj-Napoca, 28 Memorandumului Street, 400114 Cluj-Napoca, Romania
| | - Roxana Mare
- Faculty of Building Services Engineering, Technical University of Cluj-Napoca, 28 Memorandumului Street, 400114 Cluj-Napoca, Romania
| | - Lavinia-Lorena Pruteanu
- Department of Chemistry and Biology, North University Center at Baia Mare, Technical University of Cluj-Napoca, 76 Victoriei Street, 430122 Baia Mare, Romania
| | - Elena Maria Pică
- Faculty of Engineering Materials and the Environment, Technical University of Cluj-Napoca, 28 Memorandumului Street, 400114 Cluj-Napoca, Romania
| | - Lorentz Jäntschi
- Department of Physics and Chemistry, Technical University of Cluj-Napoca, 103-105 Bd. Muncii, 400641 Cluj-Napoca, Romania
- Institute for Doctoral Studies, Babes-Bolyai University, 1 M. Kogălniceanu Street, 400084 Cluj-Napoca, Romania
| |
Collapse
|
12
|
Zou J, Yang J, He H, Wang X, Mei R, Cai L, Li J. Effect of Seed Sludge Type on Aerobic Granulation, Pollutant Removal and Microbial Community in a Sequencing Batch Reactor Treating Real Textile Wastewater. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10940. [PMID: 36078654 PMCID: PMC9518340 DOI: 10.3390/ijerph191710940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
The aerobic granulation, pollutant removal, and microbial community in real textile wastewater (TWW) treatment were compared using conventional activated sludge (CAS) and preformed aerobic granular sludge (AGS) in synthetic wastewater as seed in two reactors, reactor-1 (R1) and reactor-2 (R2), respectively. The results showed that complete granulation was achieved in R1 (sludge volume index at 5 min (SVI5) and 30 min (SVI30): 19.4 mL/g; granule size: 210 μm) within 65 days, while it only required 28 days in R2 (SVI5 and SVI30: 27.3 mL/g; granule size: 496 μm). The removal of COD, NH4+-N and TN in R1 (49.8%, 98.8%, and 41.6%) and R2 (53.6%, 96.9%, and 40.8%) were comparable in 100% real TWW treatment, but stable performance was achieved much faster in R2. The real TWW had an inhibitory effect on heterotrophic bacteria activity, but it had no inhibition on ammonia-oxidizing bacteria activity. AGS with a larger particle size had a higher microbial tolerance to real TWW. Furthermore, filamentous Thiothrix in the AGS in R2 disappeared when treating real TWW, leading to the improvement of sludge settleability. Thus, seeding preformed AGS is suggested as a rapid start-up method for a robust AGS system in treating real TWW.
Collapse
Affiliation(s)
- Jinte Zou
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiaqi Yang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hangtian He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiaofei Wang
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Rongwu Mei
- Eco-Environmental Science Design & Research Institute of Zhejiang Province, Hangzhou 310007, China
| | - Lei Cai
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jun Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
13
|
He S, Zhao Z, Tian Z, Xu C, Liu Y, He D, Zhang Y, Zheng M. Comammox bacteria predominate among ammonia-oxidizing microorganisms in municipal but not in refinery wastewater treatment plants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 316:115271. [PMID: 35594823 DOI: 10.1016/j.jenvman.2022.115271] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 05/03/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Comammox bacteria have proved to be one dominant and significant ammonia-oxidizing microorganisms (AOMs) in municipal wastewater treatment plants (WWTPs), however, it still remains unknown about their abundance and diversity in industrial WWTPs. In this study, activated sludge samples from 8 municipal WWTPs and 6 industrial WWTPs treating refinery wastewater were taken and analyzed using qPCR and amoA gene sequencing. Intriguingly, quantitative real-time PCR (qPCR) results suggested that comammox bacteria had a higher numerical abundance compared with ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) in municipal WWTPs but did not in refinery WWTPs. Moreover, comammox amoA sequences obtained from high-throughput sequencing were retrieved from all the 8 municipal samples but only 1 industrial sample. Further phylogenetic analysis revealed that N. nitrosa cluster accounted for as high as 79.56% of the total comammox affiliated sequences, which was the most numerically abundant comammox species in municipal WWTPs. This study provided new insights into the abundance and diversity of comammox bacteria in the biological nitrification process in municipal and refinery wastewater treatment systems.
Collapse
Affiliation(s)
- Shishi He
- The Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, Main Building G619, North China Electric Power University, Beijing, 102206, China
| | - Zhirong Zhao
- The Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, Main Building G619, North China Electric Power University, Beijing, 102206, China
| | - Zhichao Tian
- The Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, Main Building G619, North China Electric Power University, Beijing, 102206, China
| | - Chi Xu
- The Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, Main Building G619, North China Electric Power University, Beijing, 102206, China
| | - Yuan Liu
- The Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, Main Building G619, North China Electric Power University, Beijing, 102206, China
| | - Da He
- Key Laboratory of Ecological Impacts of Hydraulic Projects and Restoration of Aquatic Ecosystem of Ministry of Water Resources, Institute of Hydroecology, Ministry of Water Resources & Chinese Academy of Sciences, Wuhan, China
| | - Yinghui Zhang
- Guangxi Huantou Water Group Co. LTD, Nanning, 530015, China
| | - Maosheng Zheng
- The Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, Main Building G619, North China Electric Power University, Beijing, 102206, China.
| |
Collapse
|
14
|
Zeng T, Wang L, Zhang X, Song X, Li J, Yang J, Chen S, Zhang J. Characterization of Microbial Communities in Wastewater Treatment Plants Containing Heavy Metals Located in Chemical Industrial Zones. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19116529. [PMID: 35682115 PMCID: PMC9180875 DOI: 10.3390/ijerph19116529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 12/24/2022]
Abstract
Water pollution caused by heavy metals (HMs) poses a serious risk to human health and the environment and can increase the risk of diabetes, cancer, and hypertension in particular. In this study, two full-scale wastewater treatment plants (WWTPs) in industrial zones in southern China were selected to analyze the microbial community structure, diversity, similarity, and differentiation in the anoxic/oxic (AO) and anoxic/oxic membrane bioreactor (AO-MBR) units under the stress of HMs. High-throughput sequencing showed that microbial diversity and abundance were higher in the AO process than in the AO-MBR process. In the two WWTPs, the common dominant phyla were Proteobacteria and Bacteroidetes, while the common dominant genera were Gemmatimonadaceae, Anaerolineaceae, Saprospiraceae, and Terrimonas. Manganese (Mn) and zinc (Zn) positively correlated with Saccharimonadales, Nakamurella, Micrococcales, and Microtrichales, whereas copper (Cu) and iron (Fe) positively correlated with Longilinea and Ferruginibacter. Additionally, the relative abundances of Chloroflexi, Patescibacteria, and Firmicutes differed significantly (p < 0.05) between the two processes. These results may provide comprehensive outlooks on the characterization of microbial communities in WWTPs, which could also help to reduce the potential environmental risks of the effluent from WWTPs located in industrial zones.
Collapse
Affiliation(s)
- Taotao Zeng
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang 421001, China; (T.Z.); (L.W.); (X.Z.); (X.S.); (J.L.); (J.Y.); (S.C.)
| | - Liangqin Wang
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang 421001, China; (T.Z.); (L.W.); (X.Z.); (X.S.); (J.L.); (J.Y.); (S.C.)
| | - Xiaoling Zhang
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang 421001, China; (T.Z.); (L.W.); (X.Z.); (X.S.); (J.L.); (J.Y.); (S.C.)
| | - Xin Song
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang 421001, China; (T.Z.); (L.W.); (X.Z.); (X.S.); (J.L.); (J.Y.); (S.C.)
| | - Jie Li
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang 421001, China; (T.Z.); (L.W.); (X.Z.); (X.S.); (J.L.); (J.Y.); (S.C.)
| | - Jinhui Yang
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang 421001, China; (T.Z.); (L.W.); (X.Z.); (X.S.); (J.L.); (J.Y.); (S.C.)
| | - Shengbing Chen
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang 421001, China; (T.Z.); (L.W.); (X.Z.); (X.S.); (J.L.); (J.Y.); (S.C.)
| | - Jie Zhang
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, China
- Correspondence:
| |
Collapse
|
15
|
Buratti S, Girometta CE, Baiguera RM, Barucco B, Bernardi M, De Girolamo G, Malgaretti M, Oliva D, Picco AM, Savino E. Fungal Diversity in Two Wastewater Treatment Plants in North Italy. Microorganisms 2022; 10:microorganisms10061096. [PMID: 35744613 PMCID: PMC9229248 DOI: 10.3390/microorganisms10061096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 02/01/2023] Open
Abstract
In urban wastewater treatment plants, bacteria lead the biological component of the depuration process, but the microbial community is also rich in fungi (mainly molds, yeasts and pseudo-yeasts), whose taxonomical diversity and relative frequency depend on several factors, e.g., quality of wastewater input, climate, seasonality, and depuration stage. By joining morphological and molecular identification, we investigated the fungal diversity in two different plants for the urban wastewater treatment in the suburbs of the two major cities in Lombardia, the core of industrial and commercial activities in Italy. This study presents a comparison of the fungal diversity across the depuration stages by applying the concepts of α-, β- and ζ-diversity. Eurotiales (mainly with Aspergillus and Penicillium), Trichosporonales (Trichosporon sensu lato), Saccharomycetales (mainly with Geotrichum) and Hypocreales (mainly with Fusarium and Trichoderma) are the most represented fungal orders and genera in all the stages and both the plants. The two plants show different trends in α-, β- and ζ-diversity, despite the fact that they all share a crash during the secondary sedimentation and turnover across the depuration stages. This study provides an insight on which taxa potentially contribute to each depuration stage and/or keep viable propagules in sludges after the collection from the external environment.
Collapse
Affiliation(s)
- Simone Buratti
- Department of Earth and Environmental Sciences, University of Pavia, Via Sant’Epifanio 14, 27100 Pavia, Italy; (S.B.); (R.M.B.); (A.M.P.); (E.S.)
| | - Carolina Elena Girometta
- Department of Earth and Environmental Sciences, University of Pavia, Via Sant’Epifanio 14, 27100 Pavia, Italy; (S.B.); (R.M.B.); (A.M.P.); (E.S.)
- Correspondence:
| | - Rebecca Michela Baiguera
- Department of Earth and Environmental Sciences, University of Pavia, Via Sant’Epifanio 14, 27100 Pavia, Italy; (S.B.); (R.M.B.); (A.M.P.); (E.S.)
| | - Barbara Barucco
- A2A Ciclo Idrico, Via Lamarmora 230, 25124 Brescia, Italy; (B.B.); (G.D.G.); (M.M.)
| | - Marco Bernardi
- CAP Holding Spa, Centro Ricerche Salazzurra, Via Circonvallazione Est, 20054 Segrate, Italy; (M.B.); (D.O.)
| | - Giuseppe De Girolamo
- A2A Ciclo Idrico, Via Lamarmora 230, 25124 Brescia, Italy; (B.B.); (G.D.G.); (M.M.)
| | - Maura Malgaretti
- A2A Ciclo Idrico, Via Lamarmora 230, 25124 Brescia, Italy; (B.B.); (G.D.G.); (M.M.)
| | - Desdemona Oliva
- CAP Holding Spa, Centro Ricerche Salazzurra, Via Circonvallazione Est, 20054 Segrate, Italy; (M.B.); (D.O.)
| | - Anna Maria Picco
- Department of Earth and Environmental Sciences, University of Pavia, Via Sant’Epifanio 14, 27100 Pavia, Italy; (S.B.); (R.M.B.); (A.M.P.); (E.S.)
| | - Elena Savino
- Department of Earth and Environmental Sciences, University of Pavia, Via Sant’Epifanio 14, 27100 Pavia, Italy; (S.B.); (R.M.B.); (A.M.P.); (E.S.)
| |
Collapse
|
16
|
Potential for Natural Attenuation of Domestic and Agricultural Pollution in Karst Groundwater Environments. WATER 2022. [DOI: 10.3390/w14101597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In karst areas, anthropogenic contaminants reach the subsurface with detrimental effects on the groundwater ecosystem and downstream springs, which often serve as drinking water sources for the local human communities. We analyzed the water chemistry and microbial community composition in upstream and downstream locations of five hydrokarst systems (HKS) during four seasons. Conductivity and nitrates were higher in the downstream springs than in the pre-karst waters, whereas the concentration of organic matter, considered here as a pollution indicator, was lower. The microbial community composition varied largely between upstream and downstream locations, with multiple species of potentially pathogenic bacteria decreasing in the HKS. Bacteria indicative of pollution decreased as well when passing through the HKS, but potential biodegraders increased. This suggests that the HKS can filter out part of the polluting organic matter and, with it, part of the associated microorganisms. Nevertheless, the water quality, including the presence of pathogens in downstream springs, must be further monitored to control whether the water is appropriate for consumption. In parallel, the human populations located upstream must be advised of the risks resulting from their daily activities, improper stocking of their various wastes and dumping of their refuse in surface streams.
Collapse
|
17
|
Lee C, Kim S, Park MH, Lee YS, Lee C, Lee S, Yang J, Kim JY. Valorization of petroleum refinery oil sludges via anaerobic co-digestion with food waste and swine manure. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 307:114562. [PMID: 35091242 DOI: 10.1016/j.jenvman.2022.114562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/23/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Valorization of oil sludge has been gaining attention to improve the sustainability of the petroleum industry. This study aimed to assess the possibility of anaerobic co-digestion of oil scum and secondary sludge with food waste (or swine manure). Oil scum and secondary sludge were obtained from a wastewater treatment plant (WWTP) of a petrochemical plant. Physicochemical properties, hazardous materials, and microbial community were characterized and biochemical methane potential was performed by a simplex-lattice mixture design. More than 87% (wet wt.) of the oil scum consisted of total petroleum hydrocarbons (TPHs) (21,762 mg/L) that are difficult to be degraded by anaerobes. The secondary sludge showed low TPHs (5 mg/L) and a bacterial community similar to that of municipal WWTPs. The heavy metal (Cu, As, Cr, Ni, Mn, Zn, and V) concentrations in the oil scum and secondary sludge were similar (20-600 mg/L). The maximum methane potentials of the oil sludge and secondary sludges were 20 ± 2 and 56 ± 3 mL CH4/g-volatile solid, respectively. The co-digestion with food waste or swine manure led to a synergy effect on methane production of the co-digestion substrate (10-40% increase compared to the calculated value; v/v) by balancing the C/N ratio. Due to the high TPH contents, oil scum is not appropriate for co-digestion. The co-digestion of secondary sludge with food waste and/or swine manure is recommended. It is necessary to consider whether the concentration of heavy metals is at a level that inhibits the anaerobic co-digestion depending on the operating conditions such as mixing ratios and solid contents.
Collapse
Affiliation(s)
- Changmin Lee
- Department of Civil and Environmental Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Seunghwan Kim
- Department of Civil and Environmental Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Man Ho Park
- Institute of Construction and Environmental Engineering, College of Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Young Su Lee
- Department of Civil and Environmental Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Changweon Lee
- SK Incheon Petrochem Co., Ltd, 415 Bongsu-ro, Seo-gu, Incheon, 22771, Republic of Korea
| | - Sungho Lee
- SK Incheon Petrochem Co., Ltd, 415 Bongsu-ro, Seo-gu, Incheon, 22771, Republic of Korea
| | - Junmo Yang
- SK Incheon Petrochem Co., Ltd, 415 Bongsu-ro, Seo-gu, Incheon, 22771, Republic of Korea
| | - Jae Young Kim
- Department of Civil and Environmental Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
18
|
Suzzi AL, Gaston TF, McKenzie L, Mazumder D, Huggett MJ. Tracking the impacts of nutrient inputs on estuary ecosystem function. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:152405. [PMID: 34923003 DOI: 10.1016/j.scitotenv.2021.152405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Estuaries are one of the most impacted coastal environments globally, subjected to multiple stressors from urban, industry and coastal development. With increasing anthropogenic activity surrounding estuarine systems, sewage inputs have become a common concern. Stable isotope analysis provides a well-established tool to investigate the incorporation of nitrogen into marine organisms and identify major nutrient sources. Benthic macroinvertebrate communities are often used as bioindicators in ecological studies as they typically display predictable responses to anthropogenic pressures, however have a suite of limitations and costs associated with their use. 16S rDNA amplicon sequencing techniques allow for investigation of the microbial communities inhabiting complex environmental samples, with potential as a tool in the ecological assessment of pollution. These communities have not yet been adequately considered for ecological studies and biomonitoring, with a need to better understand interactions with environmental stressors and implications for ecosystem function. This study used a combination of stable isotope analysis to trace the uptake of anthropogenic nitrogen in biota, traditional assessment of benthic macroinvertebrate communities, and 16S rDNA genotyping of benthic microbial communities. Stable isotope analysis of seagrass and epiphytes identified multiple treated and untreated sewage inputs, ranges of 5.2-7.2‰ and 1.9-4.0‰ for δ15N respectively, as the dominant nitrogen source at specific locations. The benthic macroinvertebrate community reflected these inputs with shifts in dominant taxa and high abundances of polychaetes at some sites. Microbial communities provided a sensitive indication of impact with a breadth of information not available using traditional techniques. Composition and predicted function reflected sewage inputs, particularly within sediments, with the relative abundance of specific taxa and putative pathogens linked to these inputs. This research supports the growing body of evidence that benthic microbial communities respond rapidly to anthropogenic stressors and have potential as a monitoring tool in urban estuarine systems.
Collapse
Affiliation(s)
- Alessandra L Suzzi
- College of Engineering, Science and Environment, University of Newcastle, Ourimbah, NSW, Australia.
| | - Troy F Gaston
- College of Engineering, Science and Environment, University of Newcastle, Ourimbah, NSW, Australia
| | - Louise McKenzie
- College of Engineering, Science and Environment, University of Newcastle, Ourimbah, NSW, Australia; Hunter Water Corporation, Newcastle, NSW, Australia
| | - Debashish Mazumder
- Australian Nuclear Science and Technology Organisation (ANSTO), Sydney, NSW, Australia
| | - Megan J Huggett
- College of Engineering, Science and Environment, University of Newcastle, Ourimbah, NSW, Australia; Centre for Marine Ecosystems Research, School of Science, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
19
|
De Sanctis M, Murgolo S, Altieri VG, De Gennaro L, Amodio M, Mascolo G, Di Iaconi C. An innovative biofilter technology for reducing environmental spreading of emerging pollutants and odour emissions during municipal sewage treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:149966. [PMID: 34481161 DOI: 10.1016/j.scitotenv.2021.149966] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/12/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Wastewater treatment plants (WWTPs) are known sources of contaminants of emerging concern (CECs) spreading into the environment, as well as, of unpleasant odors. CECs represent a potential hazard for human health and the environment being pharmaceutical or biologically active compounds and they are acquiring relevance in European directives. Similarly, the public concern about odour emissions from WWTPs is also increasing due to the decreasing distance between WWTP and residential areas. This study focuses on the effectiveness of the recently developed MULESL technology (MUch LEss SLudge; WO2019097463) in removing CECs and limiting odour emissions from WWTPs. MULESL technology has been developed for its ability to reduce up to 80% the sludge production from WWTPs. However, it is ought to evaluate if the benefits coming from sludge production reduction do not invalidate CECs removal or negatively affect odour emissions. Thus, the performances of a MULESL and a conventional WWTP (flow rate of 375 m3/d and 3600 m3/d, respectively) were compared while treating the same municipal sewage. Whereas both plants succeeded in removing the traditional gross parameters characterizing wastewaters (e.g. chemical oxygen demand, nitrogen), the MULESL was much more effective than the conventional one in terms of CECs removal for about 60% of the identified compounds showing, however, the same or lower effectiveness for about 30% and 10% of them, respectively. This result was attributed to the high sludge retention time and biomass concentration in the MULESL (enabling enrichment of slow growing microorganisms and forcing biomass to use unusual substrates, respectively), and to the biomass feature to grow in the form of biofilm and granules (favoring micropollutants absorption on biomass). Furthermore, odour impact analysis has shown that the MULESL was characterized by a much lower impact, i.e. 45% lower than that of primary and secondary treatments of the conventional WWTP.
Collapse
Affiliation(s)
- M De Sanctis
- Water Research Institute, C.N.R, Viale F. De Blasio 5, 70132 Bari, Italy.
| | - S Murgolo
- Water Research Institute, C.N.R, Viale F. De Blasio 5, 70132 Bari, Italy
| | - V G Altieri
- Water Research Institute, C.N.R, Viale F. De Blasio 5, 70132 Bari, Italy
| | - L De Gennaro
- LEnviroS srl, spin off of University of Bari, Via degli antichi pastifici 8/B, IT-70056 Molfetta, Bari, Italy
| | - M Amodio
- LEnviroS srl, spin off of University of Bari, Via degli antichi pastifici 8/B, IT-70056 Molfetta, Bari, Italy
| | - G Mascolo
- Water Research Institute, C.N.R, Viale F. De Blasio 5, 70132 Bari, Italy
| | - C Di Iaconi
- Water Research Institute, C.N.R, Viale F. De Blasio 5, 70132 Bari, Italy
| |
Collapse
|
20
|
Ittisupornrat S, Phetrak A, Theepharaksapan S, Mhuantong W, Tobino T. Effect of prolonged sludge retention times on the performance of membrane bioreactor and microbial community for leachate treatment under restricted aeration. CHEMOSPHERE 2021; 284:131153. [PMID: 34214930 DOI: 10.1016/j.chemosphere.2021.131153] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 04/08/2021] [Accepted: 06/05/2021] [Indexed: 06/13/2023]
Abstract
Leachate treatment is challenging owing to the complex composition of pollutants. This study investigated the treatment performance of a membrane bioreactor (MBR) and the microbial community structure corresponding to the effect of prolonged sludge retention times (SRTs) under restricted aeration. In the present study, a pilot-scale MBR was designed to treat leachate after being pretreated with an anaerobic filter for continuous operation for 240 days. The experimental results showed that removal performance of over 90% was achieved for biochemical oxygen demand, total Kjeldahl nitrogen, ammonia-nitrogen, and suspended solids when the MBR was operated at SRTs of 150-300 days. The results on microbial communities revealed that Proteobacteria, Bacteroidetes, Firmicutes, Planctomycetes, Chloroflexi, and Actinobacteria were the major phyla. Furthermore, ammonia-oxidizing bacteria belonging to Nitrosomonadaceae were considered to play a vital role in the ammonia-nitrogen removal. A high abundance of Rhizobiales was detected on the biofilm of the membrane, which could be the key driver of bio-fouling. The dynamic changes in the microbial community indicate steady performance of MBR and can act as an indicator of membrane bio-fouling. The results of our study highlight that MBR can be viably operated in long SRTs under restricted aeration for leachate treatment with technical, economic, and environmental feasibility for resource recovery.
Collapse
Affiliation(s)
- Suda Ittisupornrat
- Environmental Research and Training Centre, Department of Environmental Quality Promotion, Pathum thani, Thailand
| | - Athit Phetrak
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | - Suthida Theepharaksapan
- Department of Civil and Environmental Engineering, Faculty of Engineering, Srinakharinwirot University, Nakhon Nayok, Thailand
| | - Wuttichai Mhuantong
- Enzyme Technology Research Team, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum thani, Thailand
| | - Tomohiro Tobino
- Department of Urban Engineering, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
21
|
Zainuddin NI, Bilad MR, Marbelia L, Budhijanto W, Arahman N, Fahrina A, Shamsuddin N, Zaki ZI, El-Bahy ZM, Nandiyanto ABD, Gunawan P. Sequencing Batch Integrated Fixed-Film Activated Sludge Membrane Process for Treatment of Tapioca Processing Wastewater. MEMBRANES 2021; 11:membranes11110875. [PMID: 34832104 PMCID: PMC8617780 DOI: 10.3390/membranes11110875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022]
Abstract
Tapioca processing industries are very popular in the rural community to produce a variety of foods as the end products. Due to their small scales and scattered locations, they require robust modular systems to operate at low capacity with minimum supervision. This study explores the application of a novel sequencing batch-integrated fixed-film activated sludge membrane (SB-IFASM) process to treat tapioca processing wastewater for reuse purposes. The SB-IFASM employed a gravity-driven system and utilizes biofilm to enhance biodegradation without requiring membrane cleaning. The SB-IFASM utilizes the biofilm as a secondary biodegradation stage to enhance the permeate quality applicable for reuse. A lab-scale SB-IFASM was developed, preliminarily assessed, and used to treat synthetic tapioca processing industry wastewater. The results of short-term filtration tests showed the significant impact of hydrostatic pressure on membrane compaction and instant cake layer formation. Increasing the pressure from 2.2 to 10 kPa lowered the permeability of clean water and activated sludge from 720 to 425 and from 110 to 50 L/m2·h bar, respectively. The unsteady-state operation of the SB-IFASM showed the prominent role of the bio-cake in removing the organics reaching the permeate quality suitable for reuse. High COD removals of 63-98% demonstrated the prominence contribution of the biofilm in enhancing biological performance and ultimate COD removals of >93% make it very attractive for application in small-scale tapioca processing industries. However, the biological ecosystem was unstable, as shown by foaming that deteriorated permeability and was detrimental to the organic removal. Further developments are still required, particularly to address the biological stability and low permeability.
Collapse
Affiliation(s)
- Nur Izzati Zainuddin
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia;
| | - Muhammad Roil Bilad
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, Bandar Seri Begawan BE1410, Brunei;
- Correspondence: (M.R.B.); (N.A.)
| | - Lisendra Marbelia
- Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jalan Grafika 2, Yogyakarta 55281, Indonesia; (L.M.); (W.B.)
| | - Wiratni Budhijanto
- Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jalan Grafika 2, Yogyakarta 55281, Indonesia; (L.M.); (W.B.)
| | - Nasrul Arahman
- Department of Chemical Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia;
- Magister Program of Environmental Management, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
- Correspondence: (M.R.B.); (N.A.)
| | - Afrilia Fahrina
- Department of Chemical Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia;
| | - Norazanita Shamsuddin
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, Bandar Seri Begawan BE1410, Brunei;
| | - Zaki Ismail Zaki
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Zeinhom M. El-Bahy
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt;
| | | | - Poernomo Gunawan
- School of Chemical & Biomedical Engineering, Nanyang Technological University, Singapore 639798, Singapore;
| |
Collapse
|
22
|
Challenges in Treatment of Digestate Liquid Fraction from Biogas Plant. Performance of Nitrogen Removal and Microbial Activity in Activated Sludge Process. ENERGIES 2021. [DOI: 10.3390/en14217321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Even thoughdigestate, which is continually generated in anaerobic digestion process, can only be used as fertilizer during the growing season, digestate treatment is still a critical, environmental problem. That is why the present work aims to develop a method to manage digestate in agricultural biogas plant in periods when its use as fertilizer is not possible. A lab-scale system for the biological treatment of the digestate liquid fraction using the activated sludge method with a separate denitrification chamber was constructed and tested. The nitrogen load that was added tothe digestate liquid fraction accounted for 78.53% of the total nitrogen load fed into the reactor. External carbon sources, such as acetic acid, as well as flume water and molasses, i.e., wastewater and by-products from a sugar factory, were used to support the denitrification process. The best results were obtained using an acetic acid and COD (Chemical Oxygen Demand)/NO3–N (Nitrate Nitrogen) ratio of 7.5. The removal efficiency of TN (Total Nitrogen), NH4–N (Ammonia Nitrogen) and COD was 83.73%, 99.94%, 86.26%, respectively. It was interesting to see results obtained that were similar to those obtained when using flume water and COD/NO3–N at a ratio of 8.7. This indicates that flume water can be used as an alternative carbon source to intensify biological nitrogen removal from digestate.
Collapse
|
23
|
Mainardis M, Buttazzoni M, Cottes M, Moretti A, Goi D. Respirometry tests in wastewater treatment: Why and how? A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148607. [PMID: 34182438 DOI: 10.1016/j.scitotenv.2021.148607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/08/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
Respirometry tests are a widely employed method in wastewater treatment field to characterize wastewater streams, assess toxic/inhibitory effects to the biomass, calibrate mathematical models. Respirometry can allow to fractionize the chemical oxygen demand (COD) in biodegradable and inert fractions, but also provide information related to biomass kinetics and stoichiometry through standardized laboratory techniques. Considering the increasing number of emerging contaminants detected in wastewater effluents, such as pharmaceuticals, personal care products and pesticides, respirometry can be a useful tool to promptly assess any toxic or inhibitory effect in wastewater treatment plants (WWTPs) operations. Beside conventional activated sludge (CAS), in recent years respirometric methods have been applied to innovative fields, such as moving-bed bio-reactors (MBBRs), fungi and microalgae, exploiting natural remediation methods. In particular, respirometry application to microalgae, through the so-called photo-respirometry, has been investigated in the latest years in the treatment of high-nutrient loaded streams, allowing resource recovery in biomass form. In this work, respirometric methods are first introduced from a theoretical basis and then critically discussed by considering the experimental apparatus, the available characterization protocols and the fields of application; the most recent literature findings on respirometry are coupled with authors' experience in the field. A comparison between physicochemical methods and respirometry is made, considering common protocols for WWTP modelling and calibration. The future research needed on the topic is finally outlined, including the coupling of respirometry with microbial community analysis, potentially leading to an enhanced process understanding, an extended respirometry utilization to get specific kinetic and stoichiometric parameters for modelling purposes, and a wider respirometry application as diagnosis tool in WWTP operations.
Collapse
Affiliation(s)
- Matia Mainardis
- Department Polytechnic of Engineering and Architecture, University of Udine, Via del Cotonificio 108, 33100 Udine, Italy.
| | - Marco Buttazzoni
- Department Polytechnic of Engineering and Architecture, University of Udine, Via del Cotonificio 108, 33100 Udine, Italy
| | - Mattia Cottes
- Department Polytechnic of Engineering and Architecture, University of Udine, Via del Cotonificio 108, 33100 Udine, Italy
| | - Alessandro Moretti
- Department Polytechnic of Engineering and Architecture, University of Udine, Via del Cotonificio 108, 33100 Udine, Italy
| | - Daniele Goi
- Department Polytechnic of Engineering and Architecture, University of Udine, Via del Cotonificio 108, 33100 Udine, Italy
| |
Collapse
|
24
|
Xenobiotics-Division and Methods of Detection: A Review. J Xenobiot 2021; 11:130-141. [PMID: 34842778 PMCID: PMC8628977 DOI: 10.3390/jox11040009] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/30/2021] [Accepted: 10/13/2021] [Indexed: 11/25/2022] Open
Abstract
Xenobiotics are compounds of synthetic origin, usually used for domestic, agricultural, and industrial purposes; in the environment, they are present in micropollutant concentrations and high concentrations (using ng/L to µg/L units). Xenobiotics can be categorized according to different criteria, including their nature, uses, physical state, and pathophysiological effects. Their impacts on humans and the environment are non-negligible. Prolonged exposure to even low concentrations may have toxic, mutagenic, or teratogenic effects. Wastewater treatment plants that are ineffective at minimizing the release of xenobiotic compounds are one of the main sources of xenobiotics in the environment (e.g., xenobiotic compounds reach the environment, affecting both humans and animals). In order to minimize the negative impacts, various laws and regulations have been adopted in the EU and across the globe, with an emphasis on xenobiotics removal from the environment, in a way that is economically, environmentally, and socially acceptable, and will not result in their accumulation, or creation of compounds that are more harmful. Detection methods allow detecting even small concentrations of xenobiotics in samples, but the problem is the diversity and mix of compounds present in the environment, in which it is not known what their effects are). In this review, the division of xenobiotics and their detection methods will be presented.
Collapse
|
25
|
Bacterial Community Structure and Dynamic Changes in Different Functional Areas of a Piggery Wastewater Treatment System. Microorganisms 2021; 9:microorganisms9102134. [PMID: 34683455 PMCID: PMC8540373 DOI: 10.3390/microorganisms9102134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/02/2021] [Accepted: 10/06/2021] [Indexed: 12/04/2022] Open
Abstract
Chemicals of emerging concern (CEC) in pig farm breeding wastewater, such as antibiotics, will soon pose a serious threat to public health. It is therefore essential to consider improving the treatment efficiency of piggery wastewater in terms of microorganisms. In order to optimize the overall piggery wastewater treatment system from the perspective of the bacterial community structure and its response to environmental factors, five samples were randomly taken from each area of a piggery’s wastewater treatment system using a random sampling method. The bacterial communities’ composition and their correlation with wastewater quality were then analyzed using Illumina MiSeq high-throughput sequencing. The results showed that the bacterial community composition of each treatment unit was similar. However, differences in abundance were significant, and the bacterial community structure gradually changed with the process. Proteobacteria showed more adaptability to an anaerobic environment than Firmicutes, and the abundance of Tissierella in anaerobic zones was low. The abundance of Clostridial (39.02%) and Bacteroides (20.6%) in the inlet was significantly higher than it was in the aerobic zone and the anoxic zone (p < 0.05). Rhodocyclaceae is a key functional microbial group in a wastewater treatment system, and it is a dominant microbial group in activated sludge. Redundancy analysis (RDA) showed that chemical oxygen demand (COD) had the greatest impact on bacterial community structure. Total phosphorus (TP), total nitrogen (TN), PH and COD contents were significantly negatively correlated with Sphingobacteriia, Betaproteobacteria and Gammaproteobacteria, and significantly positively correlated with Bacteroidia and Clostridia. These results offer basic data and theoretical support for optimizing livestock wastewater treatment systems using bacterial community structures.
Collapse
|
26
|
Wang Y, Zhu T, Chang M, Jin D. Performance of a hybrid membrane aerated biofilm reactor (H-MBfR) for shortcut nitrification. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
27
|
Płaza G, Jałowiecki Ł, Głowacka D, Hubeny J, Harnisz M, Korzeniewska E. Insights into the microbial diversity and structure in a full-scale municipal wastewater treatment plant with particular regard to Archaea. PLoS One 2021; 16:e0250514. [PMID: 33901216 PMCID: PMC8075261 DOI: 10.1371/journal.pone.0250514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 04/07/2021] [Indexed: 12/02/2022] Open
Abstract
Due to limited description of the role and diversity of archaea in WWTPs, the aim of the study was to analyze microbial community structures and diversities with particular regard to Archaea in the samples taken from different stages of the full-scale municipal wastewater treatment plant and effluent receiving water (upstream and downstream discharge point). Our study was focused on showing how the treatment processes influenced the Eubacteria and Archaea composition. Alpha and Beta diversity were used to evaluate the microbial diversity changes in the collected samples. Proteobacteria was the largest fraction ranging from 28% to 67% with 56% relative abundance across all samples. Archaea were present in all stages of WWTP ranged from 1 to 8%. Among the Archaea, two groups of methanogens, acetoclastic (Methanosarcina, Methanosaeta) and hydrogenotrophic methanogens (Methanospirillium, Methanoculleus, Methanobrevibacter) were dominant in the technological stages. The obtained results indicate that the treated wastewater did not significantly affect eubacterial and archaeal composition in receiving water. However, differences in richness, diversity and microbial composition of Eubacteria and Archaea between the wastewater samples taken from the primary and secondary treatment were observed.
Collapse
Affiliation(s)
- Grażyna Płaza
- Environmental Microbiology Unit, Institute for Ecology of Industrial Areas, Katowice, Poland
- * E-mail:
| | - Łukasz Jałowiecki
- Environmental Microbiology Unit, Institute for Ecology of Industrial Areas, Katowice, Poland
| | | | - Jakub Hubeny
- Faculty of Geoengineering, Department of Engineering of Water Protection and Environmental Microbiology, University of Warmia and Mazury Olsztyn, Olsztyn, Poland
| | - Monika Harnisz
- Faculty of Geoengineering, Department of Engineering of Water Protection and Environmental Microbiology, University of Warmia and Mazury Olsztyn, Olsztyn, Poland
| | - Ewa Korzeniewska
- Faculty of Geoengineering, Department of Engineering of Water Protection and Environmental Microbiology, University of Warmia and Mazury Olsztyn, Olsztyn, Poland
| |
Collapse
|
28
|
Microbial Population Dynamics in Model Sewage Treatment Plants and the Fate and Effect of Gold Nanoparticles. TOXICS 2021; 9:toxics9030054. [PMID: 33802200 PMCID: PMC8001127 DOI: 10.3390/toxics9030054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/25/2021] [Accepted: 03/03/2021] [Indexed: 11/16/2022]
Abstract
Adequate functioning of a sewage treatment plant (STP) is essential to protect the downstream aquatic environment (ECHA 2017), and information on the degradability of chemicals and their toxicity to activated sludge microorganisms is required. An environmental realistic higher tier test is a STP simulation test as described in OECD 303A (2001) which for nanoparticles can also be used to study their sorption behavior to activated sludge. However, information is limited on the influence of synthetic sewage on the microbial community of the activated sludge. A modified community can result in modifications of the sludge floccules affecting the sorption behavior. The main objective of our study was to show whether a representative microbial diversity remains under standardized test conditions as described in OECD 303A (2001) using synthetic sewage as influent. Furthermore, we investigated whether just considering the functional properties of a STP (elimination of dissolved organic carbon; nitrification), is sufficient for an assessment of gold nanoparticles (AuNPs) or whether the influence on microbial diversity also needs to be considered. AuNPs were used as a case study due to their rising medical applications and therefore increasing probability to reach the sewer and STP. The results can provide significant input for the interpretation of results from the regulatory point of view. To deliver these objectives, the general changes of the microbial population in activated sludge and its influence on the degradation activity (dissolved organic carbon (DOC) and inorganic nitrogen) using freshly collected sludge from the municipal STP in an artificial test system as a model STP in accordance with OECD 303A (2001) were assessed. Additionally, we evaluated the potential impact of AuNPs and its dispersant on the microbial composition and the overall impact on the function of the STP in terms of DOC degradation and nitrogen removal to observe if an assessment based on functional properties is sufficient. The bacteria composition in our study, evaluated at a class level, revealed commonly described environmental bacteria. Proteobacteria (β, α, δ) accounted for more than 50% but also nitrifying bacteria as Nitrospira were present. Our results show that mainly within the first 7 days of an acclimatization phase by addition of synthetic sewage, the bacterial community changed. Even though AuNPs can have antibacterial properties, no adverse effects on the function and structure of the microorganisms in the STP could be detected at concentrations of increased modeled PEC values by a factor of about 10,000. Complementary to other metallic nanomaterials, gold nanomaterials also sorb to a large extent to the activated sludge. If activated sludge is used as fertilizer on agricultural land, gold nanoparticles can be introduced into soils. In this case, the effect on soil (micro)organisms must be investigated more closely, also taking into account the structural diversity.
Collapse
|
29
|
Anna G, Magdalena S. Diversity among activated sludge in vacuum degassed laboratory systems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 281:111870. [PMID: 33434764 DOI: 10.1016/j.jenvman.2020.111870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
Vacuum degassing of activated sludge is a technology used to improve sludge settling. By improving the settling ability of the sludge, a higher amount of biomass can be kept in the bioreactor, which further results in better wastewater treatment results. However, the momentaneous vacuum exposition has been found a stress agent for activated sludge flocs and bacteria and may cause changes in sludge activity. However, no biological studies on the long-term intermittent application of vacuum to activated sludge have been published so far. The question arises whether the improvement in the degree of wastewater treatment results from an increase in the amount of biomass involved in the treatment process or does the change in pressure stimulate bacteria to increased activity? The study aimed to examine whether and how cyclic pressure reduction in the biological system affects the activity and composition of bacterial biocenosis of activated sludge. Three sequencing batch reactors were operated for almost three months. The work cycle of two of them included a vacuum degassing stage inserted between reaction and settling stage. Degassing was obtained with a pressure of 300 or 30 hPa. In addition to the wastewater quality analyzes, the microbial activity, number and variety of activated sludge bacteria and the characteristics of activated sludge flocs were determined. There were no significant differences between the reactors in the obtained effects of nutrient removal. All reactors showed organic compounds removal around 93%, and 40% and 58% of nitrogen and phosphorus removal, respectively. Obtained differences in respiratory and dehydrogenase activity were not significant. The biodiversity assessed with DNA sequencing revealed sludge enrichment with unclassified bacteria. Moreover, vacuum degassing caused flocs disintegration. In both the vacuum degassing reactors, the floc size range was much narrower than that of the control sludge. In the sludge degassed with a pressure of 30 hPa, the flocs were 25-80% smaller than in the sludge without the influence of a vacuum. The total number of bacteria was comparable among the reactors, however, in the reactor with degassing pressure of 30 hPa, the share of dead bacteria in the activated sludge (11%) was significantly lower than in other reactors (about 16%). The concentration of extracellular polymers in activated sludge was up to 87% higher when using vacuum degassing of 30 hPa than in other reactors. The results of the presented research show that the changes in the activated sludge occurring under the influence of vacuum degassing do not change the effectiveness of wastewater treatment, but may alter the community composition.
Collapse
Affiliation(s)
- Gnida Anna
- Department of Environmental Biotechnology, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Akademicka Str. 2A, 44-100, Gliwice, Poland; Biotechnology Centre, Silesian University of Technology, Krzywoustego Str. 8, 44-100, Gliwice, Poland.
| | - Skonieczna Magdalena
- Biotechnology Centre, Silesian University of Technology, Krzywoustego Str. 8, 44-100, Gliwice, Poland; Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Akademicka Str. 16, 44-100, Gliwice, Poland
| |
Collapse
|
30
|
Analysis of Microbial Communities and Pathogen Detection in Domestic Sewage Using Metagenomic Sequencing. DIVERSITY 2020. [DOI: 10.3390/d13010006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Wastewater contains diverse microbes, and regular microbiological screening at wastewater treatment plants is essential for monitoring the wastewater treatment and protecting environmental health. In this study, a metagenomic approach was used to characterize the microbial communities in the influent and effluent of a conventional domestic sewage treatment plant in the metropolitan city of Jeddah. Bacteria were the prevalent type of microbe in both the influent and effluent, whereas archaea and viruses were each detected at <1% abundance. Greater diversity was observed in effluent bacterial populations compared with influent, despite containing similar major taxa. These taxa consisted primarily of Proteobacteria, followed by Bacteroidetes and Firmicutes. Metagenomic analysis provided broad profiles of 87 pathogenic/opportunistic bacteria belonging to 47 distinct genera in the domestic sewage samples, with most having <1% abundance. The archaea community included 20 methanogenic genera. The virus-associated sequences were classified mainly into the families Myoviridae, Siphoviridae, and Podoviridae. Genes related to resistance to antibiotics and toxic compounds, gram-negative cell wall components, and flagellar motility in prokaryotes identified in metagenomes from both types of samples. This study provides a comprehensive understanding of microbial communities in influent and effluent samples of a conventional domestic sewage treatment plant and suggests that metagenomic analysis is a feasible approach for microbiological monitoring of wastewater treatment.
Collapse
|
31
|
The Sensitivity of a Specific Denitrification Rate under the Dissolved Oxygen Pressure. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17249366. [PMID: 33327596 PMCID: PMC7765053 DOI: 10.3390/ijerph17249366] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/01/2020] [Accepted: 12/10/2020] [Indexed: 11/24/2022]
Abstract
The biological denitrification process is extensively discussed in scientific literature. The process requires anoxic conditions, but the influence of residual dissolved oxygen (DO) on the efficiency is not yet adequately documented. The present research aims to fill this gap by highlighting the effects of DO on the specific denitrification rate (SDNR) and consequently on the efficiency of the process. SDNR at a temperature of 20 °C (SDNR20°C) is the parameter normally used for the sizing of the denitrification reactor in biological-activated sludge processes. A sensitivity analysis of SNDR20°C to DO variations is developed. For this purpose, two of the main empirical models illustrated in the scientific literature are taken into consideration, with the addition of a deterministic third model proposed by the authors and validated by recent experimentations on several full-scale plants. In the first two models, SDNR20°C is expressed as a function of the only variable food:microrganism ratio in denitrification (F:MDEN), while in the third one, the dependence on DO is made explicit. The sensitivity analysis highlights all the significant dependence of SDNR20°C on DO characterized by a logarithmic decrease with a very pronounced gradient in correspondence with low DO concentrations. Moreover, the analysis demonstrates the relatively small influence of F:MDEN on the SDNR20°C and on the correlation between SDNR20°C and DO. The results confirm the great importance of minimizing DO and limiting, as much as possible, the transport of oxygen in the denitrification reactor through the incoming flows and mainly the mixed liquor recycle. Solutions to achieve this result in full-scale plants are reported.
Collapse
|
32
|
Mutual Interaction between Temperature and DO Set Point on AOB and NOB Activity during Shortcut Nitrification in a Sequencing Batch Reactor in Terms of Energy Consumption Optimization. ENERGIES 2020. [DOI: 10.3390/en13215808] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recently, many wastewater treatment plants (WWTPs) have had to deal with serious problems related to the restrictive requirements regarding the effluent quality, as well as significant energy consumption associated with it. In this situation, mainstream deammonification and/or shortened nitrification-denitrification via nitrite (so-called “nitrite shunt”) is a new promising strategy. This study shows the mechanisms and operating conditions (e.g., dissolved oxygen (DO) concentration, temp.), leading to the complete domination of ammonium oxidizing bacteria (AOB) over nitrite oxidizing bacteria (NOB) under aerobic conditions. Its successful application as shortcut nitrification in the sequencing batch reactor (SBR) technology will represent a paradigm shift for the wastewater industry, offering the opportunity for efficient wastewater treatment, energy-neutral or even energy-positive facilities, and substantial reductions in treatment costs. In this study, under low and moderate temperatures (10–16 °C), averaged DO concentrations (0.7 mg O2/L) were preferable to ensure beneficial AOB activity over NOB, by maintaining reasonable energy consumption. Elevated temperatures (~30 °C), as well as increased DO concentration, were recognized as beneficial for the NOB activity stimulation, thus under such conditions, the DO limitation seems to be a more prospective approach.
Collapse
|
33
|
Microbial Communities and Sulfate-Reducing Microorganisms Abundance and Diversity in Municipal Anaerobic Sewage Sludge Digesters from a Wastewater Treatment Plant (Marrakech, Morocco). Processes (Basel) 2020. [DOI: 10.3390/pr8101284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Both molecular analyses and culture-dependent isolation were combined to investigate the diversity of sulfate-reducing prokaryotes and explore their role in sulfides production in full-scale anaerobic digesters (Marrakech, Morocco). At global scale, using 16S rRNA gene sequencing, Proteobacteria, Bacteroidetes, Firmicutes, Actinobacteria, Synergistetes, and Euryarchaeota were the most dominant phyla. The abundance of Archaea (3.1–5.7%) was linked with temperature. The mcrA gene ranged from 2.18 × 105 to 1.47 × 107 gene copies.g−1 of sludge. The sulfate-reducing prokaryotes, representing 5% of total sequences, involved in sulfides production were Peptococcaceae, Syntrophaceae, Desulfobulbaceae, Desulfovibrionaceae, Syntrophobacteraceae, Desulfurellaceae, and Desulfobacteraceae. Furthermore, dsrB gene ranged from 2.18 × 105 to 1.92 × 107 gene copies.g−1 of sludge. The results revealed that exploration of diversity and function of sulfate-reducing bacteria may play a key role in decreasing sulfide production, an undesirable by-product, during anaerobic digestion.
Collapse
|