1
|
Li H, Man H, Han J, Jia X, Wang L, Yang H, Shi G. Soil Microorganism Interactions under Biological Fumigations Compared with Chemical Fumigation. Microorganisms 2024; 12:2044. [PMID: 39458353 PMCID: PMC11509853 DOI: 10.3390/microorganisms12102044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/29/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Biological fumigation, a potential alternative to chemical fumigation, shows a wide range of prospective applications. In this study, we carried out biological fumigation experiments to evaluate its effect on alleviating consecutive cropping problems (CRPs) when compared with chemical fumigation. METHODS We designed five treatments, namely, CR (no treatment), LN (chemical fumigation with lime nitrogen), Ta (fumigation with marigold), Ra (fumigation with radish), and Br (fumigation with mustard), for soils for replanting eggplant and measured the crop's growth status, soil bacterial and fungal communities, and soil physicochemical properties. RESULTS The results showed that the Br and Ra treatments formed similar microbial communities, while the Ta treatment formed unique microbial communities. The genera Olpidiomycota and Rozellomycota could be used as indicator species for the transformation process of soil microbial communities after the Br and Ta treatments, respectively. When compared with the CR and LN treatments, the soil's physicochemical properties were optimized under the Br treatment, and the soil organic matter content increased by 64.26% and 79.22%, respectively. Moreover, under the Br treatment, the soil's biological properties enhanced the bacterial and fungal alpha diversity, and the saprotrophic fungi increased with the depletion of pathotrophic fungi, while some specific probiotic microorganisms (such as Olpidiomycota, Microascales, Bacillus, etc.) were significantly enriched. In contrast, under the Ta treatment, soil nutrient levels decreased and the soil's biological indices deteriorated, whereas the bacterial diversity decreased and the pathogenic fungi increased. CONCLUSIONS Among these three biological fumigation methods, the Br pre-treatment was the best way to alleviate the crop's CRPs and may be a good substitute for chemical fumigation in some situations. However, the Ta treatment also had some risks, such as the loss of land quality and reduced productivity.
Collapse
Affiliation(s)
- Hui Li
- College of Horticulture, Gansu Agricultural University, Silver Beach Road Street, Lanzhou 730070, China; (H.L.); (H.M.); (J.H.); (L.W.); (H.Y.)
| | - Huali Man
- College of Horticulture, Gansu Agricultural University, Silver Beach Road Street, Lanzhou 730070, China; (H.L.); (H.M.); (J.H.); (L.W.); (H.Y.)
| | - Jia Han
- College of Horticulture, Gansu Agricultural University, Silver Beach Road Street, Lanzhou 730070, China; (H.L.); (H.M.); (J.H.); (L.W.); (H.Y.)
| | - Xixia Jia
- Lanzhou New District Modern Agricultural Development Research Institute Co., Lanzhou 730070, China;
| | - Li Wang
- College of Horticulture, Gansu Agricultural University, Silver Beach Road Street, Lanzhou 730070, China; (H.L.); (H.M.); (J.H.); (L.W.); (H.Y.)
| | - Hongyu Yang
- College of Horticulture, Gansu Agricultural University, Silver Beach Road Street, Lanzhou 730070, China; (H.L.); (H.M.); (J.H.); (L.W.); (H.Y.)
| | - Guiying Shi
- College of Horticulture, Gansu Agricultural University, Silver Beach Road Street, Lanzhou 730070, China; (H.L.); (H.M.); (J.H.); (L.W.); (H.Y.)
| |
Collapse
|
2
|
Jiang A, Dong Y, Asitaiken J, Zhou S, Nie T, Wu Y, Liu Z, An S, Yang K. Response of soil fungal communities and their co-occurrence patterns to grazing exclusion in different grassland types. Front Microbiol 2024; 15:1404633. [PMID: 39027108 PMCID: PMC11256198 DOI: 10.3389/fmicb.2024.1404633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/03/2024] [Indexed: 07/20/2024] Open
Abstract
Overgrazing and climate change are the main causes of grassland degradation, and grazing exclusion is one of the most common measures for restoring degraded grasslands worldwide. Soil fungi can respond rapidly to environmental stresses, but the response of different grassland types to grazing control has not been uniformly determined. Three grassland types (temperate desert, temperate steppe grassland, and mountain meadow) that were closed for grazing exclusion for 9 years were used to study the effects of grazing exclusion on soil nutrients as well as fungal community structure in the three grassland types. The results showed that (1) in the 0-5 cm soil layer, grazing exclusion significantly affected the soil water content of the three grassland types (P < 0.05), and the pH, total phosphorous (TP), and nitrogen-to-phosphorous ratio (N/P) changed significantly in all three grassland types (P < 0.05). Significant changes in soil nutrients in the 5-10 cm soil layer after grazing exclusion occurred in the mountain meadow grasslands (P < 0.05), but not in the temperate desert and temperate steppe grasslands. (2) For the different grassland types, Archaeorhizomycetes was most abundant in the montane meadows, and Dothideomycetes was most abundant in the temperate desert grasslands and was significantly more abundant than in the remaining two grassland types (P < 0.05). Grazing exclusion led to insignificant changes in the dominant soil fungal phyla and α diversity, but significant changes in the β diversity of soil fungi (P < 0.05). (3) Grazing exclusion areas have higher mean clustering coefficients and modularity classes than grazing areas. In particular, the highest modularity class is found in temperate steppe grassland grazing exclusion areas. (4) We also found that pH is the main driving factor affecting soil fungal community structure, that plant coverage is a key environmental factor affecting soil community composition, and that grazing exclusion indirectly affects soil fungal communities by affecting soil nutrients. The above results suggest that grazing exclusion may regulate microbial ecological processes by changing the soil fungal β diversity in the three grassland types. Grazing exclusion is not conducive to the recovery of soil nutrients in areas with mountain grassland but improves the stability of soil fungi in temperate steppe grassland. Therefore, the type of degraded grassland should be considered when formulating suitable restoration programmes when grazing exclusion measures are implemented. The results of this study provide new insights into the response of soil fungal communities to grazing exclusion, providing a theoretical basis for the management of degraded grassland restoration.
Collapse
Affiliation(s)
- Anjing Jiang
- College of Grassland Science, Xinjiang Agricultural University, Ürümqi, China
| | - Yiqiang Dong
- College of Grassland Science, Xinjiang Agricultural University, Ürümqi, China
- Xinjiang Key Laboratory of Grassland Resources and Ecology, Ürümqi, Xinjiang, China
- Key Laboratory of Grassland Resources and Ecology of Western Arid Region, Ministry of Education, Ürümqi, China
- Postdoctoral Mobile Station of Xinjiang Agricultural University, Ürümqi, China
| | - Julihaiti Asitaiken
- College of Grassland Science, Xinjiang Agricultural University, Ürümqi, China
| | - Shijie Zhou
- College of Grassland Science, Xinjiang Agricultural University, Ürümqi, China
| | - Tingting Nie
- College of Grassland Science, Xinjiang Agricultural University, Ürümqi, China
| | - Yue Wu
- College of Grassland Science, Xinjiang Agricultural University, Ürümqi, China
| | - Zeyu Liu
- College of Grassland Science, Xinjiang Agricultural University, Ürümqi, China
| | - Shazhou An
- College of Grassland Science, Xinjiang Agricultural University, Ürümqi, China
- Xinjiang Key Laboratory of Grassland Resources and Ecology, Ürümqi, Xinjiang, China
- Key Laboratory of Grassland Resources and Ecology of Western Arid Region, Ministry of Education, Ürümqi, China
| | - Kailun Yang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| |
Collapse
|
3
|
Wang YW, Bai DS, Zhang Y, Luo XG. The role of afforestation with diverse woody species in enhancing and restructuring the soil microenvironment in polymetallic coal gangue dumps. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:29916-29929. [PMID: 38594563 DOI: 10.1007/s11356-024-33164-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/27/2024] [Indexed: 04/11/2024]
Abstract
To elucidate the effects of long-term (20 years) afforestation with different woody plant species on the soil microenvironment in coal gangue polymetallic contaminated areas. This study analyzed the soil physicochemical properties, soil enzyme activities, soil ionophore, bacterial community structure, soil metabolite, and their interaction relationships at different vertical depths. Urease, sucrase, and acid phosphatase activities in the shallow soil layers increased by 4.70-7.45, 3.83-7.64, and 3.27-4.85 times, respectively, after the restoration by the four arboreal plant species compared to the plant-free control soil. Additionally, it reduced the content of available elements in the soil and alleviated the toxicity stress for Cd, Ni, Co, Cr, As, Fe, Cu, U, and Pb. After the long-term restoration of arboreal plants, the richness and Shannon indices of soil bacteria significantly increased by 4.77-23.81% and 2.93-7.93%, respectively, broadening the bacterial ecological niche. The bacterial community structure shaped by different arboreal plants exhibited high similarity, but the community similarity decreased with increasing vertical depth. Soils Zn, U, Sr, S, P, Mg, K, Fe, Cu, Ca, Ba, and pH were identified as important influencing factors for the community structure of Sphingomonas, Pseudarthrobacter, Nocardioides, and Thiobacillus. The metabolites such as sucrose, raffinose, L-valine, D-fructose 2, 6-bisphosphate, and oxoglutaric acid were found to have the greatest effect on the bacterial community in the rhizosphere soils for arboreal plants. The results of the study demonstrated that long-term planting for woody plants in gangue dumps could regulate microbial abundance and symbiotic patterns through the accumulation of rhizosphere metabolites in the soil, increase soil enzyme activity, reduce heavy metal levels, and improve the soil environment in coal gangue dumps.
Collapse
Affiliation(s)
- Yi-Wang Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
- Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China
| | | | - Yu Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
- Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China.
| | - Xue-Gang Luo
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
- Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China
| |
Collapse
|
4
|
Higo M, Kang DJ, Isobe K. Root-associated microbial community and diversity in napiergrass across radiocesium-contaminated lands after the Fukushima-Daiichi nuclear disaster in Japan. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123051. [PMID: 38043771 DOI: 10.1016/j.envpol.2023.123051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/18/2023] [Accepted: 11/25/2023] [Indexed: 12/05/2023]
Abstract
The microbiome derived from soil associated with plant roots help in plant growth and stress resistance. It exhibits potential benefits for soil remediation and restoration of radioactive-cesium (137Cs)-contaminated soils. However, there is still limited information about the community and diversity of root-associated microbiome in 137Cs-contaminated soil after the Fukushima-Daiichi Nuclear Power Plant (FDNPP) disaster. To address this, a comparative analysis of communities and diversity of root-associated microbiomes was conducted in two field types after the FDNPP disaster. In 2013, we investigated the community and diversity of indigenous root-associated microbiome of napiergrass (Pennisetum purpureum) grown in both grassland and paddy fields of 137Cs-contaminated land-use type within a 30-km radius around the FDNPP. Results showed that the root-associated bacterial communities in napiergrass belonged to 32 phyla, 75 classes, 174 orders, 284 families, and 521 genera, whereas the root-associated fungal communities belonged to 5 phyla, 11 classes, 31 orders, 59 families, and 64 genera. The most frequently observed phylum in both grassland and paddy field was Proteobacteria (47.4% and 55.9%, respectively), followed by Actinobacteriota (23.8% and 27.9%, respectively) and Bacteroidota (10.1% and 11.3%, respectively). The dominant fungal phylum observed in both grassland and paddy field was Basidiomycota (75.9% and 94.2%, respectively), followed by Ascomycota (24.0% and 5.8%, respectively). Land-use type significantly affected the bacterial and fungal communities that colonize the roots of napiergrass. Several 137Cs-tolerant bacterial and fungal taxa were also identified, which may be potentially applied for the phytoremediation of 137Cs-contaminated areas around FDNPP. These findings contribute to a better understanding of the distribution of microbial communities in 137Cs-contaminated lands and their long-term ecosystem benefits for phytoremediation efforts.
Collapse
Affiliation(s)
- Masao Higo
- College of Bioresource Sciences, Nihon University, Kameino, 1866, Fujisawa, Kanagawa, 252-0880, Japan.
| | - Dong-Jin Kang
- Teaching and Research Center for Bio-coexistence, Faculty of Agriculture and Life Sciences, Hirosaki University, Gosyogawara, Aomori, 037-0202, Japan.
| | - Katsunori Isobe
- College of Bioresource Sciences, Nihon University, Kameino, 1866, Fujisawa, Kanagawa, 252-0880, Japan
| |
Collapse
|
5
|
Zhu Y, Wang L, You Y, Cheng Y, Ma J, Chen F. Enhancing network complexity and function of soil bacteria by thiourea-modified biochar under cadmium stress in post-mining area. CHEMOSPHERE 2022; 302:134811. [PMID: 35504469 DOI: 10.1016/j.chemosphere.2022.134811] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/29/2022] [Accepted: 04/28/2022] [Indexed: 06/14/2023]
Abstract
Cadmium (Cd) pollution cause severe stress to soil microorganisms and biochar utilized for its ability to immobilize Cd in the soil effectively. However, the influence of biochar on the structure and function of the bacterial network under Cd stress is unclear. This research reports a pot experiment conducted to investigate the impact of 2.0% Italian poplar bark biochar (PB), 2.0% thiourea-modified biochar (TP), and control treatment (CK) on the complexity, stability and functional properties of the bacterial community under Cd stress. The results showed that: (1) Biochar increased the diversity of soil bacterial consortia under Cd stress (p < 0.05), and the diversity index demonstrated as order of CK < PB < TP; (2) Compared with CK network, the nodes number of PB and TP treatments networks were much higher, while the modularity and transitivity increased by 0.04% and 37.6%, 2.45% and 1.12%, respectively. The biochar amendment increased the stability and complexity of the network; (3) PICRUSt2 prediction results show that Xenobiotics biodegradation and metabolism membrane transport of TP treatment increased 62.52% and 53.62% compared with CK, respectively, which could be related to the decrease in Cd content according to principal component analysis. (4) The reduction of leaching Cd content caused network complexity and bacterial function changes by biochar amendment. TP amendment enhanced the complexity and stability of soil bacterial community under Cd stress, which will provide a scientific basis for in situ remediations of Cd-contaminated soils.
Collapse
Affiliation(s)
- Yanfeng Zhu
- Engineering Research Center of Ministry of Education for Mine Ecological Restoration, Xuzhou 221116, China; School of Environmental Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Liping Wang
- School of Environmental Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Yunnan You
- School of Environmental Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Yanjun Cheng
- School of Environmental Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Jing Ma
- Engineering Research Center of Ministry of Education for Mine Ecological Restoration, Xuzhou 221116, China; School of Public Administration, Hohai University, Nanjing 211110, China
| | - Fu Chen
- Engineering Research Center of Ministry of Education for Mine Ecological Restoration, Xuzhou 221116, China; School of Public Administration, Hohai University, Nanjing 211110, China.
| |
Collapse
|
6
|
Zhu Y, Ge X, Wang L, You Y, Cheng Y, Ma J, Chen F. Biochar rebuilds the network complexity of rare and abundant microbial taxa in reclaimed soil of mining areas to cooperatively avert cadmium stress. Front Microbiol 2022; 13:972300. [PMID: 35983321 PMCID: PMC9378816 DOI: 10.3389/fmicb.2022.972300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Understanding the interactions between the soil microbial communities and species is critical in the remediation of heavy metal-contaminated soil. Biochar has been widely applied as a stabilizer in the in situ remediation of cadmium (Cd)-contaminated soils in mining areas. However, the rebuilding of the microbial taxa of rare and abundant species by biochar and their cooperative resistance to Cd stress remains elusive. In this pursuit, the present study envisaged the effects of two types of biochars viz., poplar bark biochar (PB) and thiourea-modified poplar bark biochar (TP) on the rare and abundant bacterial and fungal taxa by using pot experiments. The results demonstrated that the PB and TP treatments significantly reduced the leached Cd content, by 35.13 and 68.05%, respectively, compared with the control group (CK), in the reclaimed soil of the mining area. The application of biochar significantly improved the physicochemical properties like pH and Soil Organic Matter (SOM) of the soil. It was observed that TP treatment was superior to the PB and CK groups in increasing the diversity of the soil abundant and rare species of microbial taxa. Compared with the CK group, the application of PB and TP enhanced and elevated the complexity of the microbial networks of rare and abundant taxa, increased the number and types of network core microorganisms, reshaped the network core microorganisms and hubs, and boosted the microbial resistance to Cd stress. Our results indicate the response of rare and abundant microbial taxa to biochar application and the mechanism of their synergistic remediation of Cd-contaminated soil, thereby providing technical feasibility for in situ remediation of Cd-contaminated soil in mining areas.
Collapse
Affiliation(s)
- Yanfeng Zhu
- Engineering Research Center of Ministry of Education for Mine Ecological Restoration, Xuzhou, China
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou, China
| | - Xiaoping Ge
- College of Hydrology and Water Resources, Hohai University, Nanjing, China
| | - Liping Wang
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou, China
- Liping Wang,
| | - Yunnan You
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou, China
| | - Yanjun Cheng
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou, China
| | - Jing Ma
- Engineering Research Center of Ministry of Education for Mine Ecological Restoration, Xuzhou, China
- School of Public Administration, Hohai University, Nanjing, China
| | - Fu Chen
- Engineering Research Center of Ministry of Education for Mine Ecological Restoration, Xuzhou, China
- School of Public Administration, Hohai University, Nanjing, China
- *Correspondence: Fu Chen,
| |
Collapse
|
7
|
Ye Z, Wang J, Li J, Liu G, Dong Q, Zou Y, Chau HW, Zhang C. Different roles of core and noncore bacterial taxa in maintaining soil multinutrient cycling and microbial network stability in arid fertigation agroecosystems. J Appl Ecol 2022. [DOI: 10.1111/1365-2664.14228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Zhencheng Ye
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University Yangling P. R. China
| | - Jie Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University Yangling P. R. China
| | - Jing Li
- College of Forestry Northwest A&F University Yangling P. R. China
| | - Guobin Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University Yangling P. R. China
- Institute of Soil and Water Conservation Chinese Academy of Sciences and Ministry of Water Resources Yangling P. R. China
| | - Qin’ge Dong
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University Yangling P. R. China
| | - Yufeng Zou
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University Yangling China
| | - Henry Wai Chau
- Department of Soil and Physical Sciences Lincoln University Lincoln New Zealand
| | - Chao Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University Yangling P. R. China
| |
Collapse
|
8
|
Li X, Hui N, Yang Y, Ma J, Luo Z, Chen F. Short-term effects of land consolidation of dryland-to-paddy conversion on soil CO 2 flux. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 292:112691. [PMID: 33975267 DOI: 10.1016/j.jenvman.2021.112691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/06/2021] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
To improve grain production capacity, many areas in the world are shifting from rainfed agriculture to irrigated agriculture. One example of such land consolidation is dryland-to-paddy conversion. The conversion of land use pattern largely affects the stability of farmland soil, especially the soil carbon cycle. However, the mutual feedback mechanisms between carbon flux variation and environmental factors during the farmland consolidation process are still poorly known. Located in the Huang-Huai-Hai Plain China, Xuzhou is a typical area where dryland-to-paddy conversion are most widely distributed. Therefore, in this study, we have carried out dryland-to-paddy conversion by setting up two isolated rectangular fields one group planting corn in dryland (DL) and another group planting in paddy field (PF) in Xuzhou. Here, we determined the effect of dryland-to-paddy consolidation on soil CO2 flux in two isolated rectangular fields - the dryland (DL) cultivated with corn and the paddy field (PF) cultivated with rice. Our results showed that the soil carbon flux and temperature followed similar unimodal curves with greater soil CO2 flux of in PF than in DL. Surprisingly, the land conversion significantly reduced soil microbial biomass carbon and easily oxidized organic carbon by 28.55% and 29.09%, respectively. The structural equation modeling results demonstrated that the changes in soil environmental factors, including temperature, and fungal OTU numbers, were the primary drivers for the soil CO2 flux and soil carbon pool (P < 0.05). Overall, this study improves the understanding of the ecological impact of dryland-to-paddy conversion, providing insights into low-carbon agriculture and climate mitigation.
Collapse
Affiliation(s)
- Xiaoxiao Li
- Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, China University of Mining and Technology, Xuzhou, Jiangsu, 221008, China; School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Nan Hui
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Yongjun Yang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, Jiangsu, 221008, China.
| | - Jing Ma
- Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, China University of Mining and Technology, Xuzhou, Jiangsu, 221008, China.
| | - Zhanbin Luo
- College of Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Fu Chen
- Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, China University of Mining and Technology, Xuzhou, Jiangsu, 221008, China.
| |
Collapse
|
9
|
Molecular Ecological Network Complexity Drives Stand Resilience of Soil Bacteria to Mining Disturbances among Typical Damaged Ecosystems in China. Microorganisms 2020; 8:microorganisms8030433. [PMID: 32204532 PMCID: PMC7143963 DOI: 10.3390/microorganisms8030433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/05/2020] [Accepted: 03/18/2020] [Indexed: 12/29/2022] Open
Abstract
Understanding the interactions of soil microbial species and how they responded to disturbances are essential to ecological restoration and resilience in the semihumid and semiarid damaged mining areas. Information on this, however, remains unobvious and deficiently comprehended. In this study, based on the high throughput sequence and molecular ecology network analysis, we have investigated the bacterial distribution in disturbed mining areas across three provinces in China, and constructed molecular ecological networks to reveal the interactions of soil bacterial communities in diverse locations. Bacterial community diversity and composition were classified measurably between semihumid and semiarid damaged mining sites. Additionally, we distinguished key microbial populations across these mining areas, which belonged to Proteobacteria, Acidobacteria, Actinobacteria, and Chloroflexi. Moreover, the network modules were significantly associated with some environmental factors (e.g., annual average temperature, electrical conductivity value, and available phosphorus value). The study showed that network interactions were completely different across the different mining areas. The keystone species in different mining areas suggested that selected microbial communities, through natural successional processes, were able to resist the corresponding environment. Moreover, the results of trait-based module significances showed that several environmental factors were significantly correlated with some keystone species, such as OTU_8126 (Acidobacteria), OTU_8175 (Burkholderiales), and OTU_129 (Chloroflexi). Our study also implied that the complex network of microbial interaction might drive the stand resilience of soil bacteria in the semihumid and semiarid disturbed mining areas.
Collapse
|