1
|
Paduano S, Marchesi I, Valeriani F, Frezza G, Facchini MC, Romano Spica V, Bargellini A. Characterization by 16S Amplicon Sequencing of Bacterial Communities Overall and During the Maturation Process of Peloids in Two Spas of an Italian Thermal Complex. MICROBIAL ECOLOGY 2024; 87:152. [PMID: 39633061 PMCID: PMC11618213 DOI: 10.1007/s00248-024-02469-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024]
Abstract
Peloids are made by mixing clay materials with thermo-mineral waters, enriched with organic substances from microorganisms during maturation. Their beneficial properties may depend on clay minerals, water characteristics, and microbial components, although strong evidence is lacking. Next Generation Sequencing (NGS) allows a comprehensive approach to studying the entire microbial community, including cultivable and uncultivable bacteria. Our study aims to characterize, by NGS, the bacterial community overall and during the maturation process of thermal muds in two spas (A-B) of an Italian thermal complex. Peloids were produced from sulfurous-bromine-iodine thermal water and clay material: natural mud for spa A and sterile clay for spa B. Thermal waters and peloids at different maturation stages (2/4/6 months) were analyzed for microbiome characterization by 16S amplicon sequencing. Biodiversity profiles showed a low level of similarity between peloids and water used for their maturation. Peloids from spa A showed greater microbial richness than those from spa B, suggesting that natural mud with an existing bacterial community leads to greater biodiversity than sterile clay. Genera involved in sulfur metabolism were prevalent in both spas, as expected considering peloids matured in sulfide-rich water. For all three maturation stages, the prevalent genera were Thiobacillus and Pelobacter in spa A and Thiobacillus, Thauera, Pelobacter, and Desulfuromonas in spa B. Richness and diversity indices showed that the community seemed to stabilize after 2-4 months. The 16S amplicon sequencing to study bacterial communities enables the identification of a biological signature that characterizes a specific thermal matrix, defining its therapeutic and cosmetic properties. The bacterial composition of peloids is affected by the thermal water and the type of clay material used in their formulation and maturation.
Collapse
Affiliation(s)
- Stefania Paduano
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, Via Campi 287, 41125, Modena, Italy
| | - Isabella Marchesi
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, Via Campi 287, 41125, Modena, Italy
| | - Federica Valeriani
- Department of Movement, Human, and Health Sciences, Public Health Unit, University of Rome "Foro Italico", Rome, Italy
| | - Giuseppina Frezza
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, Via Campi 287, 41125, Modena, Italy
| | - Maria Chiara Facchini
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, Via Campi 287, 41125, Modena, Italy
| | - Vincenzo Romano Spica
- Department of Movement, Human, and Health Sciences, Public Health Unit, University of Rome "Foro Italico", Rome, Italy
| | - Annalisa Bargellini
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, Via Campi 287, 41125, Modena, Italy.
| |
Collapse
|
2
|
Xi H, Ross KE, Hinds J, Molino PJ, Whiley H. Efficacy of chlorine-based disinfectants to control Legionella within premise plumbing systems. WATER RESEARCH 2024; 259:121794. [PMID: 38824796 DOI: 10.1016/j.watres.2024.121794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 06/04/2024]
Abstract
Legionella is an opportunistic waterborne pathogen that causes Legionnaires' disease. It poses a significant public health risk, especially to vulnerable populations in health care facilities. It is ubiquitous in manufactured water systems and is transmitted via inhalation or aspiration of aerosols/water droplets generated from water fixtures (e.g., showers and hand basins). As such, the effective management of premise plumbing systems (building water systems) in health care facilities is essential for reducing the risk of Legionnaires' disease. Chemical disinfection is a commonly used control method and chlorine-based disinfectants, including chlorine, chloramine, and chlorine dioxide, have been used for over a century. However, the effectiveness of these disinfectants in premise plumbing systems is affected by various interconnected factors that can make it challenging to maintain effective disinfection. This systematic literature review identifies all studies that have examined the factors impacting the efficacy and decay of chlorine-based disinfectant within premise plumbing systems. A total of 117 field and laboratory-based studies were identified and included in this review. A total of 20 studies directly compared the effectiveness of the different chlorine-based disinfectants. The findings from these studies ranked the typical effectiveness as follows: chloramine > chlorine dioxide > chlorine. A total of 26 factors were identified across 117 studies as influencing the efficacy and decay of disinfectants in premise plumbing systems. These factors were sorted into categories of operational factors that are changed by the operation of water devices and fixtures (such as stagnation, temperature, water velocity), evolving factors which are changed in-directly (such as disinfectant concentration, Legionella disinfectant resistance, Legionella growth, season, biofilm and microbe, protozoa, nitrification, total organic carbon(TOC), pH, dissolved oxygen(DO), hardness, ammonia, and sediment and pipe deposit) and stable factors that are not often changed(such as disinfectant type, pipe material, pipe size, pipe age, water recirculating, softener, corrosion inhibitor, automatic sensor tap, building floor, and construction activity). A factor-effect map of each of these factors and whether they have a positive or negative association with disinfection efficacy against Legionella in premise plumbing systems is presented. It was also found that evaluating the effectiveness of chlorine disinfection as a water risk management strategy is further complicated by varying disinfection resistance of Legionella species and the form of Legionella (culturable/viable but non culturable, free living/biofilm associated, intracellular replication within amoeba hosts). Future research is needed that utilises sensors and other approaches to measure these key factors (such as pH, temperature, stagnation, water age and disinfection residual) in real time throughout premise plumbing systems. This information will support the development of improved models to predict disinfection within premise plumbing systems. The findings from this study will inform the use of chlorine-based disinfection within premise plumbing systems to reduce the risk of Legionnaires disease.
Collapse
Affiliation(s)
- Hao Xi
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia; Enware Pty Ltd, Caringbah, NSW, Australia.
| | - Kirstin E Ross
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| | - Jason Hinds
- ARC Training Centre for Biofilm Research and Innovation, Flinders University, Bedford Park, SA, Australia; Enware Pty Ltd, Caringbah, NSW, Australia
| | | | - Harriet Whiley
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia; ARC Training Centre for Biofilm Research and Innovation, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
3
|
Putri RE, Vrouwenvelder JS, Farhat N. Enhancing the DNA yield intended for microbial sequencing from a low-biomass chlorinated drinking water. Front Microbiol 2024; 15:1339844. [PMID: 38855767 PMCID: PMC11157071 DOI: 10.3389/fmicb.2024.1339844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/07/2024] [Indexed: 06/11/2024] Open
Abstract
DNA extraction yield from drinking water distribution systems and premise plumbing is a key metric for any downstream analysis such as 16S amplicon or metagenomics sequencing. This research aimed to optimize DNA yield from low-biomass (chlorinated) reverse osmosis-produced tap water by evaluating the impact of different factors during the DNA extraction procedure. The factors examined are (1) the impact of membrane materials and their pore sizes; (2) the impact of different cell densities; and (3) an alternative method for enhancing DNA yield via incubation (no nutrient spiking). DNA from a one-liter sampling volume of RO tap water with varying bacterial cell densities was extracted with five different filter membranes (mixed ester cellulose 0.2 μm, polycarbonate 0.2 μm, polyethersulfone 0.2 and 0.1 μm, polyvinylidene fluoride 0.1 μm) for biomass filtration. Our results show that (i) smaller membrane pore size solely did not increase the DNA yield of low-biomass RO tap water; (ii) the DNA yield was proportional to the cell density and substantially dependent on the filter membrane properties (i.e., the membrane materials and their pore sizes); (iii) by using our optimized DNA extraction protocol, we found that polycarbonate filter membrane with 0.2 μm pore size markedly outperformed in terms of quantity (DNA yield) and quality (background level of 16S gene copy number) of recovered microbial DNA; and finally, (iv) for one-liter sampling volume, incubation strategy enhanced the DNA yield and enabled accurate identification of the core members (i.e., Porphyrobacter and Blastomonas as the most abundant indicator taxa) of the bacterial community in low-biomass RO tap water. Importantly, incorporating multiple controls is crucial to distinguish between contaminant/artefactual and true taxa in amplicon sequencing studies of low-biomass RO tap water.
Collapse
Affiliation(s)
- Ratna E. Putri
- Environmental Science and Engineering, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Johannes S. Vrouwenvelder
- Environmental Science and Engineering, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Delft, Netherlands
| | - Nadia Farhat
- Environmental Science and Engineering, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
4
|
Kanatani JI, Fujiyoshi S, Isobe J, Kimata K, Watahiki M, Maenishi E, Izumiyama S, Amemura-Maekawa J, Maruyama F, Oishi K. Correlation between bacterial microbiome and Legionella species in water from public bath facilities by 16S rRNA gene amplicon sequencing. Microbiol Spectr 2024; 12:e0345923. [PMID: 38363136 PMCID: PMC10986325 DOI: 10.1128/spectrum.03459-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/24/2024] [Indexed: 02/17/2024] Open
Abstract
Public bath facilities are a major source of Legionella infections in Japan. In this study, we performed 16S rRNA gene amplicon sequencing to characterize the bacterial community in bath and shower water from public bath facilities, along with chemical parameters, and investigated the effect of the bacterial microbiome on the presence of Legionella species. Although no significant difference in bacterial community richness was observed between bath and shower water samples, there was a remarkable difference in the bacterial community structure between them. Distance-based redundancy analysis revealed that several factors (free residual chlorine, pH, and conductivity) were correlated with the bacterial community in bath water. The most abundant bacterial genera in the samples were Pseudomonas (13.7%) in bath water and Phreatobacter (13.6%) in shower water, as indicated by the taxonomic composition, and the dominant bacteria differed between these environmental samples. Legionella pneumophila was the most frequently detected Legionella species, with additional 15 other Legionella species detected in water samples. In Legionella-positive water samples, several unassigned and uncultured bacteria were enriched together. In addition, the co-occurrence network showed that Legionella was strongly interconnected with two uncultured bacteria. Corynebacterium and Sphingomonas negatively correlated with Legionella species. The present study reveals the ecology of Legionella species, especially their interactions with other bacteria that are poorly understood to date. IMPORTANCE Public bath facilities are major sources of sporadic cases and outbreaks of Legionella infections. Recently, 16S rRNA gene amplicon sequencing has been used to analyze bacterial characteristics in various water samples from both artificial and natural environments, with a particular focus on Legionella bacterial species. However, the relationship between the bacterial community and Legionella species in the water from public bath facilities remains unclear. In terms of hygiene management, it is important to reduce the growth of Legionella species by disinfecting the water in public bath facilities. Our findings contribute to the establishment of appropriate hygiene management practices and provide a basis for understanding the potential health effects of using bath and shower water available in public bath facilities.
Collapse
Affiliation(s)
- Jun-ichi Kanatani
- Department of Bacteriology, Toyama Institute of Health, Imizu, Toyama, Japan
| | - So Fujiyoshi
- Section of Microbial Genomics and Ecology, Hiroshima University, Hiroshima, Japan
| | - Junko Isobe
- Department of Bacteriology, Toyama Institute of Health, Imizu, Toyama, Japan
| | - Keiko Kimata
- Department of Bacteriology, Toyama Institute of Health, Imizu, Toyama, Japan
| | - Masanori Watahiki
- Department of Bacteriology, Toyama Institute of Health, Imizu, Toyama, Japan
| | - Emi Maenishi
- Department of Bacteriology, Toyama Institute of Health, Imizu, Toyama, Japan
| | - Shinji Izumiyama
- Department of Parasitology, National Institute of Infectious Diseases, Toyama, Japan
| | - Junko Amemura-Maekawa
- Department of Bacteriology, National Institute of Infectious Diseases, Toyama, Japan
| | - Fumito Maruyama
- Section of Microbial Genomics and Ecology, Hiroshima University, Hiroshima, Japan
| | - Kazunori Oishi
- Department of Bacteriology, Toyama Institute of Health, Imizu, Toyama, Japan
| |
Collapse
|
5
|
Wang M, Wang H, Hu C, Deng J, Shi B. Phthalate acid esters promoted the enrichment of chlorine dioxide-resistant bacteria and their functions related to human diseases in rural polyvinyl chloride distribution pipes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165282. [PMID: 37406691 DOI: 10.1016/j.scitotenv.2023.165282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/09/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Polyvinyl chloride (PVC) pipes are widely used as drinking water distribution pipes in rural areas of China. However, whether phthalate acid esters (PAEs) released from PVC pipes will affect tap water quality is still unknown. The influence of released PAEs on the water quality was analysed in this study, especially after ClO2 disinfection. The results indicated that ClO2 disinfection could control the growth of total coliforms and heterotrophic bacteria (HPC). However, when the ClO2 residual decreased to below 0.10 mg/L, HPC and opportunistic pathogens, including Mycobacterium avium and Pseudomonas aeruginosa, increased significantly. In addition, after ClO2 disinfection, PAEs concentrations increased from 10.6-22.2 μg/L to 21.2-58.8 μg/L in different sampling cites. Linear discriminant analysis (LDA) effect size (LEfSe) and statistical analysis of metagenomic profiles (Stamp) showed that ClO2 disinfection induced the enrichment of Pseudomonas, Bradyrhizobium, and Mycobacterium and functions related to human diseases, such as pathogenic Escherichia coli infection, shigellosis, Staphylococcus aureus infection, and Vibrio cholerae infection. The released PAEs not only promoted the growth of these ClO2-resistant bacterial genera but also enhanced their functions related to human diseases. Moreover, these PAEs also induced the enrichment of other bacterial genera, such as Blastomonas, Dechloromonas, and Kocuria, and their functions, such as chronic myeloid leukaemia, African trypanosomiasis, leishmaniasis, hepatitis C and human T-cell leukaemia virus 1 infection. The released PAEs enhanced the microbial risk of the drinking water. These results are meaningful for guaranteeing water quality in rural areas of China.
Collapse
Affiliation(s)
- Min Wang
- Institute of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Haibo Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Chisheng Hu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianmian Deng
- Institute of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China.
| | - Baoyou Shi
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Briancesco R, Paduano S, Paradiso R, Coccia AM, La Rosa G, Della Libera S, Semproni M, Bonadonna L. An Italian survey on the microbiological safety of toys containing aqueous media. J Appl Microbiol 2022; 133:1882-1891. [PMID: 35771141 DOI: 10.1111/jam.15695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 12/01/2022]
Abstract
AIMS The purpose of the present investigation is to fill the current gap in information regarding the microbiological quality of toys containing aqueous media and the related risks for users. METHODS Over eighteen years, a total of 491 sealed toys containing aqueous media were analysed using conventional microbial culture methods. In addition, molecular methods (PCR/nested RT-PCR, followed by Sanger sequencing) were employed to test for enteric viruses (enteroviruses and adenoviruses) in a subset of toys; subsequently, the infectivity of the positive samples was tested on cell cultures. RESULTS Of the examined toys, 23.8% were noncompliant with the limits of the European guideline. The most frequently exceeded limits were those for Aerobic bacteria (84.6%), and Pseudomonas aeruginosa (29.9%). Other opportunistic bacterial species that were frequently detected were Stenotrophomonas maltophilia, Pseudomonas fluorescens, Burkholderia cepacia Sphingomonas paucimobilis and Comamonas acidovorans. In a subset of 28 samples, adenovirus (25%) and enterovirus (11%) genome was also found to be present, although the samples with viral positivity did not show infectivity after inoculation on appropriate cell monolayers. CONCLUSIONS The results indicate a condition of microbial exposure related to the use of toys containing aqueous media. SIGNIFICANCE AND IMPACT OF STUDY The investigation highlights the need for more stringent monitoring during the production, packaging and storage of toys containing aqueous matrices in order to safeguard children's health.
Collapse
Affiliation(s)
- R Briancesco
- Department of the Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - S Paduano
- Department of Biomedical, Metabolic and Neural Sciences, Public Health Section, University of Modena and Reggio Emilia, Modena, Italy
| | - R Paradiso
- Department of the Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - A M Coccia
- Department of the Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - G La Rosa
- Department of the Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - S Della Libera
- Department of the Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - M Semproni
- Department of the Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - L Bonadonna
- Department of the Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
7
|
Ionescu MI, Neagoe DȘ, Crăciun AM, Moldovan OT. The Gram-Negative Bacilli Isolated from Caves- Sphingomonas paucimobilis and Hafnia alvei and a Review of Their Involvement in Human Infections. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19042324. [PMID: 35206510 PMCID: PMC8872274 DOI: 10.3390/ijerph19042324] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/07/2022] [Accepted: 02/14/2022] [Indexed: 02/06/2023]
Abstract
The opportunistic infections with Gram-negative bacilli are frequently reported. The clinical studies are focused on the course of human infectious and very often the source of infection remain unclear. We aim to see if the Gram-negative bacilli isolated from a non-contaminated environment—the caves—are reported in human infections. Eleven samples were collected from six Romanian caves. We used the standard procedure used in our clinical laboratory for bacterial identification and for antibiotic susceptibility testing of the cave isolates. Out of the 14 bacterial strains, three isolates are Gram-negative bacilli—one isolate belong to Hafnia alvei and two strains belong to Sphingomonas paucimobilis. We screened for the published studies—full-text original articles or review articles—that reported human infections with S. paucimobilis and H. alvei. Data sources—PubMed and Cochrane library. We retrieved 447 cases from 49 references—262 cases (58.61%) are S. paucimobilis infections and 185 cases (41.39%) are H. alvei infections. The types of infections are diverse but there are some infections more frequent; there are 116 cases (44.27%) and many infections of the bloodstream with S. paucimobilius (116 cases) and 121 cases (65.41%) are urinary tract infections with H. alvei. The acquired source of the bloodstream infections is reported for 93 of S. paucimobilis bloodstream infections—50 cases (43%) are hospital-acquired, and 40 cases (37%) are community-acquired. Most of the infections are reported in patients with different underlying conditions. There are 80 cases (17.9%) are reported of previously healthy persons. Out of the 72 cases of pediatric infections, 62 cases (86.11%) are caused by S. paucimobilis. There are ten death casualties—three are H. alvei infections, and seven are S. paucimobilis infections.
Collapse
Affiliation(s)
- Mihaela Ileana Ionescu
- Iuliu Hațieganu University of Medicine and Pharmacy, 6 Louis Pasteur, 400349 Cluj-Napoca, Romania;
- Department of Microbiology, County Emergency Clinical Hospital, 400006 Cluj-Napoca, Romania;
- Correspondence:
| | - Dan Ștefan Neagoe
- Department of Microbiology, County Emergency Clinical Hospital, 400006 Cluj-Napoca, Romania;
| | | | - Oana Teodora Moldovan
- Emil Racovita Institute of Speleology, Cluj-Napoca Department, Clinicilor 5, 400006 Cluj-Napoca, Romania;
- Romanian Institute of Science and Technology, Saturn 24-26, 400504 Cluj-Napoca, Romania
| |
Collapse
|
8
|
Inkster T, Wilson G, Black J, Mallon J, Connor M, Weinbren M. Cupriavidus spp and other waterborne organisms in healthcare water systems across the United Kingdom. J Hosp Infect 2022; 123:80-86. [PMID: 35181399 DOI: 10.1016/j.jhin.2022.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Cupriavidus pauculus is a rare clinical pathogen with cases having been linked to contaminated hospital water systems. An outbreak of three cases of C. pauculus and other waterborne organisms was reported in a Glasgow hospital in 2018. AIMS The aim of this study was to determine whether Cupriavidus spp are present in hospital water systems elsewhere in Scotland and the UK and to ascertain the optimal laboratory methodology for detection. We also sought to establish where in the water system these organisms are detected and whether a selective media could be developed for isolation. In addition, we tested water samples for the presence of other Gram negative waterborne organisms. METHODS Water samples were received from ten UK NHS hospitals and from various parts of the water system. Isolates were plated on to TSA and Pseudomonas Isolation Agar and further identified using MALDI-TOF and 16S PCR FINDINGS: Cupriavidus spp. were detected in four of ten hospitals tested and all five isolates were from the periphery of the water system. All hospitals had evidence of other OPPPs. Cupriavidus spp. were identified using TSA, with some isolates growing on Pseudomonas isolation agar; as such they may be inadvertently be detected when testing water specifically for Pseudomonas aeruginosa. CONCLUSION This study demonstrates that isolation of Cupriavidus spp. was not unique to the Glasgow incident, these bacteria being present in hospital water systems elsewhere in the UK. We therefore recommend water testing in response to clinical cases. Consideration should also be given to water testing following bacteraemias due to other rare and unusual water borne pathogens.
Collapse
Affiliation(s)
- T Inkster
- Department of Microbiology, Queen Elizabeth University Hospital, Glasgow, UK; NHS Assure, National Services Scotland, Edinburgh, UK.
| | - G Wilson
- Department of Microbiology, Glasgow Royal Infirmary, Glasgow, UK
| | - J Black
- Department of Microbiology, Glasgow Royal Infirmary, Glasgow, UK
| | - J Mallon
- Department of Microbiology, Glasgow Royal Infirmary, Glasgow, UK
| | - M Connor
- Department of Microbiology, Dumfries and Galloway Hospital, UK
| | - M Weinbren
- NHS Assure, National Services Scotland, Edinburgh, UK
| |
Collapse
|
9
|
Pereira A, Silva AR, Melo LF. Legionella and Biofilms-Integrated Surveillance to Bridge Science and Real-Field Demands. Microorganisms 2021; 9:microorganisms9061212. [PMID: 34205095 PMCID: PMC8228026 DOI: 10.3390/microorganisms9061212] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 11/16/2022] Open
Abstract
Legionella is responsible for the life-threatening pneumonia commonly known as Legionnaires’ disease or legionellosis. Legionellosis is known to be preventable if proper measures are put into practice. Despite the efforts to improve preventive approaches, Legionella control remains one of the most challenging issues in the water treatment industry. Legionellosis incidence is on the rise and is expected to keep increasing as global challenges become a reality. This puts great emphasis on prevention, which must be grounded in strengthened Legionella management practices. Herein, an overview of field-based studies (the system as a test rig) is provided to unravel the common roots of research and the main contributions to Legionella’s understanding. The perpetuation of a water-focused monitoring approach and the importance of protozoa and biofilms will then be discussed as bottom-line questions for reliable Legionella real-field surveillance. Finally, an integrated monitoring model is proposed to study and control Legionella in water systems by combining discrete and continuous information about water and biofilm. Although the successful implementation of such a model requires a broader discussion across the scientific community and practitioners, this might be a starting point to build more consistent Legionella management strategies that can effectively mitigate legionellosis risks by reinforcing a pro-active Legionella prevention philosophy.
Collapse
|
10
|
Marchesi I, Paduano S, Frezza G, Sircana L, Vecchi E, Zuccarello P, Oliveri Conti G, Ferrante M, Borella P, Bargellini A. Safety and Effectiveness of Monochloramine Treatment for Disinfecting Hospital Water Networks. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17176116. [PMID: 32842654 PMCID: PMC7503937 DOI: 10.3390/ijerph17176116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/12/2020] [Accepted: 08/20/2020] [Indexed: 11/16/2022]
Abstract
The formation of potentially carcinogenic N-nitrosamines, associated with monochloramine, requires further research due to the growing interest in using this biocide for the secondary disinfection of water in public and private buildings. The aim of our study was to evaluate the possible formation of N-nitrosamines and other toxic disinfection by-products (DBPs) in hospital hot water networks treated with monochloramine. The effectiveness of this biocide in controlling Legionella spp. contamination was also verified. For this purpose, four different monochloramine-treated networks, in terms of the duration of treatment and method of biocide injection, were investigated. Untreated hot water, municipal cold water and, limited to N-nitrosamines analysis, hot water treated with chlorine dioxide were analyzed for comparison. Legionella spp. contamination was successfully controlled without any formation of N-nitrosamines. No nitrification or formation of the regulated DBPs, such as chlorites and trihalomethanes, occurred in monochloramine-treated water networks. However, a stable formulation of hypochlorite, its frequent replacement with a fresh product, and the routine monitoring of free ammonia are recommended to ensure a proper disinfection. Our study confirms that monochloramine may be proposed as an effective and safe strategy for the continuous disinfection of building plumbing systems, preventing vulnerable individuals from being exposed to legionellae and dangerous DBPs.
Collapse
Affiliation(s)
- Isabella Marchesi
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy; (S.P.); (G.F.); (P.B.); (A.B.)
- Correspondence: ; Tel.: +39-059-2055460
| | - Stefania Paduano
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy; (S.P.); (G.F.); (P.B.); (A.B.)
| | - Giuseppina Frezza
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy; (S.P.); (G.F.); (P.B.); (A.B.)
| | - Luca Sircana
- University Hospital Policlinico of Modena, Largo del Pozzo 71, 41124 Modena, Italy; (L.S.); (E.V.)
| | - Elena Vecchi
- University Hospital Policlinico of Modena, Largo del Pozzo 71, 41124 Modena, Italy; (L.S.); (E.V.)
| | - Pietro Zuccarello
- Environmental and Food Hygiene Laboratory (LIAA), Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (P.Z.); (G.O.C.); (M.F.)
| | - Gea Oliveri Conti
- Environmental and Food Hygiene Laboratory (LIAA), Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (P.Z.); (G.O.C.); (M.F.)
| | - Margherita Ferrante
- Environmental and Food Hygiene Laboratory (LIAA), Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (P.Z.); (G.O.C.); (M.F.)
| | - Paola Borella
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy; (S.P.); (G.F.); (P.B.); (A.B.)
| | - Annalisa Bargellini
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy; (S.P.); (G.F.); (P.B.); (A.B.)
| |
Collapse
|