1
|
Chen X, Wang Y, Hou Q, Liao X, Zheng X, Dong W, Wang J, Zhang X. Significant correlations between heavy metals and prokaryotes in the Okinawa Trough hydrothermal sediments. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135657. [PMID: 39213773 DOI: 10.1016/j.jhazmat.2024.135657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/11/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Prokaryotes play crucial roles in hydrothermal vent ecosystems, yet their interactions with heavy metals are not well understood. This study explored the diversity of prokaryotic communities and their correlations with heavy metals and nutrient elements in hydrothermal sediments from Okinawa Trough. A total of 117 bacterial genera in 26 bacterial phyla and 10 archaeal classes in 3 archaeal phyla were identified, including dominant prokaryotic phyla Planctomycetes, Acidobacteria, Verrucomicrobia, and Euryarchaeota. Furthermore, Fe (39.61 mg/g), Mn (2.84 mg/g) and Ba (0.36 mg/g) were found to be the most abundant heavy metals in the Okinawa hydrothermal sediments. Notably, the concentrations of Zn, Ba, Mn, total organic carbon, and total nitrogen significantly increased, whereas the total sulfur concentration distinctively decreased at sampling sites farther from hydrothermal vents. These changes corresponded with reductions in prokaryotic abundance and diversity. Most heavy metals, including Mn, Fe, Co, Cu and As, presented significant positive correlations with a number of prokaryotic genera in the nearby sediment samples. In contrast, both positive and negative correlations with prokaryotes were observed in remote sediment. The keystone taxa include Magnetospirillum, GOUTA19, Lysobacter, Kaistobacter, Treponema, and Clostridium were detected through prokaryote interspecies interactions. The functional predictions revealed significant genes involved in carbon fixation, nitrogen/sulfur cycling, heat shock protein, and metal resistance pathways. Structural equation modeling confirmed that metal and nutrient elements directly influence the composition of prokaryotic communities, which in turn affects the relative abundance of functional genes.
Collapse
Affiliation(s)
- Xinye Chen
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yizhuo Wang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Qili Hou
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xinyu Liao
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoning Zheng
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Wenyu Dong
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jun Wang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| | - Xiaoyong Zhang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Carbonaro M, Aulitto M, Mazurkewich S, Fraia AD, Contursi P, Limauro D, Larsbrink J, Fiorentino G. Genomic mining of Geobacillus stearothermophilus GF16 for xylose production from hemicellulose-rich biomasses using secreted enzymes. N Biotechnol 2024; 82:14-24. [PMID: 38688408 DOI: 10.1016/j.nbt.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/11/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
The valorization of lignocellulosic biomass, derived from various bio-waste materials, has received considerable attention as a sustainable approach to improve production chains while reducing environmental impact. Microbial enzymes have emerged as key players in the degradation of polysaccharides, offering versatile applications in biotechnology and industry. Among these enzymes, glycoside hydrolases (GHs) play a central role. Xylanases, in particular, are used in a wide range of applications and are essential for the production of xylose, which can be fermented into bioethanol or find use in many other industries. Currently, fungal secretomes dominate as the main reservoir of lignocellulolytic enzymes, but thermophilic microorganisms offer notable advantages in terms of enzyme stability and production efficiency. Here we present the genomic characterization of Geobacillus stearothermophilus GF16 to identify genes encoding putative enzymes involved in lignocellulose degradation. Thermostable GHs secreted by G. stearothermophilus GF16 were investigated and found to be active on different natural polysaccharides and synthetic substrates, revealing an array of inducible GH activities. In particular, the concentrated secretome possesses significant thermostable xylanase and β-xylosidase activities (5 ×103 U/L and 1.7 ×105 U/L, respectively), highlighting its potential for application in biomass valorization. We assessed the hemicellulose hydrolysis capabilities of various agri-food wastes using the concentrated secretome of the strain cultivated on xylan. An impressive 300-fold increase in xylose release compared to a commercially available cocktail was obtained with the secretome, underscoring the remarkable efficacy of this approach.
Collapse
Affiliation(s)
- Miriam Carbonaro
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Martina Aulitto
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Scott Mazurkewich
- Wallenberg Wood Science Center, Division of Industrial Biotechnology, Department of Life Sciences, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Alessia Di Fraia
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Patrizia Contursi
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Danila Limauro
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Johan Larsbrink
- Wallenberg Wood Science Center, Division of Industrial Biotechnology, Department of Life Sciences, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | | |
Collapse
|
3
|
Najar IN, Sharma P, Das R, Tamang S, Mondal K, Thakur N, Gandhi SG, Kumar V. From waste management to circular economy: Leveraging thermophiles for sustainable growth and global resource optimization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121136. [PMID: 38759555 DOI: 10.1016/j.jenvman.2024.121136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/24/2024] [Accepted: 05/09/2024] [Indexed: 05/19/2024]
Abstract
Waste of any origin is one of the most serious global and man-made concerns of our day. It causes climate change, environmental degradation, and human health problems. Proper waste management practices, including waste reduction, safe handling, and appropriate treatment, are essential to mitigate these consequences. It is thus essential to implement effective waste management strategies that reduce waste at the source, promote recycling and reuse, and safely dispose of waste. Transitioning to a circular economy with policies involving governments, industries, and individuals is essential for sustainable growth and waste management. The review focuses on diverse kinds of environmental waste sources around the world, such as residential, industrial, commercial, municipal services, electronic wastes, wastewater sewerage, and agricultural wastes, and their challenges in efficiently valorizing them into useful products. It highlights the need for rational waste management, circularity, and sustainable growth, and the potential of a circular economy to address these challenges. The article has explored the role of thermophilic microbes in the bioremediation of waste. Thermophiles known for their thermostability and thermostable enzymes, have emerged to have diverse applications in biotechnology and various industrial processes. Several approaches have been explored to unlock the potential of thermophiles in achieving the objective of establishing a zero-carbon sustainable bio-economy and minimizing waste generation. Various thermophiles have demonstrated substantial potential in addressing different waste challenges. The review findings affirm that thermophilic microbes have emerged as pivotal and indispensable candidates for harnessing and valorizing a range of environmental wastes into valuable products, thereby fostering the bio-circular economy.
Collapse
Affiliation(s)
- Ishfaq Nabi Najar
- Fermentation and Microbial Biotechnology Division, CSIR IIIM, Jammu, India
| | - Prayatna Sharma
- Department of Microbiology, School of Life Sciences, Sikkim University, Gairigaon, Tadong, Gangtok, 737102, Sikkim, India
| | - Rohit Das
- Department of Microbiology, School of Life Sciences, Sikkim University, Gairigaon, Tadong, Gangtok, 737102, Sikkim, India
| | - Sonia Tamang
- Department of Microbiology, School of Life Sciences, Sikkim University, Gairigaon, Tadong, Gangtok, 737102, Sikkim, India
| | | | - Nagendra Thakur
- Department of Microbiology, School of Life Sciences, Sikkim University, Gairigaon, Tadong, Gangtok, 737102, Sikkim, India
| | | | - Vinod Kumar
- Fermentation and Microbial Biotechnology Division, CSIR IIIM, Jammu, India.
| |
Collapse
|
4
|
Vishwakarma SK, Patil A, Pandey A, Arya M. Biosorption of Heavy Metal (Mn 2+) by Thermophilic Bacterial Strains Isolated from Surya Kund Hot Spring, Yamunotri, Uttarakhand. Appl Biochem Biotechnol 2024; 196:2518-2533. [PMID: 37659051 DOI: 10.1007/s12010-023-04682-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 09/05/2023]
Abstract
This investigation aimed to identify the bioremediation potential of Mn2+-resistant bacterial strains cultured from the Surya Kund hot spring, Yamunotri, Uttarakhand. In this study, eight heavy metal-resistant isolates belonging to two phyla, i.e., Firmicutes and Proteobacteria, were investigated for their Mn2+ biosorption potential. The metal tolerance potential of all the thermophilic bacterial strains was determined by MIC. Bioremediation assay of these metal-resistant strains was performed for Mn2+ through the live and dead biomass of the bacterial cell. The evaluation of the bioremediation rate of metal ions through bacteria was done by AAS. All the selected bacterial strains were evaluated with effective biosorption rates for Mn2+. Acinetobacter sp. LSN-10 (YII-1) has been showing the highest potential for the removal of Mn2+ in both live (41.202%) and dead biomass (64.721%) conditions. The bioremediation rate of dead biomass was observed quite higher in comparison to bioremediation through live bacterial cells in the maximum number of isolates. This study may provide a new eco-friendly and cost-effective approach to dealing with metal toxicity. However, further investigation is needed to identify the most effective applications and potential limitations of this method.
Collapse
Affiliation(s)
- Shailesh K Vishwakarma
- Department of Biotechnology, Hemvati Nandan Bahuguna Garhwal University, Srinagar, Uttarakhand, 246174, India
| | - Anjali Patil
- Department of Biotechnology, Hemvati Nandan Bahuguna Garhwal University, Srinagar, Uttarakhand, 246174, India
| | - Anita Pandey
- Department of Biotechnology, Graphic Era (Deemed to be) University, Dehradun, Uttarakhand, 248002, India
| | - Mamta Arya
- Department of Biotechnology, Hemvati Nandan Bahuguna Garhwal University, Srinagar, Uttarakhand, 246174, India.
| |
Collapse
|
5
|
Ugwuanyi IR, Fogel ML, Bowden R, Steele A, De Natale G, Troise C, Somma R, Piochi M, Mormone A, Glamoclija M. Comparative metagenomics at Solfatara and Pisciarelli hydrothermal systems in Italy reveal that ecological differences across substrates are not ubiquitous. Front Microbiol 2023; 14:1066406. [PMID: 36819055 PMCID: PMC9930910 DOI: 10.3389/fmicb.2023.1066406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/06/2023] [Indexed: 02/04/2023] Open
Abstract
Introduction Continental hydrothermal systems (CHSs) are geochemically complex, and they support microbial communities that vary across substrates. However, our understanding of these variations across the complete range of substrates in CHS is limited because many previous studies have focused predominantly on aqueous settings. Methods Here we used metagenomes in the context of their environmental geochemistry to investigate the ecology of different substrates (i.e., water, mud and fumarolic deposits) from Solfatara and Pisciarelli. Results and Discussion Results indicate that both locations are lithologically similar with distinct fluid geochemistry. In particular, all substrates from Solfatara have similar chemistry whereas Pisciarelli substrates have varying chemistry; with water and mud from bubbling pools exhibiting high SO4 2- and NH4 + concentrations. Species alpha diversity was found to be different between locations but not across substrates, and pH was shown to be the most important driver of both diversity and microbial community composition. Based on cluster analysis, microbial community structure differed significantly between Pisciarelli substrates but not between Solfatara substrates. Pisciarelli mud pools, were dominated by (hyper)thermophilic archaea, and on average, bacteria dominated Pisciarelli fumarolic deposits and all investigated Solfatara environments. Carbon fixation and sulfur oxidation were the most important metabolic pathways fueled by volcanic outgassing at both locations. Together, results demonstrate that ecological differences across substrates are not a widespread phenomenon but specific to the system. Therefore, this study demonstrates the importance of analyzing different substrates of a CHS to understand the full range of microbial ecology to avoid biased ecological assessments.
Collapse
Affiliation(s)
- Ifeoma R. Ugwuanyi
- Department of Earth and Environmental Sciences, Rutgers University, Newark, NJ, United States,Ifeoma R. Ugwuanyi, ✉
| | - Marilyn L. Fogel
- EDGE Institute, University of California, Riverside, Riverside, CA, United States
| | - Roxane Bowden
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC, United States
| | - Andrew Steele
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC, United States
| | - Giuseppe De Natale
- Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Vesuviano, Naples, Italy,Consiglio Nazionale delle Ricerche INO, Naples, Italy
| | - Claudia Troise
- Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Vesuviano, Naples, Italy,Consiglio Nazionale delle Ricerche INO, Naples, Italy
| | - Renato Somma
- Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Vesuviano, Naples, Italy,Consiglio Nazionale delle Ricerche IRISS, Naples, Italy
| | - Monica Piochi
- Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Vesuviano, Naples, Italy
| | - Angela Mormone
- Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Vesuviano, Naples, Italy
| | - Mihaela Glamoclija
- Department of Earth and Environmental Sciences, Rutgers University, Newark, NJ, United States,*Correspondence: Mihaela Glamoclija, ✉
| |
Collapse
|
6
|
A New Strategy for As(V) Biosensing Based on the Inhibition of the Phosphatase Activity of the Arsenate Reductase from Thermus thermophilus. Int J Mol Sci 2022; 23:ijms23062942. [PMID: 35328363 PMCID: PMC8949286 DOI: 10.3390/ijms23062942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/26/2022] [Accepted: 03/07/2022] [Indexed: 02/05/2023] Open
Abstract
Arsenic (As) pollution is a widespread problem worldwide. In recent years, biosensors based on enzymatic inhibition have been developed for arsenic detection, making the study of the effect of inhibitors on the selected enzymatic activity crucial for their setup. The arsenate reductase of Thermus thermophilus HB27, TtArsC, reduces As(V) into As(III), but is also endowed with phosphatase activity. This work investigates the inhibitory effects of As(V) and As(III) on phosphatase activity by taking advantage of a simple colorimetric assay; the results show that both of them are non-competitive inhibitors affecting the Vmax but not the KM of the reaction. However, their Ki values are different from each other (15.2 ± 1.6 μM for As(V) and 394.4 ± 40.3 µm with As(III)), indicating a higher inhibitory effect by As(V). Moreover, the inhibition-based biosystem results to be selective for As(V) since several other metal ions and salts do not affect TtArsC phosphatase activity; it exhibits a sensitivity of 0.53 ± 0.03 mU/mg/μM and a limit of detection (LOD) of 0.28 ± 0.02 μM. The good sensitivity and specificity for As(V) point to consider inhibition of TtArsC phosphatase activity for the setup of a novel biosensor for the detection of As(V).
Collapse
|
7
|
Simon P, Pompe W, Gruner D, Sturm E, Ostermann K, Matys S, Vogel M, Rödel G. Nested Formation of Calcium Carbonate Polymorphs in a Bacterial Surface Membrane with a Graded Nanoconfinement: An Evolutionary Strategy to Ensure Bacterial Survival. ACS Biomater Sci Eng 2022; 8:526-539. [PMID: 34995442 PMCID: PMC8848282 DOI: 10.1021/acsbiomaterials.1c01280] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
It is the intention
of this study to elucidate the nested formation
of calcium carbonate polymorphs or polyamorphs in the different nanosized
compartments. With these observations, it can be concluded how the
bacteria can survive in a harsh environment with high calcium carbonate
supersaturation. The mechanisms of calcium carbonate precipitation
at the surface membrane and at the underlying cell wall membrane of
the thermophilic soil bacterium Geobacillus stearothermophilus DSM 13240 have been revealed by high-resolution transmission electron
microscopy and atomic force microscopy. In this Gram-positive bacterium,
nanopores in the surface layer (S-layer) and in the supporting cell
wall polymers are nucleation sites for metastable calcium carbonate
polymorphs and polyamorphs. In order to observe the different metastable
forms, various reaction times and a low reaction temperature (4 °C)
have been chosen. Calcium carbonate polymorphs nucleate in the confinement
of nanosized pores (⌀ 3–5 nm) of the S-layer. The hydrous
crystalline calcium carbonate (ikaite) is formed initially with [110]
as the favored growth direction. It transforms into the anhydrous
metastable vaterite by a solid-state transition. In a following reaction
step, calcite is precipitated, caused by dissolution of vaterite in
the aqueous solution. In the larger pores of the cell wall (⌀
20–50 nm), hydrated amorphous calcium carbonate is grown, which
transforms into metastable monohydrocalcite, aragonite, or calcite.
Due to the sequence of reaction steps via various metastable phases,
the bacteria gain time for chipping the partially mineralized S-layer,
and forming a fresh S-layer (characteristic growth time about 20 min).
Thus, the bacteria can survive in solutions with high calcium carbonate
supersaturation under the conditions of forced biomineralization.
Collapse
Affiliation(s)
- Paul Simon
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Straße 40, 01187 Dresden, Germany
| | - Wolfgang Pompe
- Institute of Materials Science, Technische Universität Dresden, Helmholtzstraße 7, 01069 Dresden, Germany
| | - Denise Gruner
- Institute of Genetics, Technische Universität Dresden, Zellescher Weg 20b, 01217 Dresden, Germany.,Polymeric Microsystems, Technische Universität Dresden, Helmholtzstraße 100, 01069 Dresden, Germany
| | - Elena Sturm
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Straße 40, 01187 Dresden, Germany.,Physical Chemistry, University of Konstanz, POB 714, D-78457 Konstanz, Germany
| | - Kai Ostermann
- Institute of Genetics, Technische Universität Dresden, Zellescher Weg 20b, 01217 Dresden, Germany
| | - Sabine Matys
- Helmholtz Institute Freiberg for Resource Technology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzener Landstraße 400, 01328 Dresden, Germany
| | - Manja Vogel
- Helmholtz Institute Freiberg for Resource Technology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzener Landstraße 400, 01328 Dresden, Germany
| | - Gerhard Rödel
- Institute of Genetics, Technische Universität Dresden, Zellescher Weg 20b, 01217 Dresden, Germany
| |
Collapse
|
8
|
Banerjee A, Sarkar S, Gorai S, Kabiraj A, Bandopadhyay R. High arsenic tolerance in Brevundimonas aurantiaca PFAB1 from an arsenic-rich Indian hot spring. ELECTRON J BIOTECHN 2021. [DOI: 10.1016/j.ejbt.2021.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
9
|
Gallo G, Puopolo R, Carbonaro M, Maresca E, Fiorentino G. Extremophiles, a Nifty Tool to Face Environmental Pollution: From Exploitation of Metabolism to Genome Engineering. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:5228. [PMID: 34069056 PMCID: PMC8157027 DOI: 10.3390/ijerph18105228] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/06/2021] [Accepted: 05/09/2021] [Indexed: 12/13/2022]
Abstract
Extremophiles are microorganisms that populate habitats considered inhospitable from an anthropocentric point of view and are able to tolerate harsh conditions such as high temperatures, extreme pHs, high concentrations of salts, toxic organic substances, and/or heavy metals. These microorganisms have been broadly studied in the last 30 years and represent precious sources of biomolecules and bioprocesses for many biotechnological applications; in this context, scientific efforts have been focused on the employment of extremophilic microbes and their metabolic pathways to develop biomonitoring and bioremediation strategies to face environmental pollution, as well as to improve biorefineries for the conversion of biomasses into various chemical compounds. This review gives an overview on the peculiar metabolic features of certain extremophilic microorganisms, with a main focus on thermophiles, which make them attractive for biotechnological applications in the field of environmental remediation; moreover, it sheds light on updated genetic systems (also those based on the CRISPR-Cas tool), which expand the potentialities of these microorganisms to be genetically manipulated for various biotechnological purposes.
Collapse
Affiliation(s)
- Giovanni Gallo
- Department of Biology, University of Naples Federico II, Via Cinthia 21, 80126 Napoli, Italy; (G.G.); (R.P.); (M.C.); (E.M.)
- Consiglio Nazionale delle Ricerche CNR, Institute of Polymers, Composites and Biomaterials (IPCB), Via Campi Flegrei, 34, 80078 Pozzuoli, Italy
| | - Rosanna Puopolo
- Department of Biology, University of Naples Federico II, Via Cinthia 21, 80126 Napoli, Italy; (G.G.); (R.P.); (M.C.); (E.M.)
| | - Miriam Carbonaro
- Department of Biology, University of Naples Federico II, Via Cinthia 21, 80126 Napoli, Italy; (G.G.); (R.P.); (M.C.); (E.M.)
| | - Emanuela Maresca
- Department of Biology, University of Naples Federico II, Via Cinthia 21, 80126 Napoli, Italy; (G.G.); (R.P.); (M.C.); (E.M.)
| | - Gabriella Fiorentino
- Department of Biology, University of Naples Federico II, Via Cinthia 21, 80126 Napoli, Italy; (G.G.); (R.P.); (M.C.); (E.M.)
- Consiglio Nazionale delle Ricerche CNR, Institute of Polymers, Composites and Biomaterials (IPCB), Via Campi Flegrei, 34, 80078 Pozzuoli, Italy
| |
Collapse
|
10
|
Aulitto M, Gallo G, Puopolo R, Mormone A, Limauro D, Contursi P, Piochi M, Bartolucci S, Fiorentino G. Genomic Insight of Alicyclobacillus mali FL18 Isolated From an Arsenic-Rich Hot Spring. Front Microbiol 2021; 12:639697. [PMID: 33897644 PMCID: PMC8060452 DOI: 10.3389/fmicb.2021.639697] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/05/2021] [Indexed: 12/24/2022] Open
Abstract
Extreme environments are excellent places to find microorganisms capable of tolerating extreme temperature, pH, salinity pressure, and elevated concentration of heavy metals and other toxic compounds. In the last decades, extremophilic microorganisms have been extensively studied since they can be applied in several fields of biotechnology along with their enzymes. In this context, the characterization of heavy metal resistance determinants in thermophilic microorganisms is the starting point for the development of new biosystems and bioprocesses for environmental monitoring and remediation. This work focuses on the isolation and the genomic exploration of a new arsenic-tolerant microorganism, classified as Alicyclobacillus mali FL18. The bacterium was isolated from a hot mud pool of the solfataric terrains in Pisciarelli, a well-known hydrothermally active zone of the Campi Flegrei volcano near Naples in Italy. A. mali FL18 showed a good tolerance to arsenite (MIC value of 41 mM), as well as to other metals such as nickel (MIC 30 mM), cobalt, and mercury (MIC 3 mM and 17 μM, respectively). Signatures of arsenic resistance genes (one arsenate reductase, one arsenite methyltransferase, and several arsenite exporters) were found interspersed in the genome as well as several multidrug resistance efflux transporters that could be involved in the export of drugs and heavy metal ions. Moreover, the strain showed a high resistance to bacitracin and ciprofloxacin, suggesting that the extreme environment has positively selected multiple resistances to different toxic compounds. This work provides, for the first time, insights into the heavy metal tolerance and antibiotic susceptibility of an Alicyclobacillus strain and highlights its putative molecular determinants.
Collapse
Affiliation(s)
- Martina Aulitto
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Naples, Italy
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Giovanni Gallo
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Naples, Italy
- Institute of Polymers, Composites and Biomaterials (IPCB), Consiglio Nazionale delle Ricerche CNR, Pozzuoli, Italy
| | - Rosanna Puopolo
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Angela Mormone
- Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Napoli Osservatorio Vesuviano, Naples, Italy
| | - Danila Limauro
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Patrizia Contursi
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Monica Piochi
- Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Napoli Osservatorio Vesuviano, Naples, Italy
| | - Simonetta Bartolucci
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Gabriella Fiorentino
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Naples, Italy
- Institute of Polymers, Composites and Biomaterials (IPCB), Consiglio Nazionale delle Ricerche CNR, Pozzuoli, Italy
| |
Collapse
|
11
|
Puopolo R, Sorrentino I, Gallo G, Piscitelli A, Giardina P, Le Goff A, Fiorentino G. Self-assembling thermostable chimeras as new platform for arsenic biosensing. Sci Rep 2021; 11:2991. [PMID: 33542380 PMCID: PMC7862302 DOI: 10.1038/s41598-021-82648-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/21/2021] [Indexed: 01/30/2023] Open
Abstract
The correct immobilization and orientation of enzymes on nanosurfaces is a crucial step either for the realization of biosensors, as well as to guarantee the efficacy of the developed biomaterials. In this work we produced two versions of a chimeric protein, namely ArsC-Vmh2 and Vmh2-ArsC, which combined the self-assembling properties of Vmh2, a hydrophobin from Pleurotus ostreatus, with that of TtArsC, a thermophilic arsenate reductase from Thermus thermophilus; both chimeras were heterologously expressed in Escherichia coli and purified from inclusion bodies. They were characterized for their enzymatic capability to reduce As(V) into As(III), as well as for their immobilization properties on polystyrene and gold in comparison to the native TtArsC. The chimeric proteins immobilized on polystyrene can be reused up to three times and stored for 15 days with 50% of activity loss. Immobilization on gold electrodes showed that both chimeras follow a classic Langmuir isotherm model towards As(III) recognition, with an association constant (KAsIII) between As(III) and the immobilized enzyme, equal to 650 (± 100) L mol-1 for ArsC-Vmh2 and to 1200 (± 300) L mol-1 for Vmh2-ArsC. The results demonstrate that gold-immobilized ArsC-Vmh2 and Vmh2-ArsC can be exploited as electrochemical biosensors to detect As(III).
Collapse
Affiliation(s)
- Rosanna Puopolo
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
| | - Ilaria Sorrentino
- Department of Molecular Chemistry, CNRS, University Grenoble Alpes, 38000, Grenoble, France
| | - Giovanni Gallo
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
| | - Alessandra Piscitelli
- Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy
| | - Paola Giardina
- Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy
| | - Alan Le Goff
- Department of Molecular Chemistry, CNRS, University Grenoble Alpes, 38000, Grenoble, France.
| | | |
Collapse
|