1
|
Jiang L, Bai C, Zhu J, Su C, Wang Y, Liu H, Li Q, Qin X, Gu X, Liu T. Pharmacological mechanisms of Ma Xing Shi Gan Decoction in treating influenza virus-induced pneumonia: intestinal microbiota and pulmonary glycolysis. Front Pharmacol 2024; 15:1404021. [PMID: 39161892 PMCID: PMC11331264 DOI: 10.3389/fphar.2024.1404021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/16/2024] [Indexed: 08/21/2024] Open
Abstract
Background Influenza virus is one of the most common pathogens that cause viral pneumonia. During pneumonia, host immune inflammation regulation involves microbiota in the intestine and glycolysis in the lung tissues. In the clinical guidelines for pneumonia treatment in China, Ma Xing Shi Gan Decoction (MXSG) is a commonly prescribed traditional Chinese medicine formulation with significant efficacy, however, it remains unclear whether its specific mechanism of action is related to the regulation of intestinal microbiota structure and lung tissue glycolysis. Objective This study aimed to investigate the mechanism of action of MXSG in an animal model of influenza virus-induced pneumonia. Specifically, we aimed to elucidate how MXSG modulates intestinal microbiota structure and lung tissue glycolysis to exert its therapeutic effects on pneumonia. Methods We established a mouse model of influenza virus-induced pneumoni, and treated with MXSG. We observed changes in inflammatory cytokine levels and conducted 16S rRNA gene sequencing to assess the intestinal microbiota structure and function. Additionally, targeted metabolomics was performed to analyze lung tissue glycolytic metabolites, and Western blot and enzyme-linked immunosorbent assays were performed to assess glycolysis-related enzymes, lipopolysaccharides (LPSs), HIF-1a, and macrophage surface markers. Correlation analysis was conducted between the LPS and omics results to elucidate the relationship between intestinal microbiota and lung tissue glycolysis in pneumonia animals under the intervention of Ma Xing Shi Gan Decoction. Results MXSG reduced the abundance of Gram-negative bacteria in the intestines, such as Proteobacteria and Helicobacter, leading to reduced LPS content in the serum and lungs. This intervention also suppressed HIF-1a activity and lung tissue glycolysis metabolism, decreased the number of M1-type macrophages, and increased the number of M2-type macrophages, effectively alleviating lung damage caused by influenza virus-induced pneumonia. Conclusion MXSG can alleviate glycolysis in lung tissue, suppress M1-type macrophage activation, promote M2-type macrophage activation, and mitigate inflammation in lung tissue. This therapeutic effect appears to be mediated by modulating gut microbiota and reducing endogenous LPS production in the intestines. This study demonstrates the therapeutic effects of MXSG on pneumonia and explores its potential mechanism, thus providing data support for the use of traditional Chinese medicine in the treatment of respiratory infectious diseases.
Collapse
Affiliation(s)
- Lin Jiang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chen Bai
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jingru Zhu
- Beijing Dingjitang Traditional Chinese Medicine Clinic Co., Ltd., Beijing, China
| | - Chen Su
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yang Wang
- Traditional Chinese Medicine Department, Beijing Jishuitan Hospital, Captial Medical University, Beijing, China
| | - Hui Liu
- Institute of Traditional Chinese Medicine for Epidemic Diseases, Beijing University of Chinese Medicine, Beijing, China
| | - Qianqian Li
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xueying Qin
- Department of Respiratory Medicine, The First Clinical College of Beijing University of Chinese Medicine, Beijing, China
| | - Xiaohong Gu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Tiegang Liu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
2
|
Khrustalev VV, Stojarov AN, Shen C, Khrustaleva TA. Consequences of asymmetric mutational pressure for the dynamic of linear B-cell epitopes repertoire of influenza a virus neuraminidase rearrangement. Biosystems 2023; 231:104970. [PMID: 37442364 DOI: 10.1016/j.biosystems.2023.104970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/02/2023] [Accepted: 07/02/2023] [Indexed: 07/15/2023]
Abstract
Full-length nucleotide sequences of avian influenza A virus neuraminidase coding region (20,631 sequences) were analyzed and compared with those isolated from viruses infecting human and swine (63,750 sequences). If in fourfold degenerate sites there is asymmetric A-bias that may be more or less asymmetric depending on the type of neuraminidase and the host, than in twofold degenerate sites from third codon positions there is a strong asymmetric U-bias in coding regions of N4, N5, and N8 isolated from viruses infecting birds, as well as in those of N1 and N2 isolated from viruses infecting human, swine, and birds, while in coding regions of N9 isolated from birds, there is surprisingly strong C-bias, and in sequences of N3, N6, and N7 the usage of C is quite close to the level of U. Revealed stabilization of both U and C in twofold degenerate sites is the evidence of frequent changes in mutational pressure direction. Asymmetric mutational pressure was one of the sources of amino acid replacements that resulted in an equal percentage of sites with appeared and disappeared linear B-cell epitopes in N1, N2, N4, and N5 (33.62-35.33% vs. 32.41-36.45%, respectively), and controlled by the immune pressure it resulted in a stronger tendency to disappear for B-cell epitopes of N3, N6, N7, N8, and N9 of avian viruses (8.74-28.77% vs. 28.96-38.89%). The lack of correlation between nucleotide usages in fourfold and twofold degenerate sites for three nucleotides, except U, is a strong evidence of mutational pressure theory.
Collapse
Affiliation(s)
- Vladislav Victorovich Khrustalev
- Department of General Chemistry, Belarusian State Medical University, Dzerzinskogo, 83, Minsk, Belarus; Multidisciplinary Diagnostic Laboratory, Institute of Physiology of the National Academy of Sciences of Belarus, Academicheskaya, 28, Minsk, Belarus.
| | | | - Chenguang Shen
- Southern Medical University, Guanzhou, China No.1023-1063 South Shatai Road, Baiyun District, Guangzhou City, Guangdong Province, 510515, PR China
| | - Tatyana Aleksandrovna Khrustaleva
- Multidisciplinary Diagnostic Laboratory, Institute of Physiology of the National Academy of Sciences of Belarus, Academicheskaya, 28, Minsk, Belarus
| |
Collapse
|
3
|
Han J, Zhu X, Gao Z, Xiao Y, Zhang J, Wang P, Fang J, Li Y, Zhu Y, Li Y, Jin N, Lu H, Lin D, Liu W. Antiviral effects of Atractyloside A on the influenza B virus (Victoria strain) infection. Front Microbiol 2023; 13:1067725. [PMID: 36704555 PMCID: PMC9871751 DOI: 10.3389/fmicb.2022.1067725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/08/2022] [Indexed: 01/12/2023] Open
Abstract
Influenza viruses pose a serious threat to human health, infecting hundreds of millions of people worldwide each year, resulting in a significant increase in global morbidity and mortality. Influenza activity has declined at the onset of the COVID-19 pandemic, but the genetic diversity of B/Victoria lineage viruses has increased significantly during this period. Therefore, the prevention and treatment of the influenza B Victoria strain virus should continue to attract research attention. In this study, we found that Atractyloside A (AA), one of the effective components in Atractylodes lancea (Thunb.) DC shows potential antiviral properties. This study shows that AA not only possesses anti-influenza B virus infection effects in vivo and in vitro but also can regulate macrophage polarization to the M2 type, which can effectively attenuate the damage caused by influenza B virus infection. Therefore, Atractyloside A may be an effective natural drug against B/Victoria influenza infection.
Collapse
Affiliation(s)
- Jicheng Han
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China,Academician Workstation, Changchun University of Chinese Medicine, Changchun, China
| | - Xiangyu Zhu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Zihan Gao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China,Academician Workstation, Changchun University of Chinese Medicine, Changchun, China
| | - Yan Xiao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China,Academician Workstation, Changchun University of Chinese Medicine, Changchun, China
| | - Jinxin Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China,Academician Workstation, Changchun University of Chinese Medicine, Changchun, China
| | - Peng Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Jinbo Fang
- Academician Workstation, Changchun University of Chinese Medicine, Changchun, China
| | - Yiquan Li
- Academician Workstation, Changchun University of Chinese Medicine, Changchun, China
| | - Yilong Zhu
- Academician Workstation, Changchun University of Chinese Medicine, Changchun, China
| | - Yue Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China,Academician Workstation, Changchun University of Chinese Medicine, Changchun, China
| | - Ningyi Jin
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China,Academician Workstation, Changchun University of Chinese Medicine, Changchun, China,*Correspondence: Ningyi Jin ✉
| | - Huijun Lu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China,Huijun Lu ✉
| | - Dazhuan Lin
- College of Pharmaceuticals and Food, Changchun Medical College, Changchun, China,Dazhuan Lin ✉
| | - Wenshen Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China,Wenshen Liu ✉
| |
Collapse
|
4
|
Strobel HM, Stuart EC, Meyer JR. A Trait-Based Approach to Predicting Viral Host-Range Evolvability. Annu Rev Virol 2022; 9:139-156. [PMID: 36173699 DOI: 10.1146/annurev-virology-091919-092003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Predicting the evolution of virus host range has proven to be extremely difficult, in part because of the sheer diversity of viruses, each with unique biology and ecological interactions. We have not solved this problem, but to make the problem more tractable, we narrowed our focus to three traits intrinsic to all viruses that may play a role in host-range evolvability: mutation rate, recombination rate, and phenotypic heterogeneity. Although each trait should increase evolvability, they cannot do so unbounded because fitness trade-offs limit the ability of all three traits to maximize evolvability. By examining these constraints, we can begin to identify groups of viruses with suites of traits that make them especially concerning, as well as ecological and environmental conditions that might push evolution toward accelerating host-range expansion.
Collapse
Affiliation(s)
- Hannah M Strobel
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA;
| | - Elizabeth C Stuart
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA;
| | - Justin R Meyer
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA;
| |
Collapse
|
5
|
Chen C, Zhang X, Jiang D, Yan D, Guan Z, Zhou Y, Liu X, Huang C, Ding C, Lan L, Huang X, Li L, Yang S. Associations between Temperature and Influenza Activity: A National Time Series Study in China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182010846. [PMID: 34682590 PMCID: PMC8535740 DOI: 10.3390/ijerph182010846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 01/03/2023]
Abstract
Previous studies have reported that temperature is the main meteorological factor associated with influenza activity. This study used generalized additive models (GAMs) to explore the relationship between temperature and influenza activity in China. From the national perspective, the average temperature (AT) had an approximately negative linear correlation with the incidence of influenza, as well as a positive rate of influenza H1N1 virus (A/H1N1). Every degree that the monthly AT rose, the influenza cases decreased by 2.49% (95%CI: 1.24%–3.72%). The risk of influenza cases reached a peak at −5.35 °C with RRs of 2.14 (95%CI: 1.38–3.33) and the monthly AT in the range of −5.35 °C to 18.31 °C had significant effects on the incidence of influenza. Every degree that the weekly AT rose, the positive rate of A/H1N1 decreased by 5.28% (95%CI: 0.35%–9.96%). The risk of A/H1N1 reached a peak at −3.14 °C with RRs of 4.88 (95%CI: 1.01–23.75) and the weekly AT in the range of −3.14 °C to 17.25 °C had significant effects on the incidence of influenza. Our study found that AT is negatively associated with influenza activity, especially for A/H1N1. These findings indicate that temperature could be integrated into the current influenza surveillance system to develop early warning systems to better predict and prepare for the risks of influenza.
Collapse
Affiliation(s)
- Can Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; (C.C.); (X.Z.); (D.J.); (D.Y.); (Z.G.); (Y.Z.); (X.L.); (C.H.); (C.D.); (L.L.)
| | - Xiaobao Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; (C.C.); (X.Z.); (D.J.); (D.Y.); (Z.G.); (Y.Z.); (X.L.); (C.H.); (C.D.); (L.L.)
| | - Daixi Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; (C.C.); (X.Z.); (D.J.); (D.Y.); (Z.G.); (Y.Z.); (X.L.); (C.H.); (C.D.); (L.L.)
| | - Danying Yan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; (C.C.); (X.Z.); (D.J.); (D.Y.); (Z.G.); (Y.Z.); (X.L.); (C.H.); (C.D.); (L.L.)
| | - Zhou Guan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; (C.C.); (X.Z.); (D.J.); (D.Y.); (Z.G.); (Y.Z.); (X.L.); (C.H.); (C.D.); (L.L.)
| | - Yuqing Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; (C.C.); (X.Z.); (D.J.); (D.Y.); (Z.G.); (Y.Z.); (X.L.); (C.H.); (C.D.); (L.L.)
| | - Xiaoxiao Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; (C.C.); (X.Z.); (D.J.); (D.Y.); (Z.G.); (Y.Z.); (X.L.); (C.H.); (C.D.); (L.L.)
| | - Chenyang Huang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; (C.C.); (X.Z.); (D.J.); (D.Y.); (Z.G.); (Y.Z.); (X.L.); (C.H.); (C.D.); (L.L.)
| | - Cheng Ding
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; (C.C.); (X.Z.); (D.J.); (D.Y.); (Z.G.); (Y.Z.); (X.L.); (C.H.); (C.D.); (L.L.)
| | - Lei Lan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; (C.C.); (X.Z.); (D.J.); (D.Y.); (Z.G.); (Y.Z.); (X.L.); (C.H.); (C.D.); (L.L.)
| | - Xihui Huang
- Subject Teaching (English), College of Foreign Languages, Fujian Normal University, Fujian 350117, China;
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; (C.C.); (X.Z.); (D.J.); (D.Y.); (Z.G.); (Y.Z.); (X.L.); (C.H.); (C.D.); (L.L.)
- Correspondence: (L.L.); (S.Y.); Tel.: +86-13605705640 (S.Y.)
| | - Shigui Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; (C.C.); (X.Z.); (D.J.); (D.Y.); (Z.G.); (Y.Z.); (X.L.); (C.H.); (C.D.); (L.L.)
- Correspondence: (L.L.); (S.Y.); Tel.: +86-13605705640 (S.Y.)
| |
Collapse
|
6
|
Yin H, Jiang N, Shi W, Chi X, Liu S, Chen JL, Wang S. Development and Effects of Influenza Antiviral Drugs. Molecules 2021; 26:molecules26040810. [PMID: 33557246 PMCID: PMC7913928 DOI: 10.3390/molecules26040810] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 12/15/2022] Open
Abstract
Influenza virus is a highly contagious zoonotic respiratory disease that causes seasonal outbreaks each year and unpredictable pandemics occasionally with high morbidity and mortality rates, posing a great threat to public health worldwide. Besides the limited effect of vaccines, the problem is exacerbated by the lack of drugs with strong antiviral activity against all flu strains. Currently, there are two classes of antiviral drugs available that are chemosynthetic and approved against influenza A virus for prophylactic and therapeutic treatment, but the appearance of drug-resistant virus strains is a serious issue that strikes at the core of influenza control. There is therefore an urgent need to develop new antiviral drugs. Many reports have shown that the development of novel bioactive plant extracts and microbial extracts has significant advantages in influenza treatment. This paper comprehensively reviews the development and effects of chemosynthetic drugs, plant extracts, and microbial extracts with influenza antiviral activity, hoping to provide some references for novel antiviral drug design and promising alternative candidates for further anti-influenza drug development.
Collapse
|
7
|
Sharif N, Dey SK. Impact of population density and weather on COVID-19 pandemic and SARS-CoV-2 mutation frequency in Bangladesh. Epidemiol Infect 2021; 149:e16. [PMID: 33407987 PMCID: PMC7844183 DOI: 10.1017/s0950268821000029] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/15/2020] [Accepted: 12/31/2020] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease-2019 (COVID-19) has caused the recent pandemic worldwide. Research studies are focused on various factors affecting the pandemic to find effective vaccine or therapeutics against COVID-19. Environmental factors are the important regulators of COVID-19 pandemic. This study aims to determine the impact of weather on the COVID-19 cases, fatalities and frequency of mutations in Bangladesh. The impacts were determined on 1, 7 and 14 days of the case. The study was conducted based on Spearman's correlation coefficients. The highest correlation was found between population density and cases (rs = 0.712). Among metrological parameters, average temperature had the strongest correlation (rs = -0.675) with the cases. About 82% of Bangladeshi isolates had D614G at spike protein. Both temperature and UV index had strong effects on the frequency of mutations. Among host factors, coinfection is highly associated with frequency of different mutations. This study will give a complete picture of the effects of metrological parameters on COVID-19 cases, fatalities and mutation frequency that will help the authorities to take proper decisions.
Collapse
Affiliation(s)
- Nadim Sharif
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka1342, Bangladesh
| | - Shuvra Kanti Dey
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka1342, Bangladesh
| |
Collapse
|