1
|
Jamal Y, Usmani M, Brumfield KD, Singh K, Huq A, Nguyen TH, Colwell R, Jutla A. Quantification of Climate Footprints of Vibrio vulnificus in Coastal Human Communities of the United States Gulf Coast. GEOHEALTH 2024; 8:e2023GH001005. [PMID: 39165476 PMCID: PMC11333720 DOI: 10.1029/2023gh001005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 08/22/2024]
Abstract
The incidence of vibriosis is rising globally with evidence of climate variability influencing environmental processes that support growth of pathogenic Vibrio spp. The waterborne pathogen, Vibrio vulnificus can invade wounds and has one of the highest case fatality rates in humans. The bacterium cannot be eradicated from the aquatic environment, hence climate driven environmental conditions enhancing growth and dissemination of V. vulnificus need to be understood to provide preemptive assessment of its presence and distribution in aquatic systems. To achieve this objective, satellite remote sensing was employed to quantify the association of sea surface temperature (SST) and chlorophyll-a (chl-a) in locations with reported V. vulnificus infections. Monthly analysis was done in two populated regions of the Gulf of Mexico-Tampa Bay, Florida, and Galveston Bay, Texas. Results indicate warm water, characterized by a 2-month lag in SST, high concentration of phytoplankton, proxied for zooplankton using 1 month lagged chl-a values, was statistically linked to higher odds of V. vulnificus infection in the human population. Identification of climate and ecological processes thresholds is concluded to be useful for development of an heuristic prediction system designed to determine risk of infection for coastal populations.
Collapse
Affiliation(s)
- Yusuf Jamal
- Department of Environmental Engineering SciencesGeohealth and Hydrology LaboratoryUniversity of FloridaGainesvilleFLUSA
| | - Moiz Usmani
- Department of Environmental Engineering SciencesGeohealth and Hydrology LaboratoryUniversity of FloridaGainesvilleFLUSA
| | - Kyle D. Brumfield
- Maryland Pathogen Research InstituteUniversity of MarylandCollege ParkMDUSA
- University of Maryland Institute for Advanced Computer StudiesUniversity of MarylandCollege ParkMDUSA
| | - Komalpreet Singh
- Department of Environmental Engineering SciencesGeohealth and Hydrology LaboratoryUniversity of FloridaGainesvilleFLUSA
| | - Anwar Huq
- Maryland Pathogen Research InstituteUniversity of MarylandCollege ParkMDUSA
| | - Thanh Huong Nguyen
- Department of Civil & Environmental EngineeringUniversity of Illinois Urbana ChampaignChampaignILUSA
| | - Rita Colwell
- Maryland Pathogen Research InstituteUniversity of MarylandCollege ParkMDUSA
- University of Maryland Institute for Advanced Computer StudiesUniversity of MarylandCollege ParkMDUSA
| | - Antarpreet Jutla
- Department of Environmental Engineering SciencesGeohealth and Hydrology LaboratoryUniversity of FloridaGainesvilleFLUSA
| |
Collapse
|
2
|
Akinbobola A, Kean R, Quilliam RS. Plastic pollution as a novel reservoir for the environmental survival of the drug resistant fungal pathogen Candida auris. MARINE POLLUTION BULLETIN 2024; 198:115841. [PMID: 38061145 DOI: 10.1016/j.marpolbul.2023.115841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/10/2023] [Accepted: 11/21/2023] [Indexed: 01/05/2024]
Abstract
The WHO recently classified Candida auris as a fungal pathogen of "critical concern". Evidence suggests that C. auris emerged from the natural environment, yet the ability of this pathogenic yeast to survive in the natural environment is still poorly understood. The aim of this study, therefore, was to quantify the persistence of C. auris in simulated environmental matrices and explore the role of plastic pollution for facilitating survival and potential transfer of C. auris. Multi-drug resistant strains of C. auris persisted for over 30 days in river water or seawater, either planktonically, or in biofilms colonising high-density polyethylene (HDPE) or glass. C. auris could be transferred from plastic beads onto simulated beach sand, particularly when the sand was wet. Importantly, all C. auris cells recovered from plastics retained their pathogenicity; therefore, plastic pollution could play a significant role in the widescale environmental dissemination of this recently emerged pathogen.
Collapse
Affiliation(s)
- Ayorinde Akinbobola
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK.
| | - Ryan Kean
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Richard S Quilliam
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| |
Collapse
|
3
|
Robalo A, Brandão J, Shibata T, Solo-Gabriele H, Santos R, Monteiro S. Detection of enteric viruses and SARS-CoV-2 in beach sand. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165836. [PMID: 37517729 DOI: 10.1016/j.scitotenv.2023.165836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
Beach sand harbors a diverse group of microbial organisms that may be of public health concern. Nonetheless, little is known about the presence and distribution of viruses in beach sand. In this study, the first objective was to evaluate the presence of seven viruses (Aichi virus, enterovirus, hepatitis A virus, human adenovirus, norovirus, rotavirus, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)) in sands collected at public beaches. The second objective was to assess the spatial distribution of enteric viruses in beach sand. To that end, 27 beach sand samples from different beaches in Portugal were collected between November 2018 and August 2020 and analyzed for the presence of viruses. At seven beaches, samples were collected in the supratidal and intertidal zones. Results show that viruses were detected in 89 % (24/27) of the sand samples. Aichi virus was the most prevalent (74 %). Noroviruses were present in 19 % of the samples (norovirus GI - 15 %, norovirus GII - 4 %). Human adenovirus and enterovirus were detected in 48 % and 22 % of the samples, respectively. Hepatitis A virus and rotavirus were not detected. Similarly, SARS-CoV-2 in beach sand collected during the initial stages of the pandemic was also not detected. The detection of three or more viruses occurred in 15 % of the samples. Concentrations of viruses were as high as 7.2 log copies (cp)/g of sand. Enteric viruses were found in higher prevalence in sand collected from the supratidal zone compared to the intertidal zone. Human adenovirus was detected in 43 % of the supratidal and 14 % in the intertidal samples and Aichi virus in 57 % and 86 % of the intertidal and supratidal areas, respectively. Our findings suggest that beach sand can be a reservoir of enteric viruses, suggesting that it might be a vehicle for disease transmission, particularly for children, the elderly, and immunocompromised users.
Collapse
Affiliation(s)
- A Robalo
- Laboratorio Analises, Técnico Lisboa, Universidade Lisboa, Portugal
| | - J Brandão
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Lisboa, Portugal
| | - T Shibata
- Institute for the Study of the Environment, Sustainability, and Energy, Northern Illinois University, DeKalb, IL, USA; Center for Southeast Asian Studies, Northern Illinois University, DeKalb, IL, USA
| | - H Solo-Gabriele
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Coral Gables, FL, USA
| | - R Santos
- Laboratorio Analises, Técnico Lisboa, Universidade Lisboa, Portugal; Departamento de Engenharia e Ciências Nucleares, Técnico Lisboa, Universidade de Lisboa, Portugal
| | - S Monteiro
- Laboratorio Analises, Técnico Lisboa, Universidade Lisboa, Portugal; Departamento de Engenharia e Ciências Nucleares, Técnico Lisboa, Universidade de Lisboa, Portugal.
| |
Collapse
|
4
|
Gitter A, Gidley M, Mena KD, Ferguson A, Sinigalliano C, Bonacolta A, Solo-Gabriele H. Integrating microbial source tracking with quantitative microbial risk assessment to evaluate site specific risk based thresholds at two South Florida beaches. Front Microbiol 2023; 14:1210192. [PMID: 37901823 PMCID: PMC10602684 DOI: 10.3389/fmicb.2023.1210192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/20/2023] [Indexed: 10/31/2023] Open
Abstract
Quantitative microbial risk assessment (QMRA) can be used to evaluate health risks associated with recreational beach use. This study developed a site-specific risk assessment using a novel approach that combined quantitative PCR-based measurement of microbial source tracking (MST) genetic markers (human, dog, and gull fecal bacteria) with a QMRA analysis of potential pathogen risk. Water samples (n = 24) from two recreational beaches were collected and analyzed for MST markers as part of a broader Beach Exposure And Child Health Study that examined child behavior interactions with the beach environment. We report here the measurements of fecal bacteria MST markers in the environmental DNA extracts of those samples and a QMRA analysis of potential health risks utilizing the results from the MST measurements in the water samples. Human-specific Bacteroides was enumerated by the HF183 Taqman qPCR assay, gull-specific Catellicoccus was enumerated by the Gull2 qPCR assay, and dog-specific Bacteroides was enumerated by the DogBact qPCR assay. Derived reference pathogen doses, calculated from the MST marker concentrations detected in recreational waters, were used to estimate the risk of gastrointestinal illness for both children and adults. Dose-response equations were used to estimate the probability of the risk of infection (Pinf) per a swimming exposure event. Based on the QMRA simulations presented in this study, the GI risk from swimming or playing in water containing a mixture of human and non-human fecal sources appear to be primarily driven by the human fecal source. However, the estimated median GI health risk for both beaches never exceeded the U.S. EPA risk threshold of 32 illnesses per 1,000 recreation events. Our research suggests that utilizing QMRA together with MST can further extend our understanding of potential recreational bather risk by identifying the source contributing the greatest risk in a particular location, therefore informing beach management responses and decision-making.
Collapse
Affiliation(s)
- Anna Gitter
- Department of Epidemiology, Human Genetics and Environmental Sciences, University of Texas Health Science Center Houston School of Public Health, El Paso, TX, United States
| | - Maribeth Gidley
- Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, FL, United States
- Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, FL, United States
| | - Kristina D. Mena
- Department of Epidemiology, Human Genetics and Environmental Sciences, University of Texas Health Science Center Houston School of Public Health, El Paso, TX, United States
| | - Alesia Ferguson
- Department of Built Environment, North Carolina Agricultural and Technical State University, Greensboro, NC, United States
| | - Christopher Sinigalliano
- Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, FL, United States
| | - Anthony Bonacolta
- Department of Marine Biology and Ecology, University of Miami, Miami, FL, United States
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| | - Helena Solo-Gabriele
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Coral Gables, FL, United States
| |
Collapse
|
5
|
Byrkit BN, LaScala EC, MenkinSmith L, Hall GA, Weant KA. Characterization of Prophylactic Antimicrobial Therapy Practices for Patients With Marine-Associated Injuries in the Emergency Department. J Pharm Pract 2023; 36:53-59. [PMID: 34098786 DOI: 10.1177/08971900211021058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Centers for Disease Control and Prevention (CDC) recommendations for the treatment of marine-associated wound infections include empiric coverage for Vibrio species with a combination of a third-generation cephalosporin and doxycycline. These recommendations are based on limited data and it remains unclear if this regimen is also indicated for prophylaxis. OBJECTIVE The purpose of this analysis was to assess the antibiotic regimens used in the emergency department (ED) for prophylaxis of marine-associated injuries relative to the CDC recommendations and evaluate any clinical impact. METHODS A retrospective review evaluated adult patients discharged from the ED over a 4-year period with an antibiotic prescription following an injury with marine exposure. RESULTS 114 patients were included in the analysis. The majority of patients were < 40 years of age with no previous medical history and presented after sustaining a laceration secondary to oyster shells. 97.4% received prophylactic antibiotic therapy that did not match the CDC recommendations, with the majority receiving doxycycline monotherapy (82%). A 1.8% 30-day ED revisit rate was noted with 2 patients returning for therapy failure. No patients were admitted to the hospital within 30 days and no documented adverse effects related to antibiotic therapy were noted. CONCLUSION Current prophylactic antibiotic prescribing practices diverge from the current CDC recommendations for the treatment of marine-associated infections, however, an effect secondary to these variations was not observed. Further investigations of prophylaxis against Vibrio infections in low-risk patients is warranted to limit collateral damage and improve antimicrobial stewardship in the ED.
Collapse
Affiliation(s)
- Britany N Byrkit
- College of Pharmacy, 2345Medical University of South Carolina, Charleston, SC, USA
- Department of Pharmacy, 2345Medical University of South Carolina, Charleston, SC, USA
| | - Elizabeth C LaScala
- Department of Pharmacy, 2345Medical University of South Carolina, Charleston, SC, USA
| | - Lacey MenkinSmith
- Department of Emergency Medicine, 2345Medical University of South Carolina, Charleston, SC, USA
| | - Gregory A Hall
- Department of Emergency Medicine, 2345Medical University of South Carolina, Charleston, SC, USA
| | - Kyle A Weant
- College of Pharmacy, 2629University of South Carolina, Columbia, SC, USA
| |
Collapse
|
6
|
Ehrhardt JD, Newsome K, Das S, McKenney M, Elkbuli A. Evaluation and Management of Watercraft-Related Injuries for Acute Care Surgeons: Towards Improving Care and Implementing Effective Public Health Prevention Policies. ANNALS OF SURGERY OPEN 2022; 3:e149. [PMID: 37600112 PMCID: PMC10431368 DOI: 10.1097/as9.0000000000000149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/15/2022] [Indexed: 11/27/2022] Open
Abstract
Boating has exposed humans to elemental hazards for centuries. What was once a lifelong craft and time-honored skillset is now, with modern technology, a popular recreational activity. Boating safety has inherent limitations and has been historically challenging to enforce. These circumstances have given way to a rising number of watercraft-associated injuries and fatalities. This review aims to investigate the diagnosis, work-up, and management of watercraft-related injuries, including blunt mechanisms, propeller wounds, water-force trauma, associated marine infections, and submersion injuries, as well as outline gaps in current public health policy on watercraft injuries, potential interventions, and available solutions. Motorboats and personal watercraft differ in size, power modality, and differential risk for injury. Accidents aboard watercraft often share commonalities with motor vehicles and motorcycles, namely: rapid deceleration, ejection, and collision with humans. The complexity of care is added by the austere environment in which many watercraft accidents occur, as well as the added morbidity of drowning and hypothermia. Wounds can also become infected by marine organisms, which require wound care and antimicrobial therapy specific to the aquatic environment in which the injury occurred. The treatment of these patients can be further exacerbated by the prolonged transportation times due to complicated water rescue. There are many measures that can prevent or abate watercraft injuries, but inconsistent regulations and enforcement may impair the success of these interventions. Further research is needed to identify possible solutions to common causes of watercraft injuries, such as inconsistent lifejacket use and bow riding.
Collapse
Affiliation(s)
- John D. Ehrhardt
- From the Department of Surgery, Kendall Regional Medical Center, Miami, Florida, USA
| | - Kevin Newsome
- Department of Surgery, Division of Trauma and Surgical Critical Care, Kendall Regional Medical Center, Miami, Florida, USA
| | - Snigdha Das
- Department of Surgery, Division of Trauma and Surgical Critical Care, Kendall Regional Medical Center, Miami, Florida, USA
| | - Mark McKenney
- From the Department of Surgery, Kendall Regional Medical Center, Miami, Florida, USA
- Department of Surgery, Division of Trauma and Surgical Critical Care, Kendall Regional Medical Center, Miami, Florida, USA
- University of South Florida, Tampa, Florida, USA
| | - Adel Elkbuli
- Department of Surgery, Division of Trauma and Surgical Critical Care, Kendall Regional Medical Center, Miami, Florida, USA
| |
Collapse
|
7
|
Solo-Gabriele HM, Fiddaman T, Mauritzen C, Ainsworth C, Abramson DM, Berenshtein I, Chassignet EP, Chen SS, Conmy RN, Court CD, Dewar WK, Farrington JW, Feldman MG, Ferguson AC, Fetherston-Resch E, French-McCay D, Hale C, He R, Kourafalou VH, Lee K, Liu Y, Masi M, Maung-Douglass ES, Morey SL, Murawski SA, Paris CB, Perlin N, Pulster EL, Quigg A, Reed DJ, Ruzicka JJ, Sandifer PA, Shepherd JG, Singer BH, Stukel MR, Sutton TT, Weisberg RH, Wiesenburg D, Wilson CA, Wilson M, Wowk KM, Yanoff C, Yoskowitz D. Towards integrated modeling of the long-term impacts of oil spills. MARINE POLICY 2021; 131:1-18. [PMID: 37850151 PMCID: PMC10581399 DOI: 10.1016/j.marpol.2021.104554] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Although great progress has been made to advance the scientific understanding of oil spills, tools for integrated assessment modeling of the long-term impacts on ecosystems, socioeconomics and human health are lacking. The objective of this study was to develop a conceptual framework that could be used to answer stakeholder questions about oil spill impacts and to identify knowledge gaps and future integration priorities. The framework was initially separated into four knowledge domains (ocean environment, biological ecosystems, socioeconomics, and human health) whose interactions were explored by gathering stakeholder questions through public engagement, assimilating expert input about existing models, and consolidating information through a system dynamics approach. This synthesis resulted in a causal loop diagram from which the interconnectivity of the system could be visualized. Results of this analysis indicate that the system naturally separates into two tiers, ocean environment and biological ecosystems versus socioeconomics and human health. As a result, ocean environment and ecosystem models could be used to provide input to explore human health and socioeconomic variables in hypothetical scenarios. At decadal-plus time scales, the analysis emphasized that human domains influence the natural domains through changes in oil-spill related laws and regulations. Although data gaps were identified in all four model domains, the socioeconomics and human health domains are the least established. Considerable future work is needed to address research gaps and to create fully coupled quantitative integrative assessment models that can be used in strategic decision-making that will optimize recoveries from future large oil spills.
Collapse
Affiliation(s)
- Helena M. Solo-Gabriele
- Department of Civil, Architectural, and Environmental Engineering, University of Miami, Coral Gables, FL 33146, USA
| | | | - Cecilie Mauritzen
- Department of Climate, Norwegian Meteorological Institute, Oslo, Norway
| | - Cameron Ainsworth
- College of Marine Science, University of South Florida, St. Petersburg, FL 33701, USA
| | - David M. Abramson
- School of Global Public Health, New York University, New York, NY 10003, USA
| | - Igal Berenshtein
- Department of Ocean Sciences, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA
- Cooperative Institute for Marine and Atmospheric Studies, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA
| | - Eric P. Chassignet
- Center for Ocean-Atmospheric Prediction Studies, Florida State University, Tallahassee, FL 32306, USA
| | - Shuyi S. Chen
- Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA
| | - Robyn N. Conmy
- Office of Research and Development, US Environmental Protection Agency, Cincinnati, OH 45268, USA
| | - Christa D. Court
- Food and Resource Economics Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - William K. Dewar
- Laboratoire de Glaciologie et Geophysique de l’Environnement, French National Center for Scientific Research (CNRS), Grenoble, France 38000, and Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, FL 32306, USA
| | | | - Michael G. Feldman
- Consortium for Ocean Leadership, Gulf of Mexico Research Initiative, Washington, DC 20005, USA
| | - Alesia C. Ferguson
- Built Environment Department, College of Science and Technology, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| | | | | | - Christine Hale
- Harte Research Institute for Gulf of Mexico Studies, Texas A&M University Corpus Christi, Corpus Christi, TX 78412, USA
| | - Ruoying He
- Dept. of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Vassiliki H. Kourafalou
- Department of Ocean Sciences, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA
| | - Kenneth Lee
- Fisheries and Oceans Canada, Ecosystem Science, Ottawa, Ontario, K1A 0E6, Canada
| | - Yonggang Liu
- College of Marine Science, University of South Florida, St. Petersburg, FL 33701, USA
| | - Michelle Masi
- Southeast Fisheries Science Center, National Marine Fisheries Service, NOAA, Galveston, TX 77551, USA
| | | | - Steven L. Morey
- School of the Environment, Florida Agricultural and Mechanical University, Tallahassee, FL 32307, USA
| | - Steven A. Murawski
- College of Marine Science, University of South Florida, St. Petersburg, FL 33701, USA
| | - Claire B. Paris
- Department of Ocean Sciences, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA
| | - Natalie Perlin
- Department of Atmospheric Sciences, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA
| | - Erin L. Pulster
- College of Marine Science, University of South Florida, St. Petersburg, FL 33701, USA
| | - Antonietta Quigg
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX 77553, USA
| | - Denise J. Reed
- Pontchartrain Institute for Environmental Sciences, University of New Orleans, 2000 Lakeshore Drive, New Orleans, LA 70148, USA
| | - James J. Ruzicka
- Cooperative Institute for Marine Resources Studies, Oregon State University, Newport, OR 97365, USA
| | - Paul A. Sandifer
- Center for Coastal Environmental and Human Health, College of Charleston, Charleston, SC 29424, USA
| | - John G. Shepherd
- School of Ocean & Earth Science, National Oceanography Centre, University of Southampton, Southampton SO14 3ZH, UK
| | - Burton H. Singer
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA
| | - Michael R. Stukel
- Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, FL 32306, USA
| | - Tracey T. Sutton
- Guy Harvey Oceanographic Center, Halmos College of Arts and Sciences, Nova Southeastern University, Dania Beach, FL 33004, USA
| | - Robert H. Weisberg
- College of Marine Science, University of South Florida, St. Petersburg, FL 33701, USA
| | - Denis Wiesenburg
- School of Ocean Science and Engineering, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | | | - Monica Wilson
- Florida Sea Grant, University of Florida, St. Petersburg, FL 33701, USA
| | - Kateryna M. Wowk
- Harte Research Institute for Gulf of Mexico Studies, Texas A&M University Corpus Christi, Corpus Christi, TX 78412, USA
| | - Callan Yanoff
- Consortium for Ocean Leadership, Gulf of Mexico Research Initiative, Washington, DC 20005, USA
| | - David Yoskowitz
- Harte Research Institute for Gulf of Mexico Studies, Texas A&M University Corpus Christi, Corpus Christi, TX 78412, USA
| |
Collapse
|
8
|
Wang D, Zheng Q, Lv Q, Zhang C, Zheng Y, Chen H, Zhang W. Assessment of seawater bacterial infection in rabbit tibia by Illumina MiSeq sequencing and bacterial culture. J Orthop Surg Res 2021; 16:463. [PMID: 34289854 PMCID: PMC8293552 DOI: 10.1186/s13018-021-02553-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 06/11/2021] [Indexed: 12/02/2022] Open
Abstract
Objectives We aimed to explore the bacterial community composition following ocean bacterial infection using an animal model. Methods This animal-based experiment was conducted from September 2019 to November 2019. Eighteen seawater filter membranes were collected from Changle City, Fujiian Province, China, on September 8, 2019. Ten filter membranes were used for implantation. Eight filter membranes that were used in the bacterial culture for the exploration of seawater bacteria were assigned to the seawater group (SG). Fourteen healthy adult New Zealand rabbits were randomly divided into the experimental group (EG) and control group (CG). Seawater filter membranes and asepsis membranes were implanted into the tibia in the EG and CG, respectively. One week after surgery, tibial bone pathology tissues were collected and assessed using light microscopy and scanning electron microscopy (SEM). Medullary cavity tissues were collected for the performance of Illumina MiSeq sequencing and bacterial culture. The differences between EG and CG were assessed by pathological observation under light microscopy and SEM, high-throughput bacterial sequencing, and bacterial culture. Results Compared with the CG, the infection rate was 100%, and the mortality value was 20% after the implantation of the filter membranes in the EG. Both light microscopy and SEM showed that a large number of bacteria were distributed in the bone marrow cavity after ocean bacterial infection. No bacterial growth was found in the CG. Illumina MiSeq sequencing found that Firmicutes, Proteobacteria, Thermotogae, Fusobacteria, Bacteroidetes, and Actinobacteria were the dominant bacteria at the phylum level and Clostridium_sensu_stricto_7, Haloimpatiens, Clostridium_sensu_stricto_15, Clostridiaceae_1, Clostridium_sensu_stricto_18, and Oceanotoga were the dominant bacteria in genus level among the EG. In the bacterial culture of the medullary cavity tissues, Klebsiella pneumoniae, Shewanella algae, Staphylococcus aureus, Escherichia coli, Enterobacter cloacae, and Vibrio vulnificus were the predominant infective species. Moreover, compared with the SG, the EG showed a higher detection rate of E. coli and S. aureus (P = 0.008 and P = 0.001, respectively). The detection rates of V. alginolyticus, V. parahaemolyticus, and V. fluvialis were higher in the SG than the EG (P = 0.007, P = 0.03, and P = 0.03, respectively). Conclusions Our model, which was comprehensively evaluated using four techniques: histopathology and SEM observation, gene detection, and bacteria culture, provides a scientific basis for the clinical diagnosis and treatment of patients in such settings. Supplementary Information The online version contains supplementary material available at 10.1186/s13018-021-02553-9.
Collapse
Affiliation(s)
- Du Wang
- Department of Joint Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Qingcong Zheng
- Department of Orthopedics, 900th Hospital of Joint Logistics Support Force, Fuzhou, China
| | - Qi Lv
- Department of Orthopedics, 900th Hospital of Joint Logistics Support Force, Fuzhou, China
| | - Chaofan Zhang
- Department of Joint Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yun Zheng
- Department of Orthopedics, 900th Hospital of Joint Logistics Support Force, Fuzhou, China
| | - Huidong Chen
- Department of Orthopedics, 900th Hospital of Joint Logistics Support Force, Fuzhou, China
| | - Wenming Zhang
- Department of Joint Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.
| |
Collapse
|
9
|
Kim J, Chun BC. Effect of Seawater Temperature Increase on the Occurrence of Coastal Vibrio vulnificus Cases: Korean National Surveillance Data from 2003 to 2016. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18094439. [PMID: 33922061 PMCID: PMC8122616 DOI: 10.3390/ijerph18094439] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/15/2021] [Accepted: 04/20/2021] [Indexed: 12/19/2022]
Abstract
The purpose of this study was to assess the association between seawater temperature and Vibrio vulnificus cases in coastal regions of Korea. All V. vulnificus cases in coastal regions notified to the Korea Disease Control and Prevention Agency between 2003 and 2016 were included in this work. Data for seawater temperature on the south, west, and east coast during the study period were provided by the Korea Oceanographic Data Center of the National Institute of Fisheries Science. We used a generalized additive model and performed a negative binomial regression analysis. In total, 383 notified cases were analyzed (west coast: 196 cases, south coast: 162, and east coast: 25). The maximum seawater temperature was the most significant predictor of V. vulnificus cases on the south and east coasts (relative risk according to the 1 °C increase in seawater temperature (RR) = 1.35 (95% confidence interval (CI): 1.19–1.53) and 1.30 (95% CI: 1.06–1.59), respectively). However, the mean seawater temperature was the most significant predictor for the west coast (RR = 1.34 (95% CI: 1.20–1.51)). These results indicate that continuously monitoring seawater temperature increase in each coastal area is crucial to prevent V. vulnificus infections and protect high-risk groups, such as persons with liver disease.
Collapse
Affiliation(s)
- Jungsook Kim
- Korea Disease Control and Prevention Agency, Cheongju 28159, Korea;
- Department of Public Health, Korea University Graduate School, Seoul 02841, Korea
| | - Byung Chul Chun
- Department of Public Health, Korea University Graduate School, Seoul 02841, Korea
- Department of Preventive Medicine, Korea University College of Medicine, Seoul 02841, Korea
- Correspondence: ; Tel.: +82-2-2286-1169
| |
Collapse
|
10
|
Ferguson A, Dwivedi A, Adelabu F, Ehindero E, Lamssali M, Obeng-Gyasi E, Mena K, Solo-Gabriele H. Quantified Activity Patterns for Young Children in Beach Environments Relevant for Exposure to Contaminants. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18063274. [PMID: 33809975 PMCID: PMC8004776 DOI: 10.3390/ijerph18063274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 03/08/2021] [Accepted: 03/17/2021] [Indexed: 11/19/2022]
Abstract
In a study to evaluate beach play activities, 120 children were videotaped to observe and quantify factors that could influence their exposure to contaminants in the beach environment. Children aged 1 to 6 years were followed by researchers with video cameras at beaches (two in Miami, Florida and two in Galveston, Texas) for approximately one hour each. Factors evaluated included time spent in various beach locations, various activities engaged in, and various surfaces contacted (including contacts by hand and mouth). Activities recorded in the videos were transcribed to text files to allow for quantitative analyses. Across all sexes, age groups, and beaches, Wading was the most common activity and Seawater was the most common location where children played. The left hand was found to not be in contact with objects most of the time, while the right hand, considered the most dominant hand in most cases, contacted Plastic-Toys the most. Although activity patterns collection through videotaping and videotranslation can be labor-intensive, once collected, they can be widely useful for estimates of exposures to all contaminants in the beach environment (e.g., microorganisms and chemicals) as well as UV exposure, with considerations for whether the contaminants are found in water, sand or both. These activity patterns were collected to potentially look at exposures following the Deepwater Horizon 2010 Spill.
Collapse
Affiliation(s)
- Alesia Ferguson
- Department of Built Environment, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA; (A.D.); (F.A.); (E.E.); (M.L.); (E.O.-G.)
- Correspondence:
| | - Ashok Dwivedi
- Department of Built Environment, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA; (A.D.); (F.A.); (E.E.); (M.L.); (E.O.-G.)
| | - Foluke Adelabu
- Department of Built Environment, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA; (A.D.); (F.A.); (E.E.); (M.L.); (E.O.-G.)
| | - Esther Ehindero
- Department of Built Environment, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA; (A.D.); (F.A.); (E.E.); (M.L.); (E.O.-G.)
| | - Mehdi Lamssali
- Department of Built Environment, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA; (A.D.); (F.A.); (E.E.); (M.L.); (E.O.-G.)
| | - Emmanuel Obeng-Gyasi
- Department of Built Environment, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA; (A.D.); (F.A.); (E.E.); (M.L.); (E.O.-G.)
| | - Kristina Mena
- Department of Epidemiology, Human Genetics and Evironmental Sciences, University of Texas Houston School of Public Health, Houston, TX 77030, USA;
| | - Helena Solo-Gabriele
- Department of Civil Architectural and Environmental Engineering, University of Miami, Coral Gables, FL 33124, USA;
| |
Collapse
|
11
|
Ferguson A, Rattler K, Perone H, Dwivedi AK, Obeng-Gyasi E, Mena KD, Solo-Gabriele H. Soil-skin adherence measures from hand press trials in a Gulf study of exposures. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2021; 31:158-169. [PMID: 32994540 DOI: 10.1038/s41370-020-00269-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 08/13/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Marine oil spills and the resulting environmental contamination is common along coastal areas; however, information is lacking about the safety of impacted beaches for public use, especially for the most vulnerable population: children. One route of exposure for children at oil impacted beaches is through contact with sands. The purpose of this study was to evaluate beach sand skin adherence for children under the age of seven. Each of 122 children participated in a hand press trial conducted at one of four different U.S. beaches (two in Miami, FL, and two in Galveston, TX USA). During the hand press trials, hand conditions of the children were randomized (dry, wet, or with sunscreen), and soil adherence (mass of sand per palmar surface area of the hand) and the maximum pressure applied (force applied per area of hand) was measured and calculated. Each child was instructed to press their hands on a soil laden tray for 5 s and pressure of contact was measured using a scale. Results (n = 98) showed that the average soil adherence for both palmar hands across the four beaches ranged from 0.200 to 234 mg/cm2 with an average of 35.7 mg/cm2, with boys (40.4 mg/cm2) showing slightly higher means than girls (31.7 mg/cm2), but these differences were not significant even after adjusting for age. Among the three conditions evaluated, the highest loading was measured for children with wet hands (mean 65.3 mg/cm2), followed by dry hands (mean 24.5 mg/cm2). Sunscreen hands (mean 23.2 mg/cm2) had the lowest loadings. The pressure of contact ranged from 0.180 to 1.69 psi and varied by age groups and by height and weight, where pressure of contact did not have a significant influence on soil adherence. The average adhered sand grain size and average ambient sand grain size both had a statistically significant impact on hand soil adherence. Overall results from this study can be utilized in exposure and risk assessment models to evaluate the possible health impacts from contaminants found in beach sands.
Collapse
Affiliation(s)
- Alesia Ferguson
- Department of Built Environment, North Carolina A&T, Greensboro, NC, 27411, USA.
| | - Kyra Rattler
- Psychology Department, University of Arkansas at Pine Bluff, Pine Bluff, AR, USA
| | - Hanna Perone
- University of Texas-Houston School of Public Health, Houston, TX, 77030, USA
- Department of Civil, Architectural, and Environmental Engineering, University of Miami, Coral Gables, FL, 33146, USA
| | - Ashok Kumar Dwivedi
- Department of Built Environment, North Carolina A&T, Greensboro, NC, 27411, USA
| | | | - Kristina D Mena
- University of Texas-Houston School of Public Health, Houston, TX, 77030, USA
| | - Helena Solo-Gabriele
- Department of Civil, Architectural, and Environmental Engineering, University of Miami, Coral Gables, FL, 33146, USA
| |
Collapse
|
12
|
Perone H, Rattler K, Ferguson AC, Mena KD, Solo-Gabriele HM. Review of methods to determine hand surface area of children less than six years old: a case study. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:209-219. [PMID: 32816162 DOI: 10.1007/s10653-020-00699-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
Various methods exist to determine the surface area of hands. The consistency of these methods is essential given that risk assessments utilize hand surface area (HSA) to quantify exposure to environmental contaminants. HSA is also utilized in the clinical setting to estimate size of burns, and to determine specific treatments and medication dosages. A reliable method of surface area measurement is important to guide these decisions, especially in children who are vulnerable to environmental contaminants and medication side effects. Despite this, fewer HSA-determining studies have been performed for children compared to adults. In this study, 122 children completed hand tracings, and the tracings were digitized using an ImageJ program to determine HSA. Six previously published methods of determining HSA were utilized based on the child's height, weight, and length and width of hand. Children were analyzed by age group including 0-2, 3-4, and 5-6 years. The HSA measurements determined by five of the six methods were statistically different from HSA determined using direct hand tracings/Image J methodology (p < 0.001). The single remaining study that did not differ significantly from the hand tracing method provided a uniform hand to total body surface area (TBSA) ratio for children of all ages. Based on these results, we propose a novel age-group-specific ratio utilizing the HSA results from hand tracings and TBSA calculations. The percentages of TBSA that reflect HSA for children aged 0-2, 3-4 and 5-6 years were 0.91%, 0.90% and 0.87%, respectively. These percentages should be considered for use in risk assessments and the clinical setting to guide treatment and prognosis.
Collapse
Affiliation(s)
- Hanna Perone
- Department of Civil, Architectural, and Environmental Engineering, University of Miami, Coral Gables, FL, USA
| | - Kyra Rattler
- University of Arkansas At Pine Bluff, Pine Bluff, AR, USA
| | - Alesia C Ferguson
- Department of Build Environment, North Carolina Agricultural and Technical State University, Greensboro, NC, USA
| | | | - Helena M Solo-Gabriele
- Department of Civil, Architectural, and Environmental Engineering, University of Miami, Coral Gables, FL, USA.
| |
Collapse
|
13
|
Altomare T, Tarwater PM, Ferguson AC, Solo-Gabriele HM, Mena KD. Estimating Health Risks to Children Associated with Recreational Play on Oil Spill-Contaminated Beaches. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 18:E126. [PMID: 33375407 PMCID: PMC7794795 DOI: 10.3390/ijerph18010126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 11/30/2022]
Abstract
The human health impact from exposure to contaminated shorelines following an oil spill event has been investigated to some extent. However, the health risks to children have largely been characterized through the use of surveys and extrapolation from adult health outcomes. There is limited information on children's behaviors during beach play requiring assumptions made based on observations from play activities in home settings. The Beach Exposure and Child Health Study (BEACHES) quantified specific beach activities that can be used to inform human health risk assessments of children playing on beaches impacted by oil spills. The results of this study characterize children's risk of cancer from exposure to oil spill chemicals by incorporating exposure-related information collected from the BEACHES study and by assuming oral, dermal, and inhalation exposure routes. Point risk estimates are compared with a previous, similar study that applied default exposure parameter values obtained from the published literature. The point risk estimates informed by BEACHES data are one order of magnitude lower compared with the previous risk assessment, with dermal exposures the overall risk driver in both. Additional Monte Carlo simulations evaluating the BEACHES data provide ranges of health risks with the highest estimates associated with dermal and oral exposure routes.
Collapse
Affiliation(s)
- Tanu Altomare
- Department of Epidemiology, Human Genetics & Environmental Sciences, UTHealth Houston School of Public Health, Houston, TX 77030, USA;
| | - Patrick M. Tarwater
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21202, USA;
| | - Alesia C. Ferguson
- Built Environment Department, North Carolina A&T State University, Greensboro, NC 27411, USA;
| | - Helena M. Solo-Gabriele
- Department of Civil, Architectural, and Environmental Engineering, University of Miami, Coral Gables, FL 33146, USA;
| | - Kristina D. Mena
- Department of Epidemiology, Human Genetics & Environmental Sciences, UTHealth Houston School of Public Health, Houston, TX 77030, USA;
| |
Collapse
|
14
|
Ferguson A, Kumar Dwivedi A, Ehindero E, Adelabu F, Rattler K, Perone HR, Montas L, Mena K, Solo-Gabriele H. Soil, Hand, and Body Adherence Measures across Four Beach Areas: Potential Influence on Exposure to Oil Spill Chemicals. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E4196. [PMID: 32545527 PMCID: PMC7345354 DOI: 10.3390/ijerph17124196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 01/26/2023]
Abstract
Skin adherence (SA) of soil affects exposure from soil contaminants through dermal routes via loading on the skin and through ingestion routes through hand to mouth activities. The objectives of this study were to evaluate the relationships between adherence versus child-specific and environmental factors. Two sets of soil-to-skin adherence were evaluated. The first was based on loading on hands following hand presses (Hand SA). The second was based on body rinses following one hour of play activities on the beach (Body SA). Results for 98-119 children conducted at four beach sites show that mean Hand SA was 35.7 mg/cm2 (std. dev. 41.8 mg/cm2), while Body SA based on full coverage was 6.8 mg/cm2 (std. dev. 4.8 mg/cm2). Statistically significant differences in Body SA were observed between male (8.1 mg/cm2) and female (5.8 mg/cm2) children (p < 0.05). No significant difference by sex was found for Hand SA. Other statistically different observations were that Hand SA (p < 0.05), but not Body SA, differed across the four beaches (p < 0.05). For Hand SA, this difference was associated soil size variability across the beaches. Hand and Body SA values measured during this study are recommended for use in risk assessments that evaluate beach exposures to oil spill chemicals for young children.
Collapse
Affiliation(s)
- Alesia Ferguson
- Department of Built Environment, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA; (A.K.D.); (E.E.); (F.A.)
| | - Ashok Kumar Dwivedi
- Department of Built Environment, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA; (A.K.D.); (E.E.); (F.A.)
| | - Esther Ehindero
- Department of Built Environment, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA; (A.K.D.); (E.E.); (F.A.)
| | - Foluke Adelabu
- Department of Built Environment, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA; (A.K.D.); (E.E.); (F.A.)
| | - Kyra Rattler
- School of Social Work, University of Arkansas Little Rock, Little Rock, AR 72204, USA;
| | - Hanna Rose Perone
- Department of Civil, Architectural and Environmental Engineering, University of Miami, Coral Gables, FL 33146, USA; (H.R.P.); (L.M.); (H.S.-G.)
| | - Larissa Montas
- Department of Civil, Architectural and Environmental Engineering, University of Miami, Coral Gables, FL 33146, USA; (H.R.P.); (L.M.); (H.S.-G.)
| | - Kristina Mena
- School of Public Health, University of Texas-Houston, El Paso, TX 79905, USA;
| | - Helena Solo-Gabriele
- Department of Civil, Architectural and Environmental Engineering, University of Miami, Coral Gables, FL 33146, USA; (H.R.P.); (L.M.); (H.S.-G.)
| |
Collapse
|