1
|
Amiri S, Li YC, Buchwald D, Pandey G. Machine learning-driven identification of air toxic combinations associated with asthma symptoms among elementary school children in Spokane, Washington, USA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171102. [PMID: 38387571 PMCID: PMC10939716 DOI: 10.1016/j.scitotenv.2024.171102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 02/24/2024]
Abstract
Air toxics are atmospheric pollutants with hazardous effects on health and the environment. Although methodological constraints have limited the number of air toxics assessed for associations with health and disease, advances in machine learning (ML) enable the assessment of a much larger set of environmental exposures. We used ML methods to conduct a retrospective study to identify combinations of 109 air toxics associated with asthma symptoms among 269 elementary school students in Spokane, Washington. Data on the frequency of asthma symptoms for these children were obtained from Spokane Public Schools. Their exposure to air toxics was estimated by using the Environmental Protection Agency's Air Toxics Screening Assessment and National Air Toxics Assessment. We defined three exposure periods: the most recent year (2019), the last three years (2017-2019), and the last five years (2014-2019). We analyzed the data using the ML-based Data-driven ExposurE Profile (DEEP) extraction method. DEEP identified 25 air toxic combinations associated with asthma symptoms in at least one exposure period. Three combinations (1,1,1-trichloroethane, 2-nitropropane, and 2,4,6-trichlorophenol) were significantly associated with asthma symptoms in all three exposure periods. Four air toxics (1,1,1-trichloroethane, 1,1,2,2-tetrachloroethane, BIS (2-ethylhexyl) phthalate (DEHP), and 2,4-dinitrophenol) were associated only in combination with other toxics, and would not have been identified by traditional statistical methods. The application of DEEP also identified a vulnerable subpopulation of children who were exposed to 13 of the 25 significant combinations in at least one exposure period. On average, these children experienced the largest number of asthma symptoms in our sample. By providing evidence on air toxic combinations associated with childhood asthma, our findings may contribute to the regulation of these toxics to improve children's respiratory health.
Collapse
Affiliation(s)
- Solmaz Amiri
- Institute for Research and Education to Advance Community Health (IREACH), Elson S. Floyd College of Medicine, Washington State University, Seattle, WA, USA.
| | - Yan-Chak Li
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dedra Buchwald
- Institute for Research and Education to Advance Community Health (IREACH), Elson S. Floyd College of Medicine, Washington State University, Seattle, WA, USA
| | - Gaurav Pandey
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
2
|
Liang C, Feng B, Wang S, Zhao B, Xie J, Huang G, Zhu L, Hao J. Differentiated emissions and secondary organic aerosol formation potential of organic vapor from industrial coatings in China. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133668. [PMID: 38309167 DOI: 10.1016/j.jhazmat.2024.133668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/29/2023] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
Organic vapors emitted during solvent use are important precursors of secondary organic aerosols (SOAs). Industrial coatings are a major class of solvents that emit volatile and intermediate volatile organic compounds (VOCs and IVOCs, respectively). However, the emission factors and source profiles of VOCs and IVOCs from industrial coatings remain unclear. In this study, representative solvent- and water-based industrial paints were evaporated, sampled and tested using online and offline instruments. The VOC and IVOC emission factors for solvent-based paints are 129-254 and 25-80 g/kg, while for water-based paint are 13 and 32 g/kg, respectively. In solvent-based paints, the VOCs are mainly aromatics, while the IVOCs are composed of long-chain alkanes, alkenes, carbonyls and halocarbons. The VOCs and IVOCs in water-based paint are mostly oxygenates, such as ethanol, acetone, ethylene glycol, and Texanol. During the evaporation of solvent-based paints, the fraction of IVOCs increases along with those of alkenes and aldehydes, while the proportion of aromatics decreases. For water-based paint, the fraction of IVOCs slightly decreases with evaporation. The SOA formation potentials of solvent-based paints are 8.6-28.0 g/kg, much higher than that of water-based paint (0.65 g/kg); thus, substituting solvent-based paints with water-based paints may significantly decrease SOA formation.
Collapse
Affiliation(s)
- Chengrui Liang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Boyang Feng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Shuxiao Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China.
| | - Bin Zhao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Jinzi Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Guanghan Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Liang Zhu
- TOFWERK China, No. 320, Pubin Road, Pukou, Nanjing 211800, China
| | - Jiming Hao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| |
Collapse
|
3
|
Li Z, Lu J, Ruan X, Wu Y, Zhao J, Jiao X, Sun J, Sun K. Exposure to volatile organic compounds induces cardiovascular toxicity that may involve DNA methylation. Toxicology 2024; 501:153705. [PMID: 38070821 DOI: 10.1016/j.tox.2023.153705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 01/08/2024]
Abstract
Volatile organic compounds (VOCs) are common air pollutants and water contaminants. We previously found maternal exposure to VOCs was associated with offspring congenital heart disease (CHD). However, little information is available about the effects of VOCs on cardiovascular development at embryonic stage and the underlying mechanism remains unclear. In this study, we aimed to investigate the effects of a mixture of six VOCs on cardiovascular development in zebrafish embryos. Embryos were exposed to different concentrations of VOCs mixture (32 mg/L, 64 mg/L and 128 mg/L) for 96 h, cardiovascular abnormalities including elongated heart shape, increased distance between sinus venosus and bulbus arteriosus, slowed circulation and altered heart rate were observed in a dose- and time-dependent manner. Meanwhile, VOCs exposure increased global DNA methylation levels in embryos. Analysis identified hundreds of differentially methylated sites and the enrichment of differentially methylated sites on cardiovascular development. Two differentially methylated-associated genes involved in MAPK pathway, hgfa and ntrk1, were identified to be the potential genes mediating the effects of VOCs. By enzyme-linked immunosorbent assay, altered human serum hgf and ntrk1 levels were detected in abnormal pregnancies exposed to higher VOCs levels with fetal CHD. For the first time, our study revealed exposure to VOCs induced severe cardiovascular abnormalities in zebrafish embryos. The toxicity might result from alterations in DNA methylation and corresponding expression levels of genes involved in MAPK pathway. Our study provides important information for the risk of VOCs exposure on embryonic cardiovascular development.
Collapse
Affiliation(s)
- Zhuoyan Li
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jieru Lu
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Children's Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xuehua Ruan
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yurong Wu
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianyuan Zhao
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xianting Jiao
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jing Sun
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Kun Sun
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Grizzi F, Bax C, Hegazi MAAA, Lotesoriere BJ, Zanoni M, Vota P, Hurle RF, Buffi NM, Lazzeri M, Tidu L, Capelli L, Taverna G. Early Detection of Prostate Cancer: The Role of Scent. CHEMOSENSORS 2023; 11:356. [DOI: 10.3390/chemosensors11070356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Prostate cancer (PCa) represents the cause of the second highest number of cancer-related deaths worldwide, and its clinical presentation can range from slow-growing to rapidly spreading metastatic disease. As the characteristics of most cases of PCa remains incompletely understood, it is crucial to identify new biomarkers that can aid in early detection. Despite the prostate-specific antigen serum (PSA) levels, prostate biopsy, and imaging representing the actual gold-standard for diagnosing PCa, analyzing volatile organic compounds (VOCs) has emerged as a promising new frontier. We and other authors have reported that highly trained dogs can recognize specific VOCs associated with PCa with high accuracy. However, using dogs in clinical practice has several limitations. To exploit the potential of VOCs, an electronic nose (eNose) that mimics the dog olfactory system and can potentially be used in clinical practice was designed. To explore the eNose as an alternative to dogs in diagnosing PCa, we conducted a systematic literature review and meta-analysis of available studies. PRISMA guidelines were used for the identification, screening, eligibility, and selection process. We included six studies that employed trained dogs and found that the pooled diagnostic sensitivity was 0.87 (95% CI 0.86–0.89; I2, 98.6%), the diagnostic specificity was 0.83 (95% CI 0.80–0.85; I2, 98.1%), and the area under the summary receiver operating characteristic curve (sROC) was 0.64 (standard error, 0.25). We also analyzed five studies that used an eNose to diagnose PCa and found that the pooled diagnostic sensitivity was 0.84 (95% CI, 0.80–0.88; I2, 57.1%), the diagnostic specificity was 0.88 (95% CI, 0.84–0.91; I2, 66%), and the area under the sROC was 0.93 (standard error, 0.03). These pooled results suggest that while highly trained dogs have the potentiality to diagnose PCa, the ability is primarily related to olfactory physiology and training methodology. The adoption of advanced analytical techniques, such as eNose, poses a significant challenge in the field of clinical practice due to their growing effectiveness. Nevertheless, the presence of limitations and the requirement for meticulous study design continue to present challenges when employing eNoses for the diagnosis of PCa.
Collapse
Affiliation(s)
- Fabio Grizzi
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy
| | - Carmen Bax
- Politecnico di Milano, Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, 20133 Milan, Italy
| | - Mohamed A. A. A. Hegazi
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Beatrice Julia Lotesoriere
- Politecnico di Milano, Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, 20133 Milan, Italy
| | - Matteo Zanoni
- Department of Urology, Humanitas Mater Domini, 21100 Castellanza, Italy
| | - Paolo Vota
- Department of Urology, Humanitas Mater Domini, 21100 Castellanza, Italy
| | - Rodolfo Fausto Hurle
- Department of Urology, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Nicolò Maria Buffi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy
- Department of Urology, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Massimo Lazzeri
- Department of Urology, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Lorenzo Tidu
- Italian Ministry of Defenses, “Vittorio Veneto” Division, 50136 Firenze, Italy
| | - Laura Capelli
- Politecnico di Milano, Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, 20133 Milan, Italy
| | - Gianluigi Taverna
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy
- Department of Urology, Humanitas Mater Domini, 21100 Castellanza, Italy
| |
Collapse
|
5
|
Väisänen A, Alonen L, Ylönen S, Hyttinen M. Organic compound and particle emissions of additive manufacturing with photopolymer resins and chemical outgassing of manufactured resin products. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:198-216. [PMID: 34763622 DOI: 10.1080/15287394.2021.1998814] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Photopolymer resins are applied at an increasing rate in additive manufacturing (AM) industry as vat photopolymerization (VP) and material jetting (MJ) methods gain more popularity. The aim of this study was to measure volatile organic compound (VOC), carbonyl compound, ultrafine particle (UFP), and particulate matter (PM10) air concentrations emitted in 3D printer operations. Individual chemicals were identified when multiple photopolymer resin feedstocks were used in various VP and MJ printers. The size distributions of UFPs, and indoor air parameters were also monitored. Finally, the VOC outgassing of the cured resin materials was determined over 84 days. The data demonstrated that 3D printer operators were exposed to low concentrations of airborne exposure agents as follows: average concentrations of VOCs were between 41 and 87 µg/m3, UFP number levels ranged between 0.19 and 3.62 × 103 number/cm3; however, no impact was detected on air parameters or PM10 concentrations. A majority of the UFPs existed in the 10-45 nm size range. The identified compounds included hazardous species included sensitizing acrylates and carcinogenic formaldehyde. The outgassed products included similar compounds that were encountered during the AM processes, and post-processing solvents. Products heated to 37°C emitted 1.4‒2.9-fold more VOCs than at room temperature. Total emissions were reduced by 84‒96% after 28 days roughly from 3000-14000 to 100-1000 µg/m2/hr. In conclusion, resin printer operators are exposed to low concentrations of hazardous emissions, which might result in adverse health outcomes during prolonged exposure. Manufactured resin products are suggested to be stored for 4 weeks after their production to reduce potential consumer VOC hazards.
Collapse
Affiliation(s)
- Antti Väisänen
- Faculty of Science and Forestry, Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Lauri Alonen
- School of Engineering and Technology, Savonia University of Applied Sciences, Kuopio, Finland
| | - Sampsa Ylönen
- School of Engineering and Technology, Savonia University of Applied Sciences, Kuopio, Finland
| | - Marko Hyttinen
- Faculty of Science and Forestry, Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
6
|
Gilbey SE, Reid CM, Huxley RR, Soares MJ, Zhao Y, Rumchev KB. The Association between Exposure to Residential Indoor Volatile Organic Compounds and Measures of Central Arterial Stiffness in Healthy Middle-Aged Men and Women. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19020981. [PMID: 35055806 PMCID: PMC8776238 DOI: 10.3390/ijerph19020981] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 11/16/2022]
Abstract
It is well reported that individuals spend up to 90% of their daily time indoors, with between 60% to 90% of this time being spent in the home. Using a cross-sectional study design in a population of 111 healthy adults (mean age: 52.3 ± 9.9 years; 65% women), we investigated the association between exposure to total volatile organic compounds (VOCs) in indoor residential environments and measures of central arterial stiffness, known to be related to cardiovascular risk. Indoor VOC concentrations were measured along with ambulatory measures of pulse pressure (cPP), augmentation index (cAIx) and cAIx normalized for heart rate (cAIx75), over a continuous 24-h period. Pulse wave velocity (cfPWV) was determined during clinical assessment. Multiple regression analysis was performed to examine the relationship between measures of arterial stiffness and VOCs after adjusting for covariates. Higher 24-h, daytime and night-time cAIx was associated with an interquartile range increase in VOCs. Similar effects were shown with cAIx75. No significant effects were observed between exposure to VOCs and cPP or cfPWV. After stratifying for sex and age (≤50 years; >50 years), effect estimates were observed to be greater and significant for 24-h and daytime cAIx in men, when compared to women. No significant effect differences were seen between age groups with any measure of arterial stiffness. In this study, we demonstrated that residential indoor VOCs exposure was adversely associated with some measures of central arterial stiffness, and effects were different between men and women. Although mechanistic pathways remain unclear, these findings provide a possible link between domestic VOCs exposure and unfavourable impacts on individual-level cardiovascular disease risk.
Collapse
Affiliation(s)
- Suzanne E. Gilbey
- School of Population Health, Curtin University, Perth 6148, Australia; (C.M.R.); (M.J.S.); (Y.Z.); (K.B.R.)
- Correspondence:
| | - Christopher M. Reid
- School of Population Health, Curtin University, Perth 6148, Australia; (C.M.R.); (M.J.S.); (Y.Z.); (K.B.R.)
- School of Public Health and Preventative Medicine, Monash University, Melbourne 3800, Australia
| | - Rachel R. Huxley
- Faculty of Health, Deakin University, 221 Burwood Highway, Burwood 3125, Australia;
| | - Mario J. Soares
- School of Population Health, Curtin University, Perth 6148, Australia; (C.M.R.); (M.J.S.); (Y.Z.); (K.B.R.)
| | - Yun Zhao
- School of Population Health, Curtin University, Perth 6148, Australia; (C.M.R.); (M.J.S.); (Y.Z.); (K.B.R.)
| | - Krassi B. Rumchev
- School of Population Health, Curtin University, Perth 6148, Australia; (C.M.R.); (M.J.S.); (Y.Z.); (K.B.R.)
| |
Collapse
|
7
|
Li YC, Hsu HHL, Chun Y, Chiu PH, Arditi Z, Claudio L, Pandey G, Bunyavanich S. Machine learning-driven identification of early-life air toxic combinations associated with childhood asthma outcomes. J Clin Invest 2021; 131:152088. [PMID: 34609967 DOI: 10.1172/jci152088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/23/2021] [Indexed: 01/19/2023] Open
Abstract
Air pollution is a well-known contributor to asthma. Air toxics are hazardous air pollutants that cause or may cause serious health effects. Although individual air toxics have been associated with asthma, only a limited number of studies have specifically examined combinations of air toxics associated with the disease. We geocoded air toxic levels from the US National Air Toxics Assessment (NATA) to residential locations for participants of our AiRway in Asthma (ARIA) study. We then applied Data-driven ExposurE Profile extraction (DEEP), a machine learning-based method, to discover combinations of early-life air toxics associated with current use of daily asthma controller medication, lifetime emergency department visit for asthma, and lifetime overnight hospitalization for asthma. We discovered 20 multi-air toxic combinations and 18 single air toxics associated with at least 1 outcome. The multi-air toxic combinations included those containing acrylic acid, ethylidene dichloride, and hydroquinone, and they were significantly associated with asthma outcomes. Several air toxic members of the combinations would not have been identified by single air toxic analyses, supporting the use of machine learning-based methods designed to detect combinatorial effects. Our findings provide knowledge about air toxic combinations associated with childhood asthma.
Collapse
Affiliation(s)
| | - Hsiao-Hsien Leon Hsu
- Department of Environmental Medicine and Public Health.,Institute for Exposomic Research, and
| | | | | | - Zoe Arditi
- Department of Genetics and Genomic Sciences.,Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Luz Claudio
- Department of Environmental Medicine and Public Health.,Institute for Exposomic Research, and
| | - Gaurav Pandey
- Department of Genetics and Genomic Sciences.,Institute for Exposomic Research, and
| | - Supinda Bunyavanich
- Department of Genetics and Genomic Sciences.,Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
8
|
Phytoremediation: The Sustainable Strategy for Improving Indoor and Outdoor Air Quality. ENVIRONMENTS 2021. [DOI: 10.3390/environments8110118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Most of the world’s population is exposed to highly polluted air conditions exceeding the WHO limits, causing various human diseases that lead towards increased morbidity as well as mortality. Expenditures on air purification and costs spent on the related health issues are rapidly increasing. To overcome this burden, plants are potential candidates to remove pollutants through diverse biological mechanisms involving accumulation, immobilization, volatilization, and degradation. This eco-friendly, cost-effective, and non-invasive method is considered as a complementary or alternative tool compared to engineering-based remediation techniques. Various plant species remove indoor and outdoor air pollutants, depending on their morphology, growth condition, and microbial communities. Hence, appropriate plant selection with optimized growth conditions can enhance the remediation capacity significantly. Furthermore, suitable supplementary treatments, or finding the best combination junction with other methods, can optimize the phytoremediation process.
Collapse
|
9
|
Chen D, Liu R, Lin Q, Ma S, Li G, Yu Y, Zhang C, An T. Volatile organic compounds in an e-waste dismantling region: From spatial-seasonal variation to human health impact. CHEMOSPHERE 2021; 275:130022. [PMID: 33647682 DOI: 10.1016/j.chemosphere.2021.130022] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
The dismantling of electrical and electronic waste (e-waste) can release various Volatile organic compounds (VOCs), impacting the surrounding ambient environment. We investigated the spatio-temporal characteristics and health risks of the ambient VOCs emitted in a typical e-waste dismantling region by conducting multi-site sampling campaigns in four seasons. The pollution of benzene, toluene, ethylbenzene, and xylenes (BTEX) in the e-waste dismantling park has relation to e-waste dismantling by seasonal trend analysis. The highest concentrations of most VOCs occurred in winter and autumn, while the lowest levels were observed in summer and spring. The spatial distribution map revealed the e-waste dismantling park to be a hotspot of BTEX, 1,2-dichloropropane (1,2-DCP), and 1,2-dichloroethane (1,2-DCA), while two major residential areas were also the hotspots of BTEX. The e-waste emission source contributed 20.14% to the total VOCs in the e-waste dismantling park, while it was absent in the major residential and rural areas. The cancer risk assessment showed that six VOCs exceeded 1.0 × 10-6 in the e-waste dismantling park, while only three or four compounds exceeded this risk in other areas. The noncancer risks of all compounds were below the safety threshold. This study supplements the existing knowledge on VOC pollution from e-waste dismantling and expands the research scope of chemical pollution caused by e-waste.
Collapse
Affiliation(s)
- Daijin Chen
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Ranran Liu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Qinhao Lin
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Shengtao Ma
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Chaosheng Zhang
- GIS Centre, Ryan Institute and School of Geography and Archaeology, National University of Ireland, Galway, Ireland
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|