1
|
Mzyece CC, Glendell M, Gagkas Z, Quilliam RS, Jones I, Pagaling E, Akoumianaki I, Newman C, Oliver DM. Eliciting expert judgements to underpin our understanding of faecal indicator organism loss from septic tank systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171074. [PMID: 38378059 DOI: 10.1016/j.scitotenv.2024.171074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/05/2024] [Accepted: 02/16/2024] [Indexed: 02/22/2024]
Abstract
Septic tank systems (STS) in rural catchments represent a potential source of microbial pollution to watercourses; however, data concerning the risk of faecal indicator organism (FIO) export from STS to surface waters are scarce. In the absence of empirical data, elicitation of expert judgements can provide an alternative approach to aid understanding of FIO pollution risk from STS. Our study employed a structured elicitation process using the Sheffield Elicitation Framework to obtain expert judgements on the proportion of FIOs likely to be delivered from STS to watercourses, based on 36 scenarios combining: (i) septic tank effluent movement risk, driven by soil hydro-morphological characteristics; (ii) distance of septic tank to watercourse; and (iii) degree of slope. Experts used the tertile method to elicit a range of values representing their beliefs of the proportion of FIOs likely to be delivered to a watercourse for each scenario. The experts judged that 93 % of FIOs would likely be delivered from an STS to a watercourse under the highest risk scenario that combined (i) very high STS effluent movement risk, (ii) STS distance to watercourse <10 m, and (iii) a location on a steep slope with gradient >25 %. Under the lowest risk scenario, the proportion of FIOs reaching a watercourse would likely reduce to 5 %. Expert confidence was high for scenarios that represented extremes of risk, while uncertainty increased for scenarios depicting intermediate risk conditions. The behavioural aggregation process employed to obtain a consensus among the experts proved to be useful for highlighting both areas of strong consensus and high uncertainty. The latter therefore represent priorities for future empirical research to further improve our understanding of potential pollution risk from septic tanks and in turn enable better assessments of potential threats to water quality in rural catchments throughout the world where decentralised wastewater systems are common.
Collapse
Affiliation(s)
- Chisha Chongo Mzyece
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, United Kingdom of Great Britain and Northern Ireland.
| | - Miriam Glendell
- Environmental and Biochemical Sciences Group, The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, Scotland, United Kingdom of Great Britain and Northern Ireland
| | - Zisis Gagkas
- Environmental and Biochemical Sciences Group, The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, Scotland, United Kingdom of Great Britain and Northern Ireland
| | - Richard S Quilliam
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, United Kingdom of Great Britain and Northern Ireland
| | - Ian Jones
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, United Kingdom of Great Britain and Northern Ireland
| | - Eulyn Pagaling
- Environmental and Biochemical Sciences Group, The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, Scotland, United Kingdom of Great Britain and Northern Ireland
| | - Ioanna Akoumianaki
- Environmental and Biochemical Sciences Group, The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, Scotland, United Kingdom of Great Britain and Northern Ireland
| | - Claire Newman
- Environmental and Biochemical Sciences Group, The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, Scotland, United Kingdom of Great Britain and Northern Ireland
| | - David M Oliver
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
2
|
Metcalf R, White HL, Ormsby MJ, Oliver DM, Quilliam RS. From wastewater discharge to the beach: Survival of human pathogens bound to microplastics during transfer through the freshwater-marine continuum. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120955. [PMID: 36581243 DOI: 10.1016/j.envpol.2022.120955] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/05/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Large quantities of microplastics are regularly discharged from wastewater treatment plants (WWTPs) into the aquatic environment. Once released, these plastics can rapidly become colonised by microbial biofilm, forming distinct plastisphere communities which may include potential pathogens. We hypothesised that the protective environment afforded by the plastisphere would facilitate the survival of potential pathogens during transitions between downstream environmental matrices and thus increase persistence and the potential for environmental dissemination of pathogens. The survival of Escherichia coli, Enterococcus faecalis and Pseudomonas aeruginosa colonising polyethylene or glass particles has been quantified in mesocosm incubation experiments designed to simulate, (1) the direct release of microplastics from WWTPs into freshwater and seawater environments; and (2) the movement of microplastics downstream following discharge from the WWTP through the river-estuary-marine-beach continuum. Culturable E. coli, E. faecalis and P. aeruginosa were successfully able to survive and persist on particles whether they remained in one environmental matrix or transitioned between different environmental matrices. All three bacteria were still detectable on both microplastic and glass particles after 25 days, with higher concentrations on microplastic compared to glass particles; however, there were no differences in bacterial die-off rates between the two materials. This potential for environmental survival of pathogens in the plastisphere could facilitate their transition into places where human exposure is greater (e.g., bathing waters and beach environments). Therefore, risks associated with pathogen-microplastic co-pollutants in the environment, emphasises the urgency for updated regulations on wastewater discharge and the management of microplastic generation and release.
Collapse
Affiliation(s)
- Rebecca Metcalf
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK.
| | - Hannah L White
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Michael J Ormsby
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - David M Oliver
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Richard S Quilliam
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| |
Collapse
|
3
|
Afolabi EO, Quilliam RS, Oliver DM. Time since faecal deposition influences mobilisation of culturable E. coli and intestinal enterococci from deer, goose and dairy cow faeces. PLoS One 2022; 17:e0274138. [PMID: 36054151 PMCID: PMC9439212 DOI: 10.1371/journal.pone.0274138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/25/2022] [Indexed: 11/18/2022] Open
Abstract
Mobilisation is a term used to describe the supply of a pollutant from its environmental source, e.g., soil or faeces, into a hydrological transfer pathway. The overarching aim of this study was to determine, using a laboratory-based approach, whether faecal indicator bacteria (FIB) are hydrologically mobilised in different quantities from a typical agricultural, wildlife and wildfowl source, namely dairy cattle, red deer and greylag goose faeces. The mobilisation of FIB from fresh and ageing faeces under two contrasting temperatures was determined, with significant differences in the concentrations of both E. coli and intestinal enterococci lost from all faecal sources. FIB mobilisation from these faecal matrices followed the order of dairy cow > goose > deer (greatest to least, expressed as a proportion of the total FIB present). Significant changes in mobilisation rates from faecal sources over time were also recorded and this was influenced by the temperature at which the faecal material had aged over the course of the 12-day study. Characterising how indicators of waterborne pathogens are mobilised in the environment is of fundamental importance to inform models and risk assessments and develop effective strategies for reducing microbial pollution in catchment drainage waters and associated downstream impacts. Our findings add quantitative evidence to support the understanding of FIB mobilisation potential from three important faecal sources in the environment.
Collapse
Affiliation(s)
- Emmanuel O. Afolabi
- Faculty of Natural Sciences, Biological & Environmental Sciences, University of Stirling, Stirling, United Kingdom
| | - Richard S. Quilliam
- Faculty of Natural Sciences, Biological & Environmental Sciences, University of Stirling, Stirling, United Kingdom
| | - David M. Oliver
- Faculty of Natural Sciences, Biological & Environmental Sciences, University of Stirling, Stirling, United Kingdom
- * E-mail:
| |
Collapse
|
4
|
Sylvestre É, Dorner S, Burnet JB, Smeets P, Medema G, Cantin P, Villion M, Robert C, Ellis D, Servais P, Prévost M. Changes in Escherichia coli to enteric protozoa ratios in rivers: Implications for risk-based assessment of drinking water treatment requirements. WATER RESEARCH 2021; 205:117707. [PMID: 34619609 DOI: 10.1016/j.watres.2021.117707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/11/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Minimum treatment requirements are set in response to established or anticipated levels of enteric pathogens in the source water of drinking water treatment plants (DWTPs). For surface water, contamination can be determined directly by monitoring reference pathogens or indirectly by measuring fecal indicators such as Escherichia coli (E. coli). In the latter case, a quantitative interpretation of E. coli for estimating reference pathogen concentrations could be used to define treatment requirements. This study presents the statistical analysis of paired E. coli and reference protozoa (Cryptosporidium, Giardia) data collected monthly for two years in source water from 27 DWTPs supplied by rivers in Canada. E. coli/Cryptosporidium and E. coli/Giardia ratios in source water were modeled as the ratio of two correlated lognormal variables. To evaluate the potential of E. coli for defining protozoa treatment requirements, risk-based critical mean protozoa concentrations in source water were determined with a reverse quantitative microbial risk assessment (QMRA) model. Model assumptions were selected to be consistent with the World Health Organization (WHO) Guidelines for drinking-water quality. The sensitivity of mean E. coli concentration trigger levels to identify these critical concentrations in source water was then evaluated. Results showed no proportionalities between the log of mean E. coli concentrations and the log of mean protozoa concentrations. E. coli/protozoa ratios at DWTPs supplied by small rivers in agricultural and forested areas were typically 1.0 to 2.0-log lower than at DWTPs supplied by large rivers in urban areas. The seasonal variations analysis revealed that these differences were related to low mean E. coli concentrations during winter in small rivers. To achieve the WHO target of 10-6 disability-adjusted life year (DALY) per person per year, a minimum reduction of 4.0-log of Cryptosporidium would be required for 20 DWTPs, and a minimum reduction of 4.0-log of Giardia would be needed for all DWTPs. A mean E. coli trigger level of 50 CFU 100 mL-1 would be a sensitive threshold to identify critical mean concentrations for Cryptosporidium but not for Giardia. Treatment requirements higher than 3.0-log would be needed at DWTPs with mean E. coli concentrations as low as 30 CFU 100 mL-1 for Cryptosporidium and 3 CFU 100 mL-1 for Giardia. Therefore, an E. coli trigger level would have limited value for defining health-based treatment requirements for protozoa at DWTPs supplied by small rivers in rural areas.
Collapse
Affiliation(s)
- Émile Sylvestre
- NSERC Industrial Chair on Drinking Water, Department of Civil, Geological, and Mining Engineering, Polytechnique Montreal, Montreal, Quebec H3C 3A7, Canada; Canada Research Chair in Source Water Protection, Department of Civil, Geological, and Mining Engineering, Polytechnique Montreal, Montreal, Quebec H3C 3A7, Canada.
| | - Sarah Dorner
- Canada Research Chair in Source Water Protection, Department of Civil, Geological, and Mining Engineering, Polytechnique Montreal, Montreal, Quebec H3C 3A7, Canada
| | - Jean-Baptiste Burnet
- NSERC Industrial Chair on Drinking Water, Department of Civil, Geological, and Mining Engineering, Polytechnique Montreal, Montreal, Quebec H3C 3A7, Canada; Canada Research Chair in Source Water Protection, Department of Civil, Geological, and Mining Engineering, Polytechnique Montreal, Montreal, Quebec H3C 3A7, Canada
| | - Patrick Smeets
- KWR Water Research Institute, Groningenhaven 7, 3433 PE Nieuwegein, The Netherlands
| | - Gertjan Medema
- KWR Water Research Institute, Groningenhaven 7, 3433 PE Nieuwegein, The Netherlands; Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, 2600GA Delft, The Netherlands
| | - Philippe Cantin
- Ministère de l'Environnement et de la Lutte contre les changements climatiques, Québec, Canada
| | - Manuela Villion
- Centre d'expertise en analyse environnementale du Québec, Ministère de l'Environnement et de la Lutte contre les changements climatiques, Québec, Canada
| | - Caroline Robert
- Ministère de l'Environnement et de la Lutte contre les changements climatiques, Québec, Canada
| | - Donald Ellis
- Ministère de l'Environnement et de la Lutte contre les changements climatiques, Québec, Canada
| | - Pierre Servais
- Ecology of Aquatic Systems, Université libre de Bruxelles, Brussels, Belgium
| | - Michèle Prévost
- NSERC Industrial Chair on Drinking Water, Department of Civil, Geological, and Mining Engineering, Polytechnique Montreal, Montreal, Quebec H3C 3A7, Canada
| |
Collapse
|