1
|
Demelash Enyew H, Hailu AB, Mereta ST. The effect of chimney fitted improved stove on kitchen fine particulate matter (PM2.5) concentrations in rural Ethiopia: Evidence from a randomized controlled trial. ENVIRONMENTAL RESEARCH 2024; 250:118488. [PMID: 38387494 DOI: 10.1016/j.envres.2024.118488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND Millions of Ethiopian people cook with biomass fuels using traditional stoves, releasing harmful pollutants and contributing to a significant public health crisis. Improved stoves offer a potential escape route, but their effectiveness needs close scrutiny. This study delves into the impact of chimney-fitted stoves on kitchen PM2.5 concentrations in rural Ethiopian households. METHOD We conducted a randomized controlled trial with 86 households equally divided (1:1 ratio) between intervention and control groups. The 24-h average kitchen PM2.5 concentrations was measured using Particle and Temperature Sensor (PATS+) at baseline and after intervention. All relevant sociodemographic and cooking related characteristics were collected at baseline and dynamic characteristics were updated during air monitoring visits. Three distinct statistical models, including independent sample t-tests, paired sample t-tests and one-way analysis of variance were used to analyze the data using Statistical Package for the Social Sciences (SPSS) software for Windows (v 24.0). RESULT At baseline, the average 24-h kitchen PM2.5 concentrations were 482 μg/m3 (95% CI: 408, 557) for the control and 405 μg/m3 (95% CI: 318, 492) for the intervention groups. Despite remaining elevated at 449 μg/m3 (95% CI: 401, 496) in the control group, PM2.5 concentrations reduced to 104 μg/m3 (95% CI: 90,118) in the intervention group, indicating a statistically significant difference (t = 6.97, p < 0.001). All three statistical analyses delivered remarkably consistent results, estimating a PM2.5 reductions of 74% with the before-and-after approach, 76% when comparing groups, and 74% for difference in difference analysis. Beyond the overall reduction, homes with primary school completed women, larger kitchens, smaller family size, and those specifically baking Injera (the traditional energy-intensive staple food), witnessed even greater drops in PM2.5 levels. CONCLUSION Pregnant women in our study encountered dangerously high PM2.5 exposures in their kitchens. While the intervention achieved a significant PM2.5 reductions, unfortunately remained above the WHO's safe limit, highlighting the need for further interventions.
Collapse
Affiliation(s)
- Habtamu Demelash Enyew
- Debre Tabor University, College of Health Sciences, Department of Public Health, Ethiopia.
| | - Abebe Beyene Hailu
- Jimma University, Institution of Health, Department of Environmental Health Science and Technology, Ethiopia
| | - Seid Tiku Mereta
- Jimma University, Institution of Health, Department of Environmental Health Science and Technology, Ethiopia
| |
Collapse
|
2
|
Enyew HD, Hailu AB, Mereta ST. Effect of a chimney-fitted improved stove on pregnancy outcomes in Northwest Ethiopia: a randomized controlled trial. BMC Pregnancy Childbirth 2024; 24:192. [PMID: 38475748 PMCID: PMC10936082 DOI: 10.1186/s12884-024-06363-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Exposure to household air pollution during pregnancy has been linked to adverse pregnancy outcomes. Improved stove was implemented in Ethiopia to reduce this exposure and related health problems. However, the effects of improved stove interventions on pregnancy outcomes remains uncertain. METHOD Individually randomized stove replacement trial was conducted among 422 households in six low-income rural kebeles of Northwestern Ethiopia. Pregnant women without known health conditions were recruited at ≤ 24 weeks gestation and randomized to an intervention or control group with a 1:1 ratio. A baseline survey was collected and a balance test was done. Two-sided independent samples t-test for continuous outcomes and chi-square for categorical variables were used to compare the effect of the intervention between the groups. Mean differences with 95% CIs were calculated and a p-value of < 0.05 was considered statistically significant. RESULT In this study, the mean birth weight was 3065 g (SD = 453) among the intervention group and not statistically different from 2995 g (SD = 541) of control group. After adjusting for covariates, infants born from intervention group weighed 55 g more [95% CI: - 43 to 170) than infants born from the control group, but the difference was not statistically significant (P = 0.274). The respective percentages for low birth weight were 8% and 10.3% for intervention and control groups respectively (P = 0.346). However, the average gestational age at delivery was higher among improved stove users (38 weeks (SD = 8.2) compared to control groups 36.5 weeks (SD = 9.6) with statistically significant difference at 0.91 weeks (95% CI: 0.52 to 1.30 weeks, p < 0.001). The corresponding difference in risk ratio for preterm birth is 0.94 (95% CI:0.92 to 0.97; p < 0.001). The percentages for maternal complications, stillbirth, and miscarriage in the intervention group were not statistically different from the control group. CONCLUSIONS While the increase in average birth weight among babies born to mothers using improved stoves was not statistically significant, babies had a longer gestational age on average, offering valuable health benefits. However, the study didn't find a significant impact on other pregnancy outcomes like stillbirth, miscarriage, or maternal complications. TRIAL REGISTRATION The study was registered at the Pan African Clinical Trial Registry website under the code PACTR202111534227089, ( https://pactr.samrc.ac.za/ (Identifier). The first trial registration date was (11/11/2021).
Collapse
Affiliation(s)
- Habtamu Demelash Enyew
- College of Health Sciences, Department of Public Health, Debre Tabor University, Debre Tabor, Ethiopia.
- Institution of Health, Department of Environmental Health Science and Technology, Jimma University, Jimma, Ethiopia.
| | - Abebe Beyene Hailu
- Institution of Health, Department of Environmental Health Science and Technology, Jimma University, Jimma, Ethiopia
| | - Seid Tiku Mereta
- Institution of Health, Department of Environmental Health Science and Technology, Jimma University, Jimma, Ethiopia
| |
Collapse
|
3
|
Kearns KA, Naeher LP, McCracken JP, Boyd Barr D, Saikawa E, Hengstermann M, Mollinedo E, Panuwet P, Yakimavets V, Lee GE, Thompson LM. Estimating personal exposures to household air pollution and plastic garbage burning among adolescent girls in Jalapa, Guatemala. CHEMOSPHERE 2024; 348:140705. [PMID: 37981014 PMCID: PMC10714129 DOI: 10.1016/j.chemosphere.2023.140705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/21/2023]
Abstract
Waste collection services are uncommon in rural areas of low-resource countries, causing waste accumulation and subsequent dumping and burning of garbage. Air pollution from household garbage burning, including plastics, has been observed in Jalapa, Guatemala in addition to household air pollution (HAP) from cooking. Adolescent girls often help with these cooking and household tasks, but little is known about their exposures. We characterized 24-h exposures to HAP and household garbage burning in adolescent girls by measuring fine particulate matter (PM2.5), black carbon (BC), urinary biomarkers of polycyclic aromatic hydrocarbons (PAHs), bisphenol A (BPA), and phthalates. We recruited 60 girls between 13 and 17 years of age who helped with cooking activities and lived with participants of the Household Air Pollution Intervention Network (HAPIN) trial. We recruited n = 30 girls each from the control (wood-burning stove) and intervention (liquefied petroleum gas stove) arms. We also measured real-time kitchen concentrations of BC in 20 homes (33%). PM2.5 and BC were measured in n = 21 control and n = 20 intervention participants. Median concentrations of personal PM2.5 and BC and kitchen BC were lower (p < 0.05) in the intervention arm by 87%, 80%, and 85%, respectively. PAH metabolite concentrations were lower (p < 0.001) for all nine metabolites in intervention (n = 26) compared to control participants (n = 29). Urinary BPA concentrations were 66% higher in participants who reported using cosmetics (p = 0.02), and phthalate concentrations were 63% higher in participants who had reported using hair products during the sample period (p = 0.05). Our results suggest that gas stoves can reduce HAP exposures among adolescents who are not primary cooks at home. Biomarkers of plastic exposure were not associated with intervention status, but some were elevated compared to age- and sex-matched participants of the National Health and Nutrition Examination Survey (NHANES).
Collapse
Affiliation(s)
- Katherine A Kearns
- University of Georgia, Department of Environmental Health Science, College of Public Health, Athens, GA, USA
| | - Luke P Naeher
- University of Georgia, Department of Environmental Health Science, College of Public Health, Athens, GA, USA
| | - John P McCracken
- University of Georgia, Department of Environmental Health Science, College of Public Health, Athens, GA, USA; Center for Health Studies, Universidad del Valle de Guatemala, Guatemala City, Guatemala
| | - Dana Boyd Barr
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Eri Saikawa
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Mayari Hengstermann
- Center for Health Studies, Universidad del Valle de Guatemala, Guatemala City, Guatemala
| | - Erick Mollinedo
- University of Georgia, Department of Environmental Health Science, College of Public Health, Athens, GA, USA; Center for Health Studies, Universidad del Valle de Guatemala, Guatemala City, Guatemala
| | - Parinya Panuwet
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Volha Yakimavets
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Grace E Lee
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Lisa M Thompson
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA; Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA.
| |
Collapse
|
4
|
Casey JA, Daouda M, Babadi RS, Do V, Flores NM, Berzansky I, González DJ, Van Horne YO, James-Todd T. Methods in Public Health Environmental Justice Research: a Scoping Review from 2018 to 2021. Curr Environ Health Rep 2023; 10:312-336. [PMID: 37581863 PMCID: PMC10504232 DOI: 10.1007/s40572-023-00406-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2023] [Indexed: 08/16/2023]
Abstract
PURPOSE OF REVIEW The volume of public health environmental justice (EJ) research produced by academic institutions increased through 2022. However, the methods used for evaluating EJ in exposure science and epidemiologic studies have not been catalogued. Here, we completed a scoping review of EJ studies published in 19 environmental science and epidemiologic journals from 2018 to 2021 to summarize research types, frameworks, and methods. RECENT FINDINGS We identified 402 articles that included populations with health disparities as a part of EJ research question and met other inclusion criteria. Most studies (60%) evaluated EJ questions related to socioeconomic status (SES) or race/ethnicity. EJ studies took place in 69 countries, led by the US (n = 246 [61%]). Only 50% of studies explicitly described a theoretical EJ framework in the background, methods, or discussion and just 10% explicitly stated a framework in all three sections. Among exposure studies, the most common area-level exposure was air pollution (40%), whereas chemicals predominated personal exposure studies (35%). Overall, the most common method used for exposure-only EJ analyses was main effect regression modeling (50%); for epidemiologic studies the most common method was effect modification (58%), where an analysis evaluated a health disparity variable as an effect modifier. Based on the results of this scoping review, current methods in public health EJ studies could be bolstered by integrating expertise from other fields (e.g., sociology), conducting community-based participatory research and intervention studies, and using more rigorous, theory-based, and solution-oriented statistical research methods.
Collapse
Affiliation(s)
- Joan A. Casey
- University of Washington School of Public Health, Seattle, WA USA
- Columbia University Mailman School of Public Health, New York, NY USA
| | - Misbath Daouda
- Columbia University Mailman School of Public Health, New York, NY USA
| | - Ryan S. Babadi
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, USA
| | - Vivian Do
- Columbia University Mailman School of Public Health, New York, NY USA
| | - Nina M. Flores
- Columbia University Mailman School of Public Health, New York, NY USA
| | - Isa Berzansky
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, USA
| | - David J.X. González
- Department of Environmental Science, Policy & Management and School of Public Health, University of California, Berkeley, Berkeley, CA 94720 USA
| | | | - Tamarra James-Todd
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, USA
| |
Collapse
|
5
|
Johnson M, Pillarisetti A, Piedrahita R, Balakrishnan K, Peel JL, Steenland K, Underhill LJ, Rosa G, Kirby MA, Díaz-Artiga A, McCracken J, Clark ML, Waller L, Chang HH, Wang J, Dusabimana E, Ndagijimana F, Sambandam S, Mukhopadhyay K, Kearns KA, Campbell D, Kremer J, Rosenthal JP, Checkley W, Clasen T, Naeher L. Exposure Contrasts of Pregnant Women during the Household Air Pollution Intervention Network Randomized Controlled Trial. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:97005. [PMID: 36112539 PMCID: PMC9480977 DOI: 10.1289/ehp10295] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 07/12/2022] [Accepted: 08/19/2022] [Indexed: 05/26/2023]
Abstract
BACKGROUND Exposure to PM 2.5 arising from solid fuel combustion is estimated to result in ∼ 2.3 million premature deaths and 91 million lost disability-adjusted life years annually. Interventions attempting to mitigate this burden have had limited success in reducing exposures to levels thought to provide substantive health benefits. OBJECTIVES This paper reports exposure reductions achieved by a liquified petroleum gas (LPG) stove and fuel intervention for pregnant mothers in the Household Air Pollution Intervention Network (HAPIN) randomized controlled trial. METHODS The HAPIN trial included 3,195 households primarily using biomass for cooking in Guatemala, India, Peru, and Rwanda. Twenty-four-hour exposures to PM 2.5 , carbon monoxide (CO), and black carbon (BC) were measured for pregnant women once before randomization into control (n = 1,605 ) and LPG (n = 1,590 ) arms and twice thereafter (aligned with trimester). Changes in exposure were estimated by directly comparing exposures between intervention and control arms and by using linear mixed-effect models to estimate the impact of the intervention on exposure levels. RESULTS Median postrandomization exposures of particulate matter (PM) with aerodynamic diameter ≤ 2.5 μ m (PM 2.5 ) in the intervention arm were lower by 66% at the first (71.5 vs. 24.1 μ g / m 3 ), and second follow-up visits (69.5 vs. 23.7 μ g / m 3 ) compared to controls. BC exposures were lower in the intervention arm by 72% (9.7 vs. 2.7 μ g / m 3 ) and 70% (9.6 vs. 2.8 μ g / m 3 ) at the first and second follow-up visits, respectively, and carbon monoxide exposure was 82% lower at both visits (1.1 vs. 0.2 ppm ) in comparison with controls. Exposure reductions were consistent over time and were similar across research locations. DISCUSSION Postintervention PM 2.5 exposures in the intervention arm were at the lower end of what has been reported for LPG and other clean fuel interventions, with 69% of PM 2.5 samples falling below the World Health Organization Annual Interim Target 1 of 35 μ g / m 3 . This study indicates that an LPG intervention can reduce PM 2.5 exposures to levels at or below WHO targets. https://doi.org/10.1289/EHP10295.
Collapse
Affiliation(s)
| | - Ajay Pillarisetti
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, California, USA
| | | | - Kalpana Balakrishnan
- Department of Environmental Health Engineering, ICMR Center for Advanced Research on Air Quality, Climate and Health, Sri Ramachandra Medical College and Research Institute, Sri Ramachandra Institute for Higher Education and Research (Deemed University), Chennai, India
| | - Jennifer L. Peel
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Kyle Steenland
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Lindsay J. Underhill
- Cardiovascular Division, School of Medicine, Washington University, St. Louis, Missouri, USA
| | - Ghislaine Rosa
- Department of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Miles A. Kirby
- Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | | | - John McCracken
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia, USA
| | - Maggie L. Clark
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Lance Waller
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Howard H. Chang
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Jiantong Wang
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | | | | | - Sankar Sambandam
- Department of Environmental Health Engineering, ICMR Center for Advanced Research on Air Quality, Climate and Health, Sri Ramachandra Medical College and Research Institute, Sri Ramachandra Institute for Higher Education and Research (Deemed University), Chennai, India
| | - Krishnendu Mukhopadhyay
- Department of Environmental Health Engineering, ICMR Center for Advanced Research on Air Quality, Climate and Health, Sri Ramachandra Medical College and Research Institute, Sri Ramachandra Institute for Higher Education and Research (Deemed University), Chennai, India
| | - Katherine A. Kearns
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia, USA
| | - Devan Campbell
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia, USA
| | - Jacob Kremer
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia, USA
| | - Joshua P. Rosenthal
- Division of Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, Maryland, USA
| | - William Checkley
- Division of Pulmonary and Critical Care, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Thomas Clasen
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Luke Naeher
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia, USA
| | - and the Household Air Pollution Intervention Network (HAPIN) Trial Investigators
- Berkeley Air Monitoring Group, Berkeley, California, USA
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, California, USA
- Department of Environmental Health Engineering, ICMR Center for Advanced Research on Air Quality, Climate and Health, Sri Ramachandra Medical College and Research Institute, Sri Ramachandra Institute for Higher Education and Research (Deemed University), Chennai, India
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, USA
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
- Cardiovascular Division, School of Medicine, Washington University, St. Louis, Missouri, USA
- Department of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
- Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Universidad del Valle de Guatemala, Guatemala City, Guatemala
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia, USA
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
- Eagle Research Center, Kigali, Rwanda
- Division of Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, Maryland, USA
- Division of Pulmonary and Critical Care, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Estimating long-term average household air pollution concentrations from repeated short-term measurements in the presence of seasonal trends and crossover. Environ Epidemiol 2022; 6:e188. [PMID: 35169666 PMCID: PMC8835562 DOI: 10.1097/ee9.0000000000000188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/26/2021] [Indexed: 11/26/2022] Open
Abstract
Estimating long-term exposure to household air pollution is essential for quantifying health effects of chronic exposure and the benefits of intervention strategies. However, typically only a small number of short-term measurements are made. We compare different statistical models for combining these short-term measurements into predictions of a long-term average, with emphasis on the impact of temporal trends in concentrations and crossover in study design. We demonstrate that a linear mixed model that includes time adjustment provides the best predictions of long-term average, which have lower error than using household averages or mixed models without time, for a variety of different study designs and underlying temporal trends. In a case study of a cookstove intervention study in Honduras, we further demonstrate how, in the presence of strong seasonal variation, long-term average predictions from the mixed model approach based on only two or three measurements can have less error than predictions based on an average of up to six measurements. These results have important implications for the efficiency of designs and analyses in studies assessing the chronic health impacts of long-term exposure to household air pollution.
Collapse
|
7
|
Pregnant Women's Exposure to Household Air Pollution in Rural Bangladesh: A Feasibility Study for Poriborton: The CHANge Trial. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19010482. [PMID: 35010741 PMCID: PMC8744871 DOI: 10.3390/ijerph19010482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 02/04/2023]
Abstract
The use of liquefied petroleum gas (LPG) for cooking is a strategy to reduce household air pollution (HAP) exposure and improve health. We conducted this feasibility study to evaluate personal exposure measurement methods to representatively assess reductions in HAP exposure. We enrolled 30 pregnant women to wear a MicroPEM for 24 h to assess their HAP exposure when cooking with a traditional stove (baseline) and with an LPG stove (intervention). The women wore the MicroPEM an average of 77% and 69% of the time during the baseline and intervention phases, respectively. Mean gravimetric PM2.5 mass and black carbon concentrations were comparable during baseline and intervention. Temporal analysis of the MicroPEM nephelometer data identified high PM2.5 concentrations in the afternoon, late evening, and overnight during the intervention phase. Likely seasonal sources present during the intervention phase were emissions from brick kiln and rice parboiling facilities, and evening kerosene lamp and mosquito coil use. Mean background adjusted PM2.5 concentrations during cooking were lower during intervention at 71 μg/m3, versus 105 μg/m3 during baseline. Representative real-time personal PM2.5 concentration measurements supplemented with ambient PM2.5 measures and surveys will be a valuable tool to disentangle external sources of PM2.5, other indoor HAP sources, and fuel-sparing behaviors when assessing the HAP reduction due to intervention with LPG stoves.
Collapse
|
8
|
Lai A, Lee M, Carter E, Chan Q, Elliott P, Ezzati M, Kelly F, Yan L, Wu Y, Yang X, Zhao L, Baumgartner J, Schauer JJ. Chemical Investigation of Household Solid Fuel Use and Outdoor Air Pollution Contributions to Personal PM 2.5 Exposures. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15969-15979. [PMID: 34817986 PMCID: PMC8655976 DOI: 10.1021/acs.est.1c01368] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
In communities with household solid fuel use, transitioning to clean stoves/fuels often results in only moderate reductions in fine particulate matter (PM2.5) exposures; the chemical composition of those exposures may help explain why. We collected personal exposure (men and women) and outdoor PM2.5 samples in villages in three Chinese provinces (Shanxi, Beijing, and Guangxi) and measured chemical components, including water-soluble organic carbon (WSOC), ions, elements, and organic tracers. Source contributions from chemical mass balance modeling (biomass burning, coal combustion, vehicles, dust, and secondary inorganic aerosol) were similar between outdoor and personal PM2.5 samples. Principal component analysis of organic and inorganic components identified analogous sources, including a regional ambient source. Chemical components of PM2.5 exposures did not differ significantly by gender. Participants using coal had higher personal/outdoor (P/O) ratios of coal combustion tracers (picene, sulfate, As, and Pb) than those not using coal, but no such trend was observed for biomass burning tracers (levoglucosan, K+, WSOC). Picene and most levoglucosan P/O ratios exceeded 1 even among participants not using coal and biomass, respectively, indicating substantial indirect exposure to solid fuel emissions from other homes. Contributions of community-level emissions to exposures suggest that meaningful exposure reductions will likely require extensive fuel use changes within communities.
Collapse
Affiliation(s)
- Alexandra Lai
- Environmental
Chemistry and Technology Program, University
of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Martha Lee
- Department
of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Ellison Carter
- Department
of Civil and Environmental Engineering, Colorado State University, Fort
Collins, Colorado 80523, United States
| | - Queenie Chan
- MRC
Centre for Environment and Health, Department of Epidemiology, Biostatics,
and Occupational Health, School of Public Health, Imperial College London, London W2 1PG, U.K.
| | - Paul Elliott
- MRC
Centre for Environment and Health, Department of Epidemiology, Biostatics,
and Occupational Health, School of Public Health, Imperial College London, London W2 1PG, U.K.
| | - Majid Ezzati
- MRC
Centre for Environment and Health, Department of Epidemiology, Biostatics,
and Occupational Health, School of Public Health, Imperial College London, London W2 1PG, U.K.
| | - Frank Kelly
- Department
of Analytical, Environmental, and Forensic Sciences, Kings College London, London SE1 9NH, U.K.
| | - Li Yan
- Department
of Analytical, Environmental, and Forensic Sciences, Kings College London, London SE1 9NH, U.K.
| | - Yangfeng Wu
- Clinical
Research Institute, Peking University, Beijing 100191, China
| | - Xudong Yang
- Department
of Building Science, Tsinghua University, Beijing 100084, China
| | - Liancheng Zhao
- Fuwai
Hospital, Chinese Academy of Medical Sciences, and Peking Union Medical
College, Beijing 100037, China
| | - Jill Baumgartner
- Department
of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Quebec H3A 1A3, Canada
- Institute
for Health and Social Policy, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - James J. Schauer
- Environmental
Chemistry and Technology Program, University
of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Wisconsin
State Laboratory of Hygiene, University
of Wisconsin-Madison, Madison, Wisconsin 53718, United States
| |
Collapse
|
9
|
Chen J, Jiang C, Zheng Y, Zhao D, Wu F, Zhao Z, Zhao J, Li Q, Li B, Peng G, Zhou Y, Ran P. Lung Features in Individuals with Biomass Smoke Exposure Characterized by CT Scan and Changes in Pulmonary Function. Int J Chron Obstruct Pulmon Dis 2021; 16:2575-2584. [PMID: 34531653 PMCID: PMC8439982 DOI: 10.2147/copd.s325330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/03/2021] [Indexed: 11/25/2022] Open
Abstract
Background and Objective To determine the effects of BSE (biomass smoke exposure) on pulmonary and non-pulmonary changes in patients with COPD compared with normal individuals. Methods Using a cohort, we recruited 16 healthy individuals with BSE (BSE normal), 19 patients with BSE+COPD, 13 healthy individuals with cigarette smoke exposure (CSE normal), 25 patients with CSE+COPD, and 25 healthy controls. Patients with GOLD stage I and II COPD were included. Baseline data (demographic data, BSE or CSE, lung function, and CT findings) and follow-up lung function data were collected. CT parameters of emphysema, pulmonary small vessels, airway remodeling, pectoralis muscles, and erector spinae muscle were measured. Results Individuals with BSE were mainly women (32/35, 91.43%). Compared with the CSE+COPD group, the BSE+COPD group demonstrated slower lung function decline, increased lower lung emphysema, narrower airway lumen dimensions and increased airway wall thickening in the moderate and small airways (all P<0.05). Compared with healthy controls, the CSE normal and BSE normal groups exhibited significant reductions in pulmonary small vessel area and obvious airway remodeling in small airways (P<0.05). Compared with the BSE normal group, the BSE+COPD group showed significantly more severe emphysema and airway remodeling, as well as reduced left pectoralis major muscle area (all P<0.05). Conclusion Healthy individuals with BSE had reduced pulmonary small vessel area and evidence of airway remodeling; patients with BSE and COPD showed more severe emphysema, airway remodeling, and reductions in pectoralis major muscle area. Clinical Trial Registration ChiCTR-OO-14004264.
Collapse
Affiliation(s)
- Jinglong Chen
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, People's Republic of China.,Department of Geriatrics, National Clinical Key Specialty, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, 510180, People's Republic of China
| | - Changbin Jiang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, People's Republic of China
| | - Youlan Zheng
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, People's Republic of China
| | - Dongxing Zhao
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, People's Republic of China
| | - Fan Wu
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, People's Republic of China
| | - Zhuxiang Zhao
- The Pulmonary Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, People's Republic of China
| | - Jun Zhao
- Department of Geriatrics, National Clinical Key Specialty, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, 510180, People's Republic of China
| | - Qing Li
- Department of Geriatrics, National Clinical Key Specialty, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, 510180, People's Republic of China
| | - Bing Li
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Gongyong Peng
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, People's Republic of China
| | - Yumin Zhou
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, People's Republic of China
| | - Pixin Ran
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, People's Republic of China
| |
Collapse
|