1
|
Gupta S, Shankar S, Kuniyal JC, Srivastava P, Lata R, Chaudhary S, Thakur I, Bawari A, Thakur S, Dutta M, Ghosh A, Naja M, Chatterjee A, Gadi R, Choudhary N, Rai A, Sharma SK. Identification of sources of coarse mode aerosol particles (PM 10) using ATR-FTIR and SEM-EDX spectroscopy over the Himalayan Region of India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:15788-15808. [PMID: 38305978 DOI: 10.1007/s11356-024-31973-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 01/07/2024] [Indexed: 02/03/2024]
Abstract
This study attempts to examine the morphological, elemental and physical characteristics of PM10 over the Indian Himalayan Region (IHR) using FTIR and scanning electron microscopy-energy dispersive X-ray (SEM-EDX) analysis. The study aimed at source identification of PM10 by exploring the inorganic ions, organic functional groups, morphology and elemental characteristics. The pollution load of PM10 was estimated as 63 ± 22 μg m-3; 53 ± 16 μg m-3; 67 ± 26 μg m-3 and 55 ± 11 μg m-3 over Mohal-Kullu, Almora, Nainital and Darjeeling, respectively. ATR-FTIR spectrum analysis revealed the existence of inorganic ions (SiO44-, TiO2, SO42-, SO3-, NO3-, NO2-, CO32-, HCO3-, NH4+) and organic functional groups (C-C, C-H, C=C, C≡C, C=O, N-H, C≡N, C=N, O-H, cyclic rings, aromatic compounds and some heterogeneous groups) in PM10 which may arise from geogenic, biogenic and anthropogenic sources. The morphological and elemental characterization was performed by SEM-EDX, inferring for geogenic origin (Al, Na, K, Ca, Mg and Fe) due to the presence of different morphologies (irregular, spherical, cluster, sheet-like solid deposition and columnar). In contrast, particles having biogenic and anthropogenic origins (K, S and Ba) have primarily spherical with few irregular particles at all the study sites. Also, the statistical analysis ANOVA depicts that among all the detected elements, Na, Al, Si, S and K are site-specific in nature as their mean of aw% significantly varied for all the sites. The trajectory analysis revealed that the Uttarakhand, Jammu and Kashmir, the Thar Desert, Himachal Pradesh, Pakistan, Afghanistan, Nepal, Sikkim, the Indo-Gangetic Plain (IGP) and the Bay of Bengal (BoB) contribute to the increased loading of atmospheric pollutants in various locations within the IHR.
Collapse
Affiliation(s)
- Sakshi Gupta
- CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi, 110012, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shobhna Shankar
- Indira Gandhi Delhi Technical University for Women, Kashmere Gate, New Delhi, 110006, India
| | - Jagdish Chandra Kuniyal
- G. B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora, 263643, India
| | - Priyanka Srivastava
- Aryabhata Research Institute of Observational Sciences (ARIES), Nainital, Uttarakhand, 263002, India
| | - Renu Lata
- G. B. Pant National Institute of Himalayan Environment, Himachal Regional Centre, Mohal-Kullu, 175126, India
| | - Sheetal Chaudhary
- G. B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora, 263643, India
| | - Isha Thakur
- G. B. Pant National Institute of Himalayan Environment, Himachal Regional Centre, Mohal-Kullu, 175126, India
| | - Archana Bawari
- G. B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora, 263643, India
| | - Shilpa Thakur
- G. B. Pant National Institute of Himalayan Environment, Himachal Regional Centre, Mohal-Kullu, 175126, India
| | - Monami Dutta
- Environmental Sciences Section, Bose Institute, EN Block, Sector-V, Saltlake, Kolkata, 700091, India
| | - Abhinandan Ghosh
- Department of Civil Engineering, Centre of Environmental Science and Engineering, IIT-Kanpur, Kanpur, 201086, India
| | - Manish Naja
- Aryabhata Research Institute of Observational Sciences (ARIES), Nainital, Uttarakhand, 263002, India
| | - Abhijit Chatterjee
- Environmental Sciences Section, Bose Institute, EN Block, Sector-V, Saltlake, Kolkata, 700091, India
| | - Ranu Gadi
- Indira Gandhi Delhi Technical University for Women, Kashmere Gate, New Delhi, 110006, India
| | - Nikki Choudhary
- CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi, 110012, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Akansha Rai
- CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi, 110012, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sudhir Kumar Sharma
- CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi, 110012, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Alalawi S, Issa ST, Takshe AA, ElBarazi I. A review of the environmental implications of the COVID-19 pandemic in the United Arab Emirates. ENVIRONMENTAL CHALLENGES (AMSTERDAM, NETHERLANDS) 2022; 8:100561. [PMID: 36699969 PMCID: PMC9164511 DOI: 10.1016/j.envc.2022.100561] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/25/2022] [Accepted: 06/02/2022] [Indexed: 04/29/2023]
Abstract
This paper reviews the environmental implications associated with the COVID-19 pandemic at the individual and community levels in the UAE. The positive effects emanating from the pandemic include improved air quality and reduced contamination of public spaces with pollutants. On the other hand, far-reaching negative effects include poor disposal of medical plastic waste and facemasks and the rise in unhygienic health practices amongst residents of UAE. The long-term ecological implications of the pandemic are still not well understood. The findings shed the light on the importance of addressing the consequences of the COVID-19 pandemic through preventative policies and strategies for better environmental health and readiness for future crises. Future research could assess the long-term environmental conse-quences of the pandemic on the UAE.
Collapse
Affiliation(s)
- Shaikha Alalawi
- Institute of Public Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, UAE
| | - Sahar T Issa
- Department of Environmental Health Sciences, Canadian University Dubai, Dubai, UAE
| | - Aseel A Takshe
- Department of Environmental Health Sciences, Canadian University Dubai, Dubai, UAE
| | - Iffat ElBarazi
- Institute of Public Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, UAE
| |
Collapse
|
3
|
Rajesh TA, Ramachandran S. Assessment of the coronavirus disease 2019 (COVID-19) pandemic imposed lockdown and unlock effects on black carbon aerosol, its source apportionment, and aerosol radiative forcing over an urban city in India. ATMOSPHERIC RESEARCH 2022; 267:105924. [PMID: 34803200 PMCID: PMC8594172 DOI: 10.1016/j.atmosres.2021.105924] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/08/2021] [Accepted: 11/10/2021] [Indexed: 05/30/2023]
Abstract
A nationwide lockdown was imposed in India due to the Coronavirus Disease 2019 (COVID-19) pandemic which significantly reduced the anthropogenic emissions. We examined the characteristics of equivalent black carbon (eBC) mass concentration and its source apportionment using a multiwavelength aethalometer over an urban site (Ahmedabad) in India during the pandemic induced lockdown period of year 2020. For the first time, we estimate the changes in BC, its contribution from fossil (eBC ff ) and wood (eBC wf ) fuels during lockdown (LD) and unlock (UL) periods in 2020 with respect to 2017 to 2019 (normal period). The eBC mass concentration continuously decreased throughout lockdown periods (LD1 to LD4) due to enforced and stringent restrictions which substantially reduced the anthropogenic emissions. The eBC mass concentration increased gradually during unlock phases (UL1 to UL7) due to the phase wise relaxations after lockdown. During lockdown period eBC mass concentration decreased by 35%, whereas during the unlock period eBC decreased by 30% as compared to normal period. The eBC wf concentrations were higher by 40% during lockdown period than normal period due to significant increase in the biomass burning emissions from the several community kitchens which were operational in the city during the lockdown period. The average contributions of eBC ff and eBC wf to total eBC mass concentrations were 70% and 30% respectively during lockdown (LD1 to LD4) period, whereas these values were 87% and 13% respectively during the normal period. The reductions in BC concentrations were commensurate with the reductions in emissions from transportation and industrial activities. The aerosol radiative forcing reduced significantly due to the reduction in anthropogenic emissions associated with COVID-19 pandemic induced lockdown leading to a cooling of the atmosphere. The findings in the present study on eBC obtained during the unprecedented COVID-19 induced lockdown can provide a comprehensive understanding of the BC sources and current emission control strategies, and thus can serve as baseline anthropogenic emissions scenario for future emission control strategies aimed to improve air quality and climate.
Collapse
Affiliation(s)
- T A Rajesh
- Space and Atmospheric Sciences Division, Physical Research Laboratory, Ahmedabad 380009, India
| | - S Ramachandran
- Space and Atmospheric Sciences Division, Physical Research Laboratory, Ahmedabad 380009, India
| |
Collapse
|
4
|
Broomandi P, Tleuken A, Zhaxylykov S, Nikfal A, Kim JR, Karaca F. Assessment of potential benefits of traffic and urban mobility reductions during COVID-19 lockdowns: dose-response calculations for material corrosions on built cultural heritage. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:6491-6510. [PMID: 34453678 PMCID: PMC8397878 DOI: 10.1007/s11356-021-16078-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Air pollution, particularly in urban areas, puts human health in danger and has adverse impacts on the built environment. It can accelerate the natural corrosion rate of cultural heritages and monuments, leading to premature aging and lowering their aesthetic value. Globally, at the beginning of 2020, to tackle the spread of novel COVID-19, the lockdown was enforced in the most hard-hit countries. Therefore, this study assesses, as a first time, the plausible benefits of traffic and urban mobility reductions on the natural process of deterioration of materials during COVID-19 lockdown in twenty-four major cities on five continents. The potential risk is estimated based on exceeding the tolerable degradation limits for each material. The notable impact of COVID-19 mobility restrictions on air quality was evidenced in 2020 compared to 2019. The introduced mobility restrictions in 2020 could decrease the surface recession rate of materials. Extremely randomized trees analysis showed that PM10 was the main influencing factor for corrosion of portland, copper, cast bronze, and carbon steel with a relative importance of 0.60, 0.32, 0.90, and 0.64, respectively, while SO2 and HNO3 were mainly responsible for corrosion of sandstone and zinc with a relative importance of 0.60 and 0.40, respectively. The globally adverse governed meteorological conditions in 2020 could not positively influence the movement restrictions around the world in air quality improvements. Our findings can highlight the need for additional policies and measures for reducing ambient pollution in cities and the proximity of sensitive cultural heritage to avoid further damage.
Collapse
Affiliation(s)
- Parya Broomandi
- Department of Civil and Environmental Engineering, School of Engineering and Digital Sciences, Environment and Resource Efficiency Cluster (EREC), Nazarbayev University, Kabanbay Batyr Ave. 53, Nur-Sultan, Kazakhstan, 010000
- Department of Chemical Engineering, Masjed-Soleiman Branch, Islamic Azad University, Masjed-Soleiman, Iran
| | - Aidana Tleuken
- Department of Civil and Environmental Engineering, School of Engineering and Digital Sciences, Environment and Resource Efficiency Cluster (EREC), Nazarbayev University, Kabanbay Batyr Ave. 53, Nur-Sultan, Kazakhstan, 010000
| | - Shaikhislam Zhaxylykov
- Department of Civil and Environmental Engineering, School of Engineering and Digital Sciences, Environment and Resource Efficiency Cluster (EREC), Nazarbayev University, Kabanbay Batyr Ave. 53, Nur-Sultan, Kazakhstan, 010000
| | | | - Jong Ryeol Kim
- Department of Civil and Environmental Engineering, School of Engineering and Digital Sciences, Environment and Resource Efficiency Cluster (EREC), Nazarbayev University, Kabanbay Batyr Ave. 53, Nur-Sultan, Kazakhstan, 010000
| | - Ferhat Karaca
- Department of Civil and Environmental Engineering, School of Engineering and Digital Sciences, Environment and Resource Efficiency Cluster (EREC), Nazarbayev University, Kabanbay Batyr Ave. 53, Nur-Sultan, Kazakhstan, 010000.
| |
Collapse
|
5
|
Parida BR, Bar S, Kaskaoutis D, Pandey AC, Polade SD, Goswami S. Impact of COVID-19 induced lockdown on land surface temperature, aerosol, and urban heat in Europe and North America. SUSTAINABLE CITIES AND SOCIETY 2021; 75:103336. [PMID: 34513574 PMCID: PMC8418702 DOI: 10.1016/j.scs.2021.103336] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/28/2021] [Accepted: 09/02/2021] [Indexed: 05/21/2023]
Abstract
The outbreak of SARS CoV-2 (COVID-19) has posed a serious threat to human beings, society, and economic activities all over the world. Worldwide rigorous containment measures for limiting the spread of the virus have several beneficial environmental implications due to decreased anthropogenic emissions and air pollutants, which provide a unique opportunity to understand and quantify the human impact on atmospheric environment. In the present study, the associated changes in Land Surface Temperature (LST), aerosol, and atmospheric water vapor content were investigated over highly COVID-19 impacted areas, namely, Europe and North America. The key findings revealed a large-scale negative standardized LST anomaly during nighttime across Europe (-0.11 °C to -2.6 °C), USA (-0.70 °C) and Canada (-0.27 °C) in March-May of the pandemic year 2020 compared to the mean of 2015-2019, which can be partly ascribed to the lockdown effect. The reduced LST was corroborated with the negative anomaly of air temperature measured at meteorological stations (i.e. -0.46 °C to -0.96 °C). A larger decrease in nighttime LST was also seen in urban areas (by ∼1-2 °C) compared to rural landscapes, which suggests a weakness of the urban heat island effect during the lockdown period due to large decrease in absorbing aerosols and air pollutants. On the contrary, daytime LST increased over most parts of Europe due to less attenuation of solar radiation by atmospheric aerosols. Synoptic meteorological variability and several surface-related factors may mask these changes and significantly affect the variations in LST, aerosols and water vapor content. The changes in LST may be a temporary phenomenon during the lockdown but provides an excellent opportunity to investigate the effects of various forcing controlling factors in urban microclimate and a strong evidence base for potential environmental benefits through urban planning and policy implementation.
Collapse
Affiliation(s)
- Bikash Ranjan Parida
- Department of Geoinformatics, School of Natural Resource Management, Central University of Jharkhand, Ranchi 835205, India
| | - Somnath Bar
- Department of Geoinformatics, School of Natural Resource Management, Central University of Jharkhand, Ranchi 835205, India
| | - Dimitris Kaskaoutis
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, Palaia Penteli, 15236 Athens, Greece
- Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, 71003 Crete, Greece
| | - Arvind Chandra Pandey
- Department of Geoinformatics, School of Natural Resource Management, Central University of Jharkhand, Ranchi 835205, India
| | | | - Santonu Goswami
- Earth and Climate Science Area, National Remote Sensing Centre, Indian Space Research Organization (ISRO), Hyderabad 500037, India
| |
Collapse
|
6
|
Open Business Model of COVID-19 Transformation of an Urban Public Transport System: The Experience of a Large Russian City. JOURNAL OF OPEN INNOVATION: TECHNOLOGY, MARKET, AND COMPLEXITY 2021; 7. [PMCID: PMC9906701 DOI: 10.3390/joitmc7030171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Dialectics, or developmental transformation, would eventually cause any system to change. The level and depth of these changes vary and depend on the power of external influence and system reservation mechanisms. The art of managing system processes consists of two main aspects. The first aspect involves the sagacity of managers and predicting general environmental change trends (and their impacts on the managed system). The second involves adjusting to these trends, maximizing possible benefits, and minimizing the negative manifestations of this process. Innovation plays an important role, contributing to system transformations with maximal effect and minimal loss. Public transport systems are important elements in cities, as they provide spatial mobility for at least half of the citizens of a city who cannot use individual transportation. Modern urbanization and peculiarities of the social–economic statuses of many citizens contribute to the fact that organized public transportation is unprofitable. The low solvency of citizens who use public transportation services means that passenger transport systems do not work with enough profitability. As a result, governing institutions often choose to subsidize unprofitable transporter activities, thereby prolonging the functioning of unprofitable routes. This is possible only in conditions of sustainability (in regards to a non-optimal system), when the environment is calm, and its negative impact is low. “Black swans” (according to N. Taleb) are bifurcation factors that break the sustainability of non-optimal system. Urban public transport (UPT) of a large Russian city, Tyumen, experienced it in 2020, in connection with the COVID-19 lockdown. The sharp decrease in population mobility in Tyumen, in 2020–2021, caused the need for a complete transformation of the transport service system. However, managers did not want to fundamentally change a system that consensually suited most counterparties. The search for new balances in a system that demands transformation is one way for sustainable provision. This article looks at the transformation and sustainability of a UPT system in the large Russian city of Tyumen, under conditions affected by the negative impact of COVID-19. Results of a comparative (i.e., pre-crisis (2019) and crisis (2020)) Pareto analysis of the contributions of different UPT routes are presented. Transformation of the structure of the UPT route system can overcome the “crisis” COVID-19 period and minimize its financial-economic costs.
Collapse
|
7
|
Assessment of the COVID-19 Lockdown Effects on Spectral Aerosol Scattering and Absorption Properties in Athens, Greece. ATMOSPHERE 2021. [DOI: 10.3390/atmos12020231] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
COVID-19 is evolving into one of the worst pandemics in recent history, claiming a death toll of over 1.5 million as of December 2020. In an attempt to limit the expansion of the pandemic in its initial phase, nearly all countries imposed restriction measures, which resulted in an unprecedented reduction of air pollution. This study aims to assess the impact of the lockdown effects due to COVID-19 on in situ measured aerosol properties, namely spectral-scattering (bsca) and absorption (babs) coefficients, black carbon (BC) concentrations, single-scattering albedo (SSA), scattering and absorption Ångström exponents (SAE, AAE) in Athens, Greece. Moreover, a comparison is performed with the regional background site of Finokalia, Crete, for a better assessment of the urban impact on observed differences. The study examines pre-lockdown (1–22 March 2020), lockdown (23 March–3 May 2020) and post-lockdown (4–31 May 2020) periods, while the aerosol properties are also compared with a 3–4 year preceding period (2016/2017–2019). Comparison of meteorological parameters in Athens, between the lockdown period and respective days in previous years, showed only marginal variation, which is not deemed sufficient in order to justify the notable changes in aerosol concentrations and optical properties. The largest reduction during the lockdown period was observed for babs compared to the pre-lockdown (−39%) and to the same period in previous years (−36%). This was intensified during the morning traffic hours (−60%), reflecting the large decrease in vehicular emissions. Furthermore, AAE increased during the lockdown period due to reduced emissions from fossil-fuel combustion, while a smaller (−21%) decrease was observed for bsca along with slight increases (6%) in SAE and SSA values, indicating that scattering aerosol properties were less affected by the decrease in vehicular emissions, as they are more dependent on regional sources and atmospheric processing. Nighttime BC emissions related to residential wood-burning were slightly increased during the lockdown period, with respect to previous-year means. On the contrary, aerosol and pollution changes during the lockdown period at Finokalia were low and highly sensitive to natural sources and processes.
Collapse
|