1
|
Mokeddem FZ, Khelil FZA, Mokrani S, Chaher N, Behira B. Changes in antibiotic resistance patterns of Gram-negative bacilli across three different wastewater treatment plants in northwest Algeria; first comparative study. Microb Pathog 2024; 199:107196. [PMID: 39653282 DOI: 10.1016/j.micpath.2024.107196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/24/2024] [Accepted: 12/01/2024] [Indexed: 12/13/2024]
Abstract
Changes in antibiotic resistance of bacteria in three different wastewater treatment plants (WTP) were investigated to determine their role they play in the dissemination of multidrug resistant bacteria (MDR). Water samples were collected from downstream of three (WTP) from where pollution parameters were detected and high-performance Liquid chromatography (HPLC) coupled with an ultraviolet (UV) detector was used to measure antibiotic residues. In addition, 88 bacilli Gram-negative (BGN) were collected; activated sludge, aerated lagoons and natural lagoons, and tested for resistance against 18 βeta-lactam antibiotics. We evaluated the production of Extended-spectrum β-lactamases (ESBLs) in isolates that were further confirmed by applying the automated VITEK-2 system. Among the 88 isolates, Klebsiella pneumoniae (60 %),Escherichia coli (23,33 %) and Serratia marcescens(32,14 %) were the most isolated species. The abundance of the CTX ESBL-producers strains was significantly higher in natural lagoons that may have a greater influence on the occurrence and prevalence of MDR, with the MAR index being the lowest for Serratia marcescens (0,27) and the highest for Citrobacter koseri (0,88), serving as a hotspot environment for the evolution of Antibiotic resistance. Controlling or avoiding this kind of treatment can reduce the chance of MDRs entrance to the environment.
Collapse
Affiliation(s)
- Fatima Zohra Mokeddem
- Laboratory of Research in Geo-Environment and Development of Spaces (LGEDE), Department of Biology, University of Mustapha Stambouli, BP 763, 29000, Mascara, Algeria.
| | - Fatima Zohra Amel Khelil
- Environmental Monitoring Network, Department of Biology, Faculty of Science of the Nature and Live, University of Oran, Algeria
| | - Slimane Mokrani
- Laboratory of Research in Geo-Environment and Development of Spaces (LGEDE), Department of Biology, University of Mustapha Stambouli, BP 763, 29000, Mascara, Algeria
| | - Nassima Chaher
- University of Bejaia, Faculty of Natural and Life Sciences, Laboratory of Applied Biochemistry, 06000, Bejaia, Algeria
| | - Belkacem Behira
- Laboratory of Research in Geo-Environment and Development of Spaces (LGEDE), Department of Biology, University of Mustapha Stambouli, BP 763, 29000, Mascara, Algeria
| |
Collapse
|
2
|
Dos Santos Silva J, Araújo LCAD, Vasconcelos MD, Silva IJSD, Motteran F, Rodrigues RHA, Mendes-Marques CL, Alves RBDO, Silva HPD, Barros MP, Silva SMD, Malafaia G, Dos Santos CAL, Coutinho HDM, Oliveira MBMD. Multivariate statistical analysis of surface water quality in the capibaribe river (Pernambuco state, Northeast Brazil): Contributions to water management. MARINE ENVIRONMENTAL RESEARCH 2024; 204:106876. [PMID: 39644524 DOI: 10.1016/j.marenvres.2024.106876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/09/2024]
Abstract
Assessing the quality of surface waters is essential for identifying changes in freshwater ecosystems and supporting the planning/proposing of measures to mitigate polluting sources. However, many studies involving the identification of pathogenic bacteria and/or their resistance profile to antimicrobial agents need a more holistic approach to conditioning or modulating factors. Thus, we apply different multivariate statistical techniques to the data set from the Capibaribe River's surface water, one of the most important in the Northeast of Brazil. Our data, taken together, suggest that the waters of the Capibaribe River have been suffering impacts associated with different human activities. Due to its flow crossing a large urban area, different sources are contributing to the contamination/pollution of its aquatic ecosystem, whose multivariate analysis allowed us to identify site-dependent characteristics that reflect the degree and type of human influence. The study of physical-chemical and chemical parameters reveals the influence of the high load of effluents (industrial and domestic) on the chemical and microbiological quality of the waters sampled at the SS4 site. On the other hand, the antimicrobial resistance profile of the isolates evaluated, especially at SS1, SS2, and SS3 sites, provides a comprehensive sample of the "resistome" present in the fecal content of thousands of people living in the region surrounding the Capibaribe River. The presence of enterobacteria in water indicates contamination of fecal origin. It represents a public health problem since the waters of the Capibaribe River can be a source of dissemination and persistence of bacteria resistant to humans and the environment. In conclusion, our study provides a more comprehensive understanding of the relationships between surface water, basic sanitation, antibiotic exposure, bacterial gene transfer, and human colonization, whether in the context of the region studied or other locations.
Collapse
Affiliation(s)
| | | | | | | | - Fabricio Motteran
- Department of Civil and Environmental Engineering, Federal University of Pernambuco, Brazil
| | | | | | | | - Hernande Pereira da Silva
- Laboratory of Parasitary Diseases, Department of Veterinary Medicine, Federal University of Pernambuco, Brazil
| | - Maria Paloma Barros
- Northeast Strategic Technologies Center (CETENE), Ministry of Science and Technology, Brazil
| | | | - Guilherme Malafaia
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Brazil; Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí Campus, Brazil
| | | | | | | |
Collapse
|
3
|
Ramos S, Júnior E, Alegria O, Vieira E, Patroca S, Cecília A, Moreira F, Nunes A. Metagenomics insights into bacterial diversity and antibiotic resistome of the sewage in the city of Belém, Pará, Brazil. Front Microbiol 2024; 15:1466353. [PMID: 39629213 PMCID: PMC11611572 DOI: 10.3389/fmicb.2024.1466353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/20/2024] [Indexed: 12/07/2024] Open
Abstract
Introduction The advancement of antimicrobial resistance is a significant public health issue today. With the spread of resistant bacterial strains in water resources, especially in urban sewage, metagenomic studies enable the investigation of the microbial composition and resistance genes present in these locations. This study characterized the bacterial community and antibiotic resistance genes in a sewage system that receives effluents from various sources through metagenomics. Methods One liter of surface water was collected at four points of a sewage channel, and after filtration, the total DNA was extracted and then sequenced on an NGS platform (Illumina® NextSeq). The sequenced data were trimmed, and the microbiome was predicted using the Kraken software, while the resistome was analyzed on the CARD webserver. All ecological and statistical analyses were performed using the. RStudio tool. Results and discussion The complete metagenome results showed a community with high diversity at the beginning and more restricted diversity at the end of the sampling, with a predominance of the phyla Bacteroidetes, Actinobacteria, Firmicutes, and Proteobacteria. Most species were considered pathogenic, with an emphasis on those belonging to the Enterobacteriaceae family. It was possible to identify bacterial groups of different threat levels to human health according to a report by the U.S. Centers for Disease Control and Prevention. The resistome analysis predominantly revealed genes that confer resistance to multiple drugs, followed by aminoglycosides and macrolides, with efflux pumps and drug inactivation being the most prevalent resistance mechanisms. This work was pioneering in characterizing resistance in a sanitary environment in the Amazon region and reinforces that sanitation measures for urban sewage are necessary to prevent the advancement of antibiotic resistance and the contamination of water resources, as evidenced by the process of eutrophication.
Collapse
Affiliation(s)
- Sérgio Ramos
- Laboratory of Genomics and Bioinformatics, Center of Genomics and Systems Biology, Federal University of Pará, Belém, Brazil
- Oncology Research Center, João de Barros Barreto Hospital, Federal University of Pará, Belém, Brazil
| | - Edivaldo Júnior
- Laboratory of Leishmaniasis, Parasitology Section, Evandro Chagas Institute, Ananindeua, Brazil
| | - Oscar Alegria
- Laboratory of Genomics and Bioinformatics, Center of Genomics and Systems Biology, Federal University of Pará, Belém, Brazil
| | - Elianne Vieira
- Laboratory of Genomics and Bioinformatics, Center of Genomics and Systems Biology, Federal University of Pará, Belém, Brazil
| | - Sandro Patroca
- Arbovirology and Hemorrhagic Fevers Section, Evandro Chagas Institute, Ananindeua, Brazil
| | - Ana Cecília
- Arbovirology and Hemorrhagic Fevers Section, Evandro Chagas Institute, Ananindeua, Brazil
| | - Fabiano Moreira
- Oncology Research Center, João de Barros Barreto Hospital, Federal University of Pará, Belém, Brazil
| | - Adriana Nunes
- Laboratory of Genomics and Bioinformatics, Center of Genomics and Systems Biology, Federal University of Pará, Belém, Brazil
| |
Collapse
|
4
|
Park JH, Bae KS, Kang J, Park ER, Yoon JK. Comprehensive Study of Antibiotic Resistance in Enterococcus spp.: Comparison of Influents and Effluents of Wastewater Treatment Plants. Antibiotics (Basel) 2024; 13:1072. [PMID: 39596765 PMCID: PMC11590936 DOI: 10.3390/antibiotics13111072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: The spread of antibiotic resistance, particularly through Enterococcus spp., in wastewater treatment plants (WWTPs) poses significant public health risks. Given that research on antibiotic-resistant enterococci and their antibiotic-resistance genes in aquatic environments is limited, we evaluated the role of Enterococcus spp. in WWTPs by comparing the antibiotic resistance rates, gene prevalence, biofilm formation, and residual antibiotics in the influent and effluent using culture-based methods. Methods: In 2022, influent and effluent samples were collected from 11 WWTPs in South Korea. Overall, 804 Enterococcus strains were isolated, and their resistance to 16 antibiotics was assessed using the microdilution method. Results: High resistance to tetracycline, ciprofloxacin, kanamycin, and erythromycin was observed. However, no significant differences in the overall resistance rates and biofilm formation were observed between the influent and effluent. Rates of resistance to ampicillin, ciprofloxacin, and gentamicin, as well as the prevalence of the tetM and qnrS genes, increased in the effluent, whereas resistance rates to chloramphenicol, florfenicol, erythromycin, and tylosin tartrate, along with the prevalence of the optrA gene, decreased. E. faecium, E. hirae, and E. faecalis were the dominant species, with E. faecalis exhibiting the highest resistance. Conclusions: Our results suggest that WWTPs do not effectively reduce the rates of resistant Enterococcus spp., indicating the need for continuous monitoring and improvement of the treatment process to mitigate the environmental release of antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Ji-Hyun Park
- Han River Environment Research Center, National Institute of Environment Research, Yangpyeong-gun, Incheon 12585, Gyeonggi-do, Republic of Korea
| | - Kyung-Seon Bae
- Division of Water Supply and Sewerage Research, National Institute of Environment Research, Incheon 22689, Gyeonggi-do, Republic of Korea; (K.-S.B.); (J.K.); (E.-R.P.); (J.-K.Y.)
| | - Jihyun Kang
- Division of Water Supply and Sewerage Research, National Institute of Environment Research, Incheon 22689, Gyeonggi-do, Republic of Korea; (K.-S.B.); (J.K.); (E.-R.P.); (J.-K.Y.)
| | - Eung-Roh Park
- Division of Water Supply and Sewerage Research, National Institute of Environment Research, Incheon 22689, Gyeonggi-do, Republic of Korea; (K.-S.B.); (J.K.); (E.-R.P.); (J.-K.Y.)
| | - Jeong-Ki Yoon
- Division of Water Supply and Sewerage Research, National Institute of Environment Research, Incheon 22689, Gyeonggi-do, Republic of Korea; (K.-S.B.); (J.K.); (E.-R.P.); (J.-K.Y.)
| |
Collapse
|
5
|
de Farias BO, Saggioro EM, Montenegro KS, Magaldi M, Santos HSO, Gonçalves-Brito AS, Pimenta RL, Ferreira RG, Spisso BF, Pereira MU, Bianco K, Clementino MM. Metagenomic insights into plasmid-mediated antimicrobial resistance in poultry slaughterhouse wastewater: antibiotics occurrence and genetic markers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:60880-60894. [PMID: 39395082 DOI: 10.1007/s11356-024-35287-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/08/2024] [Indexed: 10/14/2024]
Abstract
Slaughterhouse wastewater represents important convergence and concentration points for antimicrobial residues, bacteria, and antibiotic resistance genes (ARG), which can promote antimicrobial resistance propagation in different environmental compartments. This study reports the assessment of the metaplasmidome-associated resistome in poultry slaughterhouse wastewater treated by biological processes, employing metagenomic sequencing. Antimicrobial residues from a wastewater treatment plant (WWTP) that treats poultry slaughterhouse influents and effluents were investigated through high-performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS). Residues from the macrolide, sulfonamide, and fluoroquinolone classes were detected, the latter two persisting after the wastewater treatment. The genetic markers 16S rRNA rrs (bacterial community) and uidA (Escherichia coli) were investigated by RT-qPCR and the sul1 and int1 genes by qPCR. After treatment, the 16S rRNA rrs, uidA, sul1, and int1 markers exhibited reductions of 0.67, 1.07, 1.28, and 0.79 genes copies, respectively, with no statistical significance (p > 0.05). The plasmidome-focused metagenomics sequences (MiSeq platform (Illumina®)) revealed more than 100 ARG in the WWTP influent, which can potentially confer resistance to 14 pharmacological classes relevant in the human and veterinary clinical contexts, in which the qnr gene (resistance to fluoroquinolones) was the most prevalent. Only 7.8% of ARG were reduced after wastewater treatment, and the remaining 92.2% were associated with an increase in the prevalence of ARG linked to multidrug efflux pumps, substrate-specific for certain classes of antibiotics, or broad resistance to multiple medications. These data demonstrate that wastewater from poultry slaughterhouses plays a crucial role as an ARG reservoir and in the spread of AMR into the environment.
Collapse
Affiliation(s)
- Beatriz Oliveira de Farias
- Programa de Pós-Graduação Em Saúde Pública E Meio Ambiente, Escola Nacional de Saúde Pública, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Enrico Mendes Saggioro
- Programa de Pós-Graduação Em Saúde Pública E Meio Ambiente, Escola Nacional de Saúde Pública, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil.
- Laboratório de Avaliação E Promoção da Saúde Ambiental, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil.
| | - Kaylanne S Montenegro
- Programa de Pós-Graduação Em Saúde Pública E Meio Ambiente, Escola Nacional de Saúde Pública, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Mariana Magaldi
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Hugo Sérgio Oliveira Santos
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Andressa Silva Gonçalves-Brito
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Ramon Loureiro Pimenta
- Instituto de Veterinária, Universidade Federal Rural Do Rio de Janeiro, Km 07, Zona Rural, BR-465, Seropédica, RJ, Brazil
| | - Rosana Gomes Ferreira
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Bernardete Ferraz Spisso
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Mararlene Ulberg Pereira
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Kayo Bianco
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Maysa Mandetta Clementino
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
6
|
Oyenuga N, Cobo-Díaz JF, Alvarez-Ordóñez A, Alexa EA. Overview of Antimicrobial Resistant ESKAPEE Pathogens in Food Sources and Their Implications from a One Health Perspective. Microorganisms 2024; 12:2084. [PMID: 39458393 PMCID: PMC11510272 DOI: 10.3390/microorganisms12102084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Antimicrobial resistance is an increasing societal burden worldwide, with ESKAPEE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter species and Escherichia coli) pathogens overwhelming the healthcare sectors and more recently becoming predominantly a concern for their persistence in food and food industries, including agricultural settings and animal husbandry environments. The aim of this review is to explore the mechanisms by which the ESKAPEE group gained its multidrug resistance profiles, to analyse their occurrence in different foods and other related reservoirs, including water, and to address the current challenges due to their spread within the food production chain. Moreover, the repertoire of surveillance programmes available focused on monitoring their occurrence, common reservoirs and the spread of antimicrobial resistance are described in this review paper. Evidence from the literature suggests that restricting our scope in relation to multidrug resistance in ESKAPEE pathogens to healthcare and healthcare-associated facilities might actually impede unveiling the actual issues these pathogens can exhibit, for example, in food and food-related reservoirs. Furthermore, this review addresses the need for increasing public campaigns aimed at addressing this challenge, which must be considered in our fight against antimicrobial resistance shown by the ESKAPEE group in food and food-related sectors.
Collapse
Affiliation(s)
- Naomi Oyenuga
- School of Food Science and Environmental Health, Technological University Dublin, D07 H6K8 Dublin, Ireland;
| | - José Francisco Cobo-Díaz
- Department of Food Hygiene and Technology, Universidad de León, 24071 León, Spain; (J.F.C.-D.); (A.A.-O.)
| | - Avelino Alvarez-Ordóñez
- Department of Food Hygiene and Technology, Universidad de León, 24071 León, Spain; (J.F.C.-D.); (A.A.-O.)
- Institute of Food Science and Technology, Universidad de León, 24007 León, Spain
| | - Elena-Alexandra Alexa
- School of Food Science and Environmental Health, Technological University Dublin, D07 H6K8 Dublin, Ireland;
| |
Collapse
|
7
|
Wang C, Zhao J, Lin Y, Lwin SZC, El-Telbany M, Masuda Y, Honjoh KI, Miyamoto T. Characterization of Two Novel Endolysins from Bacteriophage PEF1 and Evaluation of Their Combined Effects on the Control of Enterococcus faecalis Planktonic and Biofilm Cells. Antibiotics (Basel) 2024; 13:884. [PMID: 39335057 PMCID: PMC11428236 DOI: 10.3390/antibiotics13090884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/27/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Endolysin, a bacteriophage-derived lytic enzyme, has emerged as a promising alternative antimicrobial agent against rising multidrug-resistant bacterial infections. Two novel endolysins LysPEF1-1 and LysPEF1-2 derived from Enterococcus phage PEF1 were cloned and overexpressed in Escherichia coli to test their antimicrobial efficacy against multidrug-resistant E. faecalis strains and their biofilms. LysPEF1-1 comprises an enzymatically active domain and a cell-wall-binding domain originating from the NLPC-P60 and SH3 superfamilies, while LysPEF1-2 contains a putative peptidoglycan recognition domain that belongs to the PGRP superfamily. LysPEF1-1 was active against 89.86% (62/69) of Enterococcus spp. tested, displaying a wider antibacterial spectrum than phage PEF1. Moreover, two endolysins demonstrated lytic activity against additional gram-positive and gram-negative species pretreated with chloroform. LysPEF1-1 showed higher activity against multidrug-resistant E. faecalis strain E5 than LysPEF1-2. The combination of two endolysins effectively reduced planktonic cells of E5 in broth and was more efficient at inhibiting biofilm formation and removing biofilm cells of E. faecalis JCM 7783T than used individually. Especially at 4 °C, they reduced viable biofilm cells by 4.5 log after 2 h of treatment on glass slide surfaces. The results suggest that two novel endolysins could be alternative antimicrobial agents for controlling E. faecalis infections.
Collapse
Affiliation(s)
- Chen Wang
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (C.W.); (J.Z.); (Y.L.); (S.Z.C.L.); (M.E.-T.)
| | - Junxin Zhao
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (C.W.); (J.Z.); (Y.L.); (S.Z.C.L.); (M.E.-T.)
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Yunzhi Lin
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (C.W.); (J.Z.); (Y.L.); (S.Z.C.L.); (M.E.-T.)
| | - Su Zar Chi Lwin
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (C.W.); (J.Z.); (Y.L.); (S.Z.C.L.); (M.E.-T.)
| | - Mohamed El-Telbany
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (C.W.); (J.Z.); (Y.L.); (S.Z.C.L.); (M.E.-T.)
| | - Yoshimitsu Masuda
- Department of Bioscience and Biotechnology, Facultuy of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (Y.M.); (K.-i.H.)
| | - Ken-ichi Honjoh
- Department of Bioscience and Biotechnology, Facultuy of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (Y.M.); (K.-i.H.)
| | - Takahisa Miyamoto
- Department of Bioscience and Biotechnology, Facultuy of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (Y.M.); (K.-i.H.)
| |
Collapse
|
8
|
Carrasco-Acosta M, Garcia-Jimenez P. Development of Multiplex RT qPCR Assays for Simultaneous Detection and Quantification of Faecal Indicator Bacteria in Bathing Recreational Waters. Microorganisms 2024; 12:1223. [PMID: 38930605 PMCID: PMC11205496 DOI: 10.3390/microorganisms12061223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/05/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
In this study, we designed and validated in silico and experimentally a rapid, sensitive, and specific multiplex RT qPCR for the detection and quantification of faecal indicator bacteria (FIB) used as microbiological references in marine bathing water regulations (Escherichia coli and intestinal enterococci). The 16S rRNA gene was used to quantify group-specific enterococci and Escherichia/Shigella and species-specific such as Enterococcus faecalis and E. faecium. Additionally, a ybbW gene encoding allantoin transporter protein was used to detect E. coli. An assessment of marine coastal systems (i.e., marine water and sediment) revealed that intestinal enterococci were the predominant group compared to Escherichia/Shigella. The low contribution of E. faecalis to the intestinal enterococci group was reported. As E. faecalis and E. faecium were reported at low concentrations, it is assumed that other enterococci of faecal origin are contributing to the high gene copy number of this group-specific enterococci. Moreover, low 16S rRNA gene copy numbers with respect to E. faecalis and E. faecium were reported in seawater compared to marine sediment. We conclude that marine sediments can affect the quantification of FIBs included in bathing water regulations. Valuing the quality of the marine coastal system through sediment monitoring is recommended.
Collapse
Affiliation(s)
| | - Pilar Garcia-Jimenez
- Department of Biology, Faculty of Marine Sciences, Instituto Universitario de Investigación en Estudios Ambientales y Recursos Naturales i-UNAT, Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain;
| |
Collapse
|
9
|
Velazquez-Meza ME, Galarde-López M, Cornejo-Juárez P, Carrillo-Quiroz BA, Velázquez-Acosta C, Bobadilla-del-Valle M, Ponce-de-León A, Alpuche-Aranda CM. Multidrug-Resistant Staphylococcus sp. and Enterococcus sp. in Municipal and Hospital Wastewater: A Longitudinal Study. Microorganisms 2024; 12:645. [PMID: 38674590 PMCID: PMC11051902 DOI: 10.3390/microorganisms12040645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/12/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
The objective of the study was to detect multidrug-resistant Staphylococcus sp. and Enterococcus sp. isolates in municipal and hospital wastewater and to determine their elimination or persistence after wastewater treatment. Between August 2021 and September 2022, raw and treated wastewater samples were collected at two hospital and two community wastewater treatment plants (WWTPs). In each season of the year, two treated and two raw wastewater samples were collected in duplicate at each of the WWTPs studied. Screening and presumptive identification of staphylococci and enterococci was performed using chromoagars, and identification was performed with the Matrix Assisted Laser Desorption Ionization Time of Flight mass spectrometry (MALDI-TOF MS®). Antimicrobial susceptibility was performed using VITEK 2® automated system. There were 56 wastewater samples obtained during the study period. A total of 182 Staphylococcus sp. and 248 Enterococcus sp. were identified. The highest frequency of Staphylococcus sp. isolation was in spring and summer (n = 129, 70.8%), and for Enterococcus sp. it was in autumn and winter (n = 143, 57.7%). Sixteen isolates of Staphylococcus sp. and sixty-three of Enterococcus sp. persisted during WWTP treatments. Thirteen species of staphylococci and seven species of enterococci were identified. Thirty-one isolates of Staphylococcus sp. and ninety-four of Enterococcus sp. were multidrug-resistant. Resistance to vancomycin (1.1%), linezolid (2.7%), and daptomycin (8.2%/10.9%%), and a lower susceptibility to tigecycline (2.7%), was observed. This study evidences the presence of Staphylococcus sp. and Enterococcus sp. resistant to antibiotics of last choice of clinical treatment, in community and hospital wastewater and their ability to survive WWTP treatment systems.
Collapse
Affiliation(s)
- Maria Elena Velazquez-Meza
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca City 62100, Mexico; (M.E.V.-M.); (M.G.-L.); (B.A.C.-Q.)
| | - Miguel Galarde-López
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca City 62100, Mexico; (M.E.V.-M.); (M.G.-L.); (B.A.C.-Q.)
| | - Patricia Cornejo-Juárez
- Departamento de Infectología, Instituto Nacional de Cancerología, Mexico City 14080, Mexico; (P.C.-J.); (C.V.-A.)
| | - Berta Alicia Carrillo-Quiroz
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca City 62100, Mexico; (M.E.V.-M.); (M.G.-L.); (B.A.C.-Q.)
| | - Consuelo Velázquez-Acosta
- Departamento de Infectología, Instituto Nacional de Cancerología, Mexico City 14080, Mexico; (P.C.-J.); (C.V.-A.)
| | - Miriam Bobadilla-del-Valle
- Laboratorio Nacional de Máxima Seguridad para el Estudio de Tuberculosis y Enfermedades Emergentes, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico; (M.B.-d.-V.); (A.P.-d.-L.)
| | - Alfredo Ponce-de-León
- Laboratorio Nacional de Máxima Seguridad para el Estudio de Tuberculosis y Enfermedades Emergentes, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico; (M.B.-d.-V.); (A.P.-d.-L.)
| | - Celia Mercedes Alpuche-Aranda
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca City 62100, Mexico; (M.E.V.-M.); (M.G.-L.); (B.A.C.-Q.)
| |
Collapse
|
10
|
Geissler M, Schröttner P, Oertel R, Dumke R. Enterococci, Van Gene-Carrying Enterococci, and Vancomycin Concentrations in the Influent of a Wastewater Treatment Plant in Southeast Germany. Microorganisms 2024; 12:149. [PMID: 38257976 PMCID: PMC10819932 DOI: 10.3390/microorganisms12010149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Vancomycin-resistant (VR) Enterococcus spp. can be detected in high concentrations in wastewaters and pose a risk to public health. During a one-year study (September 2022-August 2023), 24 h composite raw wastewater samples (n = 192) of a municipal wastewater treatment plant were investigated for cultivable enterococci. After growth on Slanetz-Bartley agar (SBA), a mean concentration of 29,736 ± 9919 cfu/mL was calculated. Using MALDI-TOF MS to characterize randomly picked colonies (n = 576), the most common species were found to be Enterococcus faecium (72.6%), E. hirae (13.7%), and E. faecalis (8.0%). Parallel incubation of wastewater samples on SBA and VRESelect agar resulted in a mean rate of VR enterococci of 2.0 ± 1.5%. All the tested strains grown on the VRESelect agar (n = 172) were E. faecium and carried the vanA (54.6%) or vanB gene (45.4%) with limited sequence differences. In susceptibility experiments, these isolates showed a high-level resistance to vancomycin (>256 µg/mL). Concentration of vancomycin was determined in 93.7% of 112 wastewater samples (mean: 123.1 ± 64.0 ng/L) and varied between below 100 ng/L (the detection limit) and 246.6 ng/L. A correlation between the concentration of vancomycin and the rate of VR strains among the total enterococci could not be found. The combination of incubation of samples on SBA and a commercial vancomycin-containing agar applied in clinical microbiology with a multiplex PCR for detection of van genes is an easy-to-use tool to quantify and characterize VR Enterococcus spp. in water samples.
Collapse
Affiliation(s)
- Michael Geissler
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (M.G.)
| | - Percy Schröttner
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (M.G.)
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Reinhard Oertel
- Institute of Clinical Pharmacology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Roger Dumke
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (M.G.)
| |
Collapse
|
11
|
Jannati E, Khademi F, Manouchehrifar M, Maleki D, Amirmozaffari N, Sadat Nikbin V, Arzanlou M. Antibiotic resistance and virulence potentials of E. faecalis and E. faecium in hospital wastewater: a case study in Ardabil, Iran. JOURNAL OF WATER AND HEALTH 2023; 21:1277-1290. [PMID: 37756195 PMCID: wh_2023_147 DOI: 10.2166/wh.2023.147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Hospital wastewater can contaminate the environment with antibiotic-resistant and virulent bacteria. We analyzed wastewater samples from four hospitals in Ardabil province, Iran for Enterococcus faecium and Enterococcus faecalis using culture and molecular methods. We also performed antimicrobial susceptibility testing and polymerase chain reaction testing for resistance and virulence genes. Out of 141 enterococci isolates, 68.8% were E. faecium and 23.4% were E. faecalis. Ciprofloxacin and rifampicin showed the highest level of resistance against E. faecalis and E. faecium isolates at 65%. High-level gentamicin resistance (HLGR), high-level streptomycin resistance (HLSR), ampicillin, and vancomycin resistance were observed in 25, 5, 10, and 5.15% of E. faecium, and 15, 6, 15, and 3.03% of E. faecalis isolates, respectively. The ant(6')-Ia and ant(3')-Ia genes that were responsible for streptomycin resistance were observed in HLSR isolates and aph(3')-IIIa and aac(6') Ie-aph(2″)-Ia genes accounting for gentamicin resistance were detected in HLGR isolates. vanA was the predominant gene detected in vancomycin-resistant isolates. The majority of isolates were positive for gelE, asa1, esp, cylA, and hyl virulence genes. We found that drug-resistant and virulent E. faecalis and E. faecium isolates were prevalent in hospital wastewater. Proper treatment strategies are required to prevent their dissemination into the environment.
Collapse
Affiliation(s)
- Elham Jannati
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran; Department of Microbiology, School of Sciences, Islamic Azad University, Ardabil Branch, Ardabil, Iran E-mail: ;
| | - Farzad Khademi
- Department of Microbiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | | | - Dadras Maleki
- Microbiology Laboratory, Imam Hospital, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Nour Amirmozaffari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mohsen Arzanlou
- Department of Microbiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
12
|
Farias BO, Montenegro KS, Nascimento APA, Magaldi M, Gonçalves-Brito AS, Flores C, Moreira TC, Neves FPG, Bianco K, Clementino MM. First Report of a Wastewater Treatment-Adapted Enterococcus faecalis ST21 Harboring vanA Gene in Brazil. Curr Microbiol 2023; 80:313. [PMID: 37542533 DOI: 10.1007/s00284-023-03418-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/14/2023] [Indexed: 08/07/2023]
Abstract
Enterococcus faecalis has emerged as an important opportunistic pathogen due to its increasing resistance to antimicrobials, mainly to vancomycin, which leads substantial cases of therapeutic failures. Wastewater treatment plants (WWTP), in turn, are considered hotpots in the spread of antimicrobial resistance according to One Health perspective. In this study, we present the first report of a vancomycin-resistant E. faecalis strain recovered from treated effluent in Brazil. For this purpose, the whole-genome sequencing (WGS) was carried out aiming to elucidate its molecular mechanisms of antimicrobial resistance and its phylogenetic relationships amongst strains from other sources and countries. According to Multilocus Sequence Typing (MLST) analysis this strain belongs to ST21. The WGS pointed the presence of vanA operon, multiple antibiotic resistance and virulence genes, and a significant pathogenic potential for humans. The phylogenomic analysis of E. faecalis 6805 was performed with ST21 representatives from the PubMLST database, including the E. faecalis IE81 strain from clinical sample in Brazil, which had its genome sequenced in this study. Our results demonstrated a strain showing resistance to vancomycin in treated effluent. To the best of our knowledge, this is an unprecedented report of vanA-carrying E. faecalis ST21. Furthermore, it is the first description of a vanA-harboring strain of this species from environmental sample in Brazil. Our data highlight the role of WWTP in the spread of AMR, since these environments are favorable for the selection of multidrug-resistant pathogens and the treated effluents, carrying antibiotic resistance genes, are directed to receiving water bodies.
Collapse
Affiliation(s)
- Beatriz O Farias
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
- Fiocruz Genomic Network, Oswaldo Cruz Foundation - FIOCRUZ, Rio de Janeiro, RJ, 4365, Brazil
| | - Kaylanne S Montenegro
- Escola Nacional de Saúde Pública, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Ana Paula A Nascimento
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Mariana Magaldi
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Andressa S Gonçalves-Brito
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
- Fiocruz Genomic Network, Oswaldo Cruz Foundation - FIOCRUZ, Rio de Janeiro, RJ, 4365, Brazil
| | - Claudia Flores
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Thais C Moreira
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Felipe P G Neves
- Departamento de Microbiologia E Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Alameda Barros Terra, S/N. São Domingos, Niterói, RJ, 24020-150, Brazil
| | - Kayo Bianco
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil.
- Fiocruz Genomic Network, Oswaldo Cruz Foundation - FIOCRUZ, Rio de Janeiro, RJ, 4365, Brazil.
- COVID-19 Monitoring Network in Wastewater, São Paulo, Brazil.
| | - Maysa M Clementino
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
- Fiocruz Genomic Network, Oswaldo Cruz Foundation - FIOCRUZ, Rio de Janeiro, RJ, 4365, Brazil
- COVID-19 Monitoring Network in Wastewater, São Paulo, Brazil
| |
Collapse
|
13
|
Marutescu LG, Popa M, Gheorghe-Barbu I, Barbu IC, Rodríguez-Molina D, Berglund F, Blaak H, Flach CF, Kemper MA, Spießberger B, Wengenroth L, Larsson DGJ, Nowak D, Radon K, de Roda Husman AM, Wieser A, Schmitt H, Pircalabioru Gradisteanu G, Vrancianu CO, Chifiriuc MC. Wastewater treatment plants, an "escape gate" for ESCAPE pathogens. Front Microbiol 2023; 14:1193907. [PMID: 37293232 PMCID: PMC10244645 DOI: 10.3389/fmicb.2023.1193907] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/09/2023] [Indexed: 06/10/2023] Open
Abstract
Antibiotics are an essential tool of modern medicine, contributing to significantly decreasing mortality and morbidity rates from infectious diseases. However, persistent misuse of these drugs has accelerated the evolution of antibiotic resistance, negatively impacting clinical practice. The environment contributes to both the evolution and transmission of resistance. From all anthropically polluted aquatic environments, wastewater treatment plants (WWTPs) are probably the main reservoirs of resistant pathogens. They should be regarded as critical control points for preventing or reducing the release of antibiotics, antibiotic-resistant bacteria (ARB), and antibiotic-resistance genes (ARGs) into the natural environment. This review focuses on the fate of the pathogens Enterococcus faecium, Staphylococcus aureus, Clostridium difficile, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacteriaceae spp. (ESCAPE) in WWTPs. All ESCAPE pathogen species, including high-risk clones and resistance determinants to last-resort antibiotics such as carbapenems, colistin, and multi-drug resistance platforms, were detected in wastewater. The whole genome sequencing studies demonstrate the clonal relationships and dissemination of Gram-negative ESCAPE species into the wastewater via hospital effluents and the enrichment of virulence and resistance determinants of S. aureus and enterococci in WWTPs. Therefore, the efficiency of different wastewater treatment processes regarding the removal of clinically relevant ARB species and ARGs, as well as the influence of water quality factors on their performance, should be explored and monitored, along with the development of more effective treatments and appropriate indicators (ESCAPE bacteria and/or ARGs). This knowledge will allow the development of quality standards for point sources and effluents to consolidate the WWTP barrier role against the environmental and public health AR threats.
Collapse
Affiliation(s)
- Luminita Gabriela Marutescu
- Department of Microbiology and Immunology, Faculty of Biology, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
| | - Marcela Popa
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
| | - Irina Gheorghe-Barbu
- Department of Microbiology and Immunology, Faculty of Biology, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
| | - Ilda Czobor Barbu
- Department of Microbiology and Immunology, Faculty of Biology, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
| | - Daloha Rodríguez-Molina
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
- Institute for Medical Information Processing, Biometry, and Epidemiology – IBE, LMU Munich, Munich, Germany
- Pettenkofer School of Public Health, Munich, Germany
| | - Fanny Berglund
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Hetty Blaak
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Carl-Fredrik Flach
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Merel Aurora Kemper
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Beate Spießberger
- German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
- Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, Munich, Germany
- Department of Infectious Diseases and Tropical Medicine, LMU University Hospital Munich, Munich, Germany
| | - Laura Wengenroth
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
| | - D. G. Joakim Larsson
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Dennis Nowak
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Pneumology Center Munich (CPC-M), German Center for Lung Research (DZL), Munich, Germany
| | - Katja Radon
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Ana Maria de Roda Husman
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Andreas Wieser
- German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
- Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, Munich, Germany
- Department of Infectious Diseases and Tropical Medicine, LMU University Hospital Munich, Munich, Germany
| | - Heike Schmitt
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Gratiela Pircalabioru Gradisteanu
- Department of Microbiology and Immunology, Faculty of Biology, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
- Romanian Academy of Sciences, Bucharest, Romania
| | - Corneliu Ovidiu Vrancianu
- Department of Microbiology and Immunology, Faculty of Biology, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Department of Microbiology and Immunology, Faculty of Biology, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
- The Romanian Academy, Bucharest, Romania
| |
Collapse
|
14
|
Talat A, Blake KS, Dantas G, Khan AU. Metagenomic Insight into Microbiome and Antibiotic Resistance Genes of High Clinical Concern in Urban and Rural Hospital Wastewater of Northern India Origin: a Major Reservoir of Antimicrobial Resistance. Microbiol Spectr 2023; 11:e0410222. [PMID: 36786639 PMCID: PMC10100738 DOI: 10.1128/spectrum.04102-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
India is one of the largest consumers and producers of antibiotics and a hot spot for the emergence and proliferation of antimicrobial resistance genes (ARGs). Indian hospital wastewater (HWW) accumulates ARGs from source hospitals and often merges with urban wastewater, with the potential for environmental and human contamination. Despite its putative clinical importance, there is a lack of high-resolution resistome profiling of Indian hospital wastewater, with most studies either relying on conventional PCR-biased techniques or being limited to one city. In this study, we comprehensively analyzed antibiotic resistomes of wastewater from six Indian hospitals distributed in rural and urban areas of northern India through shotgun metagenomics. Our study revealed the predominance of ARGs against aminoglycoside, macrolide, carbapenem, trimethoprim, and sulfonamide antibiotics in all the samples through both read-based analysis and assembly-based analysis. We detected the mobile colistin resistance gene mcr-5.1 for the first time in Indian hospital sewage. blaNDM-1 was present in 4 out of 6 samples and was carried by Pseudomonas aeruginosa in HWW-2, Klebsiella pneumoniae in HWW-4 and HWW-6, and Acinetobacter baumanii in HWW-5. Most ARGs were plasmid-mediated and hosted by Proteobacteria. We identified virulence factors and transposable elements flanking the ARGs, highlighting the role of horizontal gene transmission of ARGs. IMPORTANCE There is a paucity of research on detailed antibiotic resistome and microbiome diversity of Indian hospital wastewater. This study reports the predominance of clinically concerning ARGs such as the beta-lactamases blaNDM and blaOXA and the colistin resistance gene mcr and their association with the microbiome in six different Indian hospital wastewaters of both urban and rural origin. The abundance of plasmid-mediated ARGs and virulence factors calls for urgent AMR crisis management. The lack of proper wastewater management strategies meeting international standards and open drainage systems further complicates the problem of containing the ARGs at these hospitals. This metagenomic study presents the current AMR profile propagating in hospital settings in India and can be used as a reference for future surveillance and risk management of ARGs in Indian hospitals.
Collapse
Affiliation(s)
- Absar Talat
- Medical Microbiology and Molecular Biology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Kevin S. Blake
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Asad U. Khan
- Medical Microbiology and Molecular Biology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
15
|
Dželalija M, Kvesić M, Novak A, Fredotović Ž, Kalinić H, Šamanić I, Ordulj M, Jozić S, Goić Barišić I, Tonkić M, Maravić A. Microbiome profiling and characterization of virulent and vancomycin-resistant Enterococcus faecium from treated and untreated wastewater, beach water and clinical sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159720. [PMID: 36306843 DOI: 10.1016/j.scitotenv.2022.159720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Vancomycin-resistant Enterococcus faecium (VREfm) is an opportunistic pathogen among the highest global priorities regarding public and environmental health. Following One Health approach, we determined for the first time the antibiotic resistance and virulence genes, and sequence types (STs) affiliation of VREfm recovered simultaneously from marine beach waters, submarine outfall of a wastewater treatment plant and an offshore discharge of untreated sewage, and compared them with the surveillance VREfm from regional university hospital in Croatia to assess the hazard of their transmission and routes of introduction into the natural environment. Importantly, VREfm recovered from wastewater, coastal bathing waters and hospital shared similar virulence, multidrug resistance, and ST profiles, posing a major public health threat. All isolates carried the vanA gene, while one clinical isolate also possessed the vanC2/C3 gene. The hospital strains largely carried the aminoglycoside-resistance genes aac(6')-Ie-aph(2″)-Ia, and aph(2″)-Ib and aph(2″)-Id, which were also predominant in the environmental isolates. The hyl gene was the most prevalent virulence gene. The isolates belonged to 10 STs of the clonal complex CC17, a major epidemic lineage associated with hospital infections and outbreaks, with ST117 and ST889 common to waterborne and hospital isolates, pointing to their sewage-driven dissemination. To gain better insight into the diversity of accompanying taxons in the surveyed water matrices, microbiome taxonomic profiling was carried out using Illumina-based 16S rDNA sequencing and their resistome features predicted using the PICRUSt2 bioinformatics tool. An additional 60 pathogenic bacterial genera were identified, among which Arcobacter, Acinetobacter, Escherichia-Shigella, Bacteroides and Pseudomonas were the most abundant and associated with a plethora of antibiotic resistance genes and modules, providing further evidence of the hazardous effects of wastewater discharges, including the treated ones, on the natural aquatic environment that should be adequately addressed from a sanitary and technological perspective.
Collapse
Affiliation(s)
- Mia Dželalija
- Department of Biology, Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia
| | - Marija Kvesić
- Center of Excellence for Science and Technology-Integration of Mediterranean Region, University of Split, Ruđera Boškovića 31, 21000 Split, Croatia; Doctoral study of Biophysics, Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia
| | - Anita Novak
- School of Medicine, University of Split, Šoltanska 2, 21000 Split, Croatia; University Hospital Split, Spinčićeva 1, Split, Croatia
| | - Željana Fredotović
- Department of Biology, Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia
| | - Hrvoje Kalinić
- Department of Informatics, Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia
| | - Ivica Šamanić
- Department of Biology, Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia
| | - Marin Ordulj
- University Department of Marine Studies, University of Split, Ruđera Boškovića 37, 21000 Split, Croatia
| | - Slaven Jozić
- Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, 21000 Split, Croatia
| | - Ivana Goić Barišić
- School of Medicine, University of Split, Šoltanska 2, 21000 Split, Croatia; University Hospital Split, Spinčićeva 1, Split, Croatia
| | - Marija Tonkić
- School of Medicine, University of Split, Šoltanska 2, 21000 Split, Croatia; University Hospital Split, Spinčićeva 1, Split, Croatia
| | - Ana Maravić
- Department of Biology, Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia.
| |
Collapse
|
16
|
Noenchat P, Nhoonoi C, Srithong T, Lertpiriyasakulkit S, Sornplang P. Prevalence and multidrug resistance of Enterococcus species isolated from chickens at slaughterhouses in Nakhon Ratchasima Province, Thailand. Vet World 2022; 15:2535-2542. [PMID: 36590124 PMCID: PMC9798055 DOI: 10.14202/vetworld.2022.2535-2542] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/28/2022] [Indexed: 11/11/2022] Open
Abstract
Background and Aim Enterococcus is a commensal bacteria found in humans and animals, which can cause human nosocomial infections. One of the most contaminated enterococcal sources is poultry meat. Therefore, this study estimated the prevalence and antimicrobial resistance (AMR) profile of Enterococcus from chickens and their meat products at local slaughterhouses in Nakhon Ratchasima Province, Thailand. Materials and Methods From January 2021 to March 2022, 558 samples from 279 cloacal swabs and breast meat were collected from 31 local slaughterhouses in the area. Then, the samples were screened for Enterococcus using modified de Man, Rogosa, and Sharpe agar. Next, selected Gram-positive, catalase-negative, and cocci-shaped colonies were investigated for enterococcal confirmation using Enterococcosel Agar (EA). We also cultivated the samples directly on EA. However, the disk diffusion method was used to investigate positive Enterococcus resistance profiles to 16 antimicrobial agents. Finally, selected phenotypic multidrug-resistant (MDR) Enterococcus isolates were further assessed to identify AMR genes by polymerase chain reaction. Results Investigations showed that the prevalence of Enterococcus isolates from the chicken cloacal swabs and meat samples were 29.75% (83/279) and 28.32% (78/279), respectively. Most Enterococcus positive isolates were resistant to colistin, followed by cefoxitin, cephalexin, and streptomycin. These isolates also showed a prevalence of MDR species (65.22%; 105/161) and 66 patterns. Furthermore, selected MDR Enterococcus (MDRE) from cloacal swabs and breast meat were positive for the resistant extended-spectrum beta-lactamase TEM genes at 71.43% (20/28) and 78.26% (18/23), respectively, whereas other AMR genes detected in the selected MDR enterococci from the cloacal swabs and breast meat were beta-lactamase TEM (bla TEM [0%, 1.96%]), Class 1 integrase (intI1 [14.28%, 0%]), colistin (mrc-1 [3.57%, 0%]), and vancomycin (vanA [14.28%, 0%]). Conclusion This study indicated that phenotypic MDRE correlated with extended-spectrum beta-lactamase TEM gene presence, leading to an AMR reservoir that can be transferred to other bacteria.
Collapse
Affiliation(s)
- Pattarakitti Noenchat
- Sakon Nakhon Provincial Livestock Office, Department of Livestock Development, Ministry of Agriculture and Cooperatives, Sakon Nakhon 47000, Thailand
| | - Chawakorn Nhoonoi
- Division of Veterinary Public Health, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Thanawan Srithong
- Division of Veterinary Public Health, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sujeeporn Lertpiriyasakulkit
- Division of Veterinary Public Health, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Pairat Sornplang
- Division of Veterinary Public Health, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen 40002, Thailand,Corresponding author: Pairat Sornplang, e-mail: Co-authors: PN: , CN: , TS: , SL:
| |
Collapse
|
17
|
Li W, Yang Z, Hu J, Wang B, Rong H, Li Z, Sun Y, Wang Y, Zhang X, Wang M, Xu H. Evaluation of culturable 'last-resort' antibiotic resistant pathogens in hospital wastewater and implications on the risks of nosocomial antimicrobial resistance prevalence. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129477. [PMID: 35780736 DOI: 10.1016/j.jhazmat.2022.129477] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 05/02/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Antimicrobial resistance has been recognized as an important emerging environmental pollutant. 'Last-resort' antibiotics including tigecycline, polymyxin E, daptomycin, vancomycin and linezolid are the 'last line of defence' for antibiotic resistant pathogen infections. Therefore, the presence of 'last-resort' antibiotic resistant pathogens in hospital environments and the nosocomial transmission of 'last-resort' antibiotic resistance poses a grave threat to the well-being of patients. In this work, the extent of resistance to 'last-resort' antibiotics in culturable pathogens in hospital wastewater was investigated. Resistance to 'last-resort' antibiotics were quantified for 1384 culturable Enterobacteriaceae, Enterococcus, Staphylococcus, and Pseudomonas strains. With these investigations, several significant findings were made: (1) a very high level of resistance to 'last-resort' antibiotics was found; (2) multiple resistance to antibiotics, including 'last-resort' antibiotics, was prevalent; (3) a high level of 'last-resort' antibiotic resistance phenotype-genotype inconsistency was found, suggesting knowledge gap for resistance mechanisms; 4) tet(X4)-containing tigecycline-resistant Gram-positive pathogens were found for the first time; 5) wastewater treatment processes are effective in preventing the release of 'last-resort' antibiotic resistant pathogens to the environment. This investigation reveals the severe situation on 'last-resort' resistance in the hospital environment, and implies high risk for nosocomial transmission of 'last-resort' antibiotic resistant pathogens.
Collapse
Affiliation(s)
- Weiwei Li
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong 266237, China; Division of Science and Technology, Ludong University, Yantai, Shandong 264025, China
| | - Zhongjun Yang
- Department of Stomatology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong 266035, China
| | - Jiamin Hu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong 266237, China
| | - Bianfang Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong 266237, China
| | - Hao Rong
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong 266237, China
| | - Ziyun Li
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong 266237, China
| | - Yuqing Sun
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong 266237, China
| | - Yunkun Wang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Xuhua Zhang
- Laboratory Medicine Center, The Second Hospital of Shandong University, Jinan, Shandong 250000, China
| | - Mingyu Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong 266237, China.
| | - Hai Xu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
18
|
Farkas A, Coman C, Szekeres E, Teban-Man A, Carpa R, Butiuc-Keul A. Molecular Typing Reveals Environmental Dispersion of Antibiotic-Resistant Enterococci under Anthropogenic Pressure. Antibiotics (Basel) 2022; 11:antibiotics11091213. [PMID: 36139992 PMCID: PMC9494986 DOI: 10.3390/antibiotics11091213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 02/07/2023] Open
Abstract
As a consequence of global demographic challenges, both the artificial and the natural environment are increasingly impacted by contaminants of emerging concern, such as bacterial pathogens and their antibiotic resistance genes (ARGs). The aim of this study was to determine the extent to which anthropogenic contamination contributes to the spread of antibiotic resistant enterococci in aquatic compartments and to explore genetic relationships among Enterococcus strains. Antimicrobial susceptibility testing (ampicillin, imipenem, norfloxacin, gentamycin, vancomycin, erythromycin, tetracycline, trimethoprim-sulfamethoxazole) of 574 isolates showed different rates of phenotypic resistance in bacteria from wastewaters (91.9–94.4%), hospital effluents (73.9%), surface waters (8.2–55.3%) and groundwater (35.1–59.1%). The level of multidrug resistance reached 44.6% in enterococci from hospital effluents. In all samples, except for hospital sewage, the predominant species were E. faecium and E. faecalis. In addition, E. avium, E. durans, E. gallinarum, E. aquimarinus and E. casseliflavus were identified. Enterococcus faecium strains carried the greatest variety of ARGs (blaTEM-1, aac(6′)-Ie-aph(2″), aac(6′)-Im, vanA, vanB, ermB, mefA, tetB, tetC, tetL, tetM, sul1), while E. avium displayed the highest ARG frequency. Molecular typing using the ERIC2 primer revealed substantial genetic heterogeneity, but also clusters of enterococci from different aquatic compartments. Enterococcal migration under anthropogenic pressure leads to the dispersion of clinically relevant strains into the natural environment and water resources. In conclusion, ERIC-PCR fingerprinting in conjunction with ARG profiling is a useful tool for the molecular typing of clinical and environmental Enterococcus species. These results underline the need of safeguarding water quality as a strategy to limit the expansion and progression of the impending antibiotic-resistance crisis.
Collapse
Affiliation(s)
- Anca Farkas
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, 1 M. Kogălniceanu Street, 400084 Cluj-Napoca, Romania
- Centre for Systems Biology, Biodiversity and Bioresources, Babeș-Bolyai University, 5–7 Clinicilor Street, 400006 Cluj-Napoca, Romania
- Correspondence:
| | - Cristian Coman
- National Institute of Research and Development for Biological Sciences (NIRDBS), Institute of Biological Research, 48 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Edina Szekeres
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, 1 M. Kogălniceanu Street, 400084 Cluj-Napoca, Romania
- National Institute of Research and Development for Biological Sciences (NIRDBS), Institute of Biological Research, 48 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Adela Teban-Man
- National Institute of Research and Development for Biological Sciences (NIRDBS), Institute of Biological Research, 48 Republicii Street, 400015 Cluj-Napoca, Romania
- Department of Taxonomy and Ecology, Faculty of Biology and Geology, Babeș-Bolyai University, 1 M. Kogălniceanu Street, 400084 Cluj-Napoca, Romania
| | - Rahela Carpa
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, 1 M. Kogălniceanu Street, 400084 Cluj-Napoca, Romania
- Centre for Systems Biology, Biodiversity and Bioresources, Babeș-Bolyai University, 5–7 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Anca Butiuc-Keul
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, 1 M. Kogălniceanu Street, 400084 Cluj-Napoca, Romania
- Centre for Systems Biology, Biodiversity and Bioresources, Babeș-Bolyai University, 5–7 Clinicilor Street, 400006 Cluj-Napoca, Romania
| |
Collapse
|
19
|
The Resistome of ESKAPEE Pathogens in Untreated and Treated Wastewater: A Polish Case Study. Biomolecules 2022; 12:biom12081160. [PMID: 36009054 PMCID: PMC9405806 DOI: 10.3390/biom12081160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/11/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to quantify ESKAPEE bacteria, genes encoding resistance to antibiotics targeting this group of pathogens, as well as integrase genes in municipal wastewater and river water. Environmental DNA was extracted from the collected samples and used in deep sequencing with the Illumina TruSeq kit. The abundance of bacterial genera and species belonging to the ESKAPEE group, 400 ARGs associated with this microbial group, and three classes of integrase genes were determined. A taxonomic analysis revealed that Acinetobacter was the dominant bacterial genus, whereas Acinetobacter baumannii and Escherichia coli were the dominant bacterial species. The analyzed samples were characterized by the highest concentrations of the following ARGs: blaGES, blaOXA-58, blaTEM, qnrB, and qnrS. Acinetobacter baumannii, E. coli, and genes encoding resistance to β-lactams (blaVEB-1, blaIMP-1, blaGES, blaOXA-58, blaCTX-M, and blaTEM) and fluoroquinolones (qnrS) were detected in samples of river water collected downstream from the wastewater discharge point. The correlation analysis revealed a strong relationship between A. baumannii (bacterial species regarded as an emerging human pathogen) and genes encoding resistance to all tested groups of antimicrobials. The transmission of the studied bacteria (in particular A. baumannii) and ARGs to the aquatic environment poses a public health risk.
Collapse
|
20
|
Kusi J, Ojewole CO, Ojewole AE, Nwi-Mozu I. Antimicrobial Resistance Development Pathways in Surface Waters and Public Health Implications. Antibiotics (Basel) 2022; 11:821. [PMID: 35740227 PMCID: PMC9219700 DOI: 10.3390/antibiotics11060821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 01/03/2023] Open
Abstract
Human health is threatened by antibiotic-resistant bacteria and their related infections, which cause thousands of human deaths every year worldwide. Surface waters are vulnerable to human activities and natural processes that facilitate the emergence and spread of antibiotic-resistant bacteria in the environment. This study evaluated the pathways and drivers of antimicrobial resistance (AR) in surface waters. We analyzed antibiotic resistance healthcare-associated infection (HAI) data reported to the CDC's National Healthcare Safety Network to determine the number of antimicrobial-resistant pathogens and their isolates detected in healthcare facilities. Ten pathogens and their isolates associated with HAIs tested resistant to the selected antibiotics, indicating the role of healthcare facilities in antimicrobial resistance in the environment. The analyzed data and literature research revealed that healthcare facilities, wastewater, agricultural settings, food, and wildlife populations serve as the major vehicles for AR in surface waters. Antibiotic residues, heavy metals, natural processes, and climate change were identified as the drivers of antimicrobial resistance in the aquatic environment. Food and animal handlers have a higher risk of exposure to resistant pathogens through ingestion and direct contact compared with the general population. The AR threat to public health may grow as pathogens in aquatic systems adjust to antibiotic residues, contaminants, and climate change effects. The unnecessary use of antibiotics increases the risk of AR, and the public should be encouraged to practice antibiotic stewardship to decrease the risk.
Collapse
Affiliation(s)
- Joseph Kusi
- Department of Environmental Sciences, Southern Illinois University Edwardsville, 44 Circle Drive, Campus Box 1099, Edwardsville, IL 62026, USA; (C.O.O.); (A.E.O.)
| | - Catherine Oluwalopeye Ojewole
- Department of Environmental Sciences, Southern Illinois University Edwardsville, 44 Circle Drive, Campus Box 1099, Edwardsville, IL 62026, USA; (C.O.O.); (A.E.O.)
| | - Akinloye Emmanuel Ojewole
- Department of Environmental Sciences, Southern Illinois University Edwardsville, 44 Circle Drive, Campus Box 1099, Edwardsville, IL 62026, USA; (C.O.O.); (A.E.O.)
| | - Isaac Nwi-Mozu
- Schmid College of Science and Technology, Chapman University, One University Drive, Orange, CA 92866, USA;
| |
Collapse
|
21
|
Jepsen K, Falk W, Brune F, Cosgarea R, Fimmers R, Bekeredjian-Ding I, Jepsen S. Prevalence and Antibiotic Susceptibility Trends of Selected Enterobacteriaceae, Enterococci, and Candida albicans in the Subgingival Microbiota of German Periodontitis Patients: A Retrospective Surveillance Study. Antibiotics (Basel) 2022; 11:antibiotics11030385. [PMID: 35326848 PMCID: PMC8944811 DOI: 10.3390/antibiotics11030385] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
The periodontal microbiota is ecologically diverse and may facilitate colonization by bacteria of enteric origin (Enterobacteriaceae, Enterococci) and co-infections with Candida albicans, possibly producing subgingival biofilms with high antimicrobial tolerance. This retrospective surveillance study followed periodontitis-associated superinfection profiles in a large patient sample. From 2008 to 2015, biofilm samples from deep periodontal pockets were collected from a total of 16,612 German adults diagnosed with periodontitis. The presence of selected Enterobacteriaceae, Enterococci, and Candida albicans was confirmed in overnight cultures. Antimicrobial susceptibility of these clinical isolates was tested by disk diffusion with antibiotics routinely used for treatment of oral infections, e.g., amoxicillin (AML), amoxicillin/clavulanic acid (AMC), doxycycline (DO), and ciprofloxacin (CIP). The mean annual prevalence of patients harboring Enterobacteriaceae in periodontal plaques was 11.5% in total and ranged from 2.5% for Enterobacter cloacae to 3.6% for Klebsiella oxytoca, 1.1% for Klebsiella pneumoniae, 2.8% for Serratia marcescens, and 1.5% for Serratia liquefaciens. In comparison, the mean detection rates for microbiota typically found in the oral cavity were higher, e.g., 5.6% for Enterococcus spp. and 21.8% for Candida albicans. Among the Enterobacteriaceae, species harboring intrinsic resistance to AML (Enterobacter spp., Klebsiella spp., Serratia spp.) were predominant. Non-susceptibility to AMC was observed for Serratia spp. and Enterobacter cloacae. By contrast, Enterococcus spp. only showed non-susceptibility to DO and CIP. Trends for increasing resistance were found to AML in Serratia liquefaciens and to DO in Enterococcus spp. Trend analysis showed decreasing resistance to AMC in Serratia liquefaciens and Klebsiella oxytoca; and to DO in Serratia marcescens, liquefaciens, and Enterobacter cloacae. This study confirms the low but consistent presence of Enterobacteriaceae and Enterococci among the subgingival microbiota recovered from periodontitis specimen. Although their pathogenetic role in periodontal lesions remains unclear, their presence in the oral cavity should be recognized as a potential reservoir for development and spread of antibiotic resistance in light of antibiotic usage in oral infections.
Collapse
Affiliation(s)
- Karin Jepsen
- Department of Periodontology, Operative and Preventive Dentistry, University Hospital Bonn, Welschnonnenstrasse 17, 53111 Bonn, Germany; (F.B.); (R.C.); (S.J.)
- Correspondence: ; Tel.: +49-228-287-22480
| | - Wolfgang Falk
- Service Laboratory, Center for Oral & Dental Microbiology, 24103 Kiel, Germany;
| | - Friederike Brune
- Department of Periodontology, Operative and Preventive Dentistry, University Hospital Bonn, Welschnonnenstrasse 17, 53111 Bonn, Germany; (F.B.); (R.C.); (S.J.)
| | - Raluca Cosgarea
- Department of Periodontology, Operative and Preventive Dentistry, University Hospital Bonn, Welschnonnenstrasse 17, 53111 Bonn, Germany; (F.B.); (R.C.); (S.J.)
- Clinic for Periodontology and Peri-Implant Diseases, Philipps University Marburg, 35039 Marburg, Germany
- Clinic of Prosthodontics, Iuliu Hatieganu University Cluj-Napoca, 40006 Cluj-Napoca, Romania
| | - Rolf Fimmers
- Institute for Medical Biometry, Informatics and Epidemiology, University of Bonn, 53127 Bonn, Germany;
| | - Isabelle Bekeredjian-Ding
- Division of Microbiology, Paul-Ehrlich-Institut, 63225 Langen, Germany;
- Institute of Medical Microbiology, Immunology and Parasitology, University of Bonn, 53127 Bonn, Germany
| | - Søren Jepsen
- Department of Periodontology, Operative and Preventive Dentistry, University Hospital Bonn, Welschnonnenstrasse 17, 53111 Bonn, Germany; (F.B.); (R.C.); (S.J.)
| |
Collapse
|
22
|
Alduhaidhawi AHM, AlHuchaimi SN, Al- Mayah TA, Al-Ouqaili MTS, Alkafaas SS, Muthupandian S, Saki M. Prevalence of CRISPR-Cas Systems and Their Possible Association with Antibiotic Resistance in Enterococcus faecalis and Enterococcus faecium Collected from Hospital Wastewater. Infect Drug Resist 2022; 15:1143-1154. [PMID: 35340673 PMCID: PMC8942119 DOI: 10.2147/idr.s358248] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/12/2022] [Indexed: 12/25/2022] Open
Abstract
Purpose This study aimed to evaluate the presence of CRISPR-Cas system genes and their possible association with antibiotic resistance patterns of Enterococcus faecalis and Enterococcus faecium species isolated from hospital wastewater (HWW) samples of several hospitals. Methods HWW samples (200 mL) were collected from wastewater discharged from different hospitals from October 2020 to March 2021. The isolation and identification of enterococci species were performed by standard bacteriology tests and polymerase chain reaction (PCR). Antibiotic resistance was determined using the disc diffusion. The presence of various CRISPR-Cas systems was investigated by PCR. The association of the occurrence of CRISPR-Cas systems with antibiotic resistance was analyzed with appropriate statistical tests. Results In total, 85 different enterococci species were isolated and identified using phenotypic methods. The results of PCR confirmed the prevalence of 50 (58.8%) E. faecalis and 35 (41.2%) E. faecium, respectively. In total, 54 (63.5%) of 85 isolates showed the presence of CRISPR-Cas loci. The incidence of CRISPR-Cas was more common in E. faecalis. CRISPR1, CRISPR2, and CRISPR3 were present in 35 (41.2%), 47 (55.3%), and 30 (35.3%) enterococci isolates, respectively. The CRISPR-Cas positive isolates showed significant lower resistance rates against vancomycin, ampicillin, chloramphenicol, erythromycin, rifampin, teicoplanin, tetracycline, imipenem, tigecycline, and trimethoprim-sulfamethoxazole in comparison with CRISPR-Cas negative isolates. The results showed that the presence of CRISPR-Cas genes was lower in multidrug-resistant (MDR) isolates (53.1%, n = 26/49) compared to the non-MDR enterococci isolates (77.8%, n = 28/36) (P = 0.023). Conclusion This study revealed the higher prevalence of E. faecalis than E. faecium in HWWs. Also, the lack of CRISPR-Cas genes was associated with more antibiotic resistance rates and multidrug resistance in E. faecalis and E. faecium isolates with HWW origin.
Collapse
Affiliation(s)
| | | | | | - Mushtak T S Al-Ouqaili
- Department of Microbiology, College of Medicine, University of Anbar, Ramadi, Al-Anbar Governorate, Iraq
| | - Samar Sami Alkafaas
- Department of Chemistry, Division of Biochemistry, Faculty of Science, Tanta University, Tanta, Egypt
| | - Saravanan Muthupandian
- Department of Microbiology and Immunology, Division of Biomedical Sciences, School of Medicine, College of Health Sciences, Mekelle University, Mekelle, 1871, Ethiopia
- Department of Pharmacology, AMR and Nanomedicine Laboratory, Center for Transdisciplinary Research, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 60007, India
- Correspondence: Saravanan Muthupandian, Department of Microbiology and Immunology, Division of Biomedical Sciences, School of Medicine, College of Health Sciences, Mekelle University, Mekelle, 1871, Ethiopia, Tel +919443077097, Email
| | - Morteza Saki
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Morteza Saki, Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran, Tel +989364221187, Email
| |
Collapse
|
23
|
Silva V, Ribeiro J, Rocha J, Manaia CM, Silva A, Pereira JE, Maltez L, Capelo JL, Igrejas G, Poeta P. High Frequency of the EMRSA-15 Clone (ST22-MRSA-IV) in Hospital Wastewater. Microorganisms 2022; 10:147. [PMID: 35056595 PMCID: PMC8780076 DOI: 10.3390/microorganisms10010147] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 12/07/2022] Open
Abstract
Hospital wastewaters often carry multidrug-resistant bacteria and priority pathogens, such as methicillin-resistant Staphylococcus aureus (MRSA). Pathogens and antibiotic resistance genes present in wastewaters may reach the natural environment facilitating their spread. Thus, we aimed to isolate MRSA from wastewater of 3 hospitals located in the north of Portugal and to characterize the isolates regarding the antimicrobial resistance and genetic lineages. A total of 96 wastewater samples were collected over six months. The water was filtered, and the filtration membrane was immersed in BHI broth supplemented with 6.5% of NaCl and incubated. The inoculum was streaked in ORSAB agar plates for MRSA isolation. The isolates susceptibility testing was performed against 14 antimicrobial agents. The presence of resistance and virulence genes was accessed by PCR. Molecular typing was performed in all isolates. From the 96 samples, 28 (29.2%) were MRSA-positive. Most isolates had a multidrug-resistant profile and carried the mecA, blaZ, aac(6')-Ie-aph(2″)-Ia, aph(3')-IIIa, ermA, ermB, ermC, tetL, tetM, dfrA dfrG and catpC221 genes. Most of the isolates were ascribed to the immune evasion cluster (IEC) type B. The isolates belonged to ST22-IV, ST8-IV and ST105-II and spa-types t747, t1302, t19963, t6966, t020, t008 and tOur study shows that MRSA can be found over time in hospital wastewater. The wastewater treatment processes can reduce the MRSA load. The great majority of the isolates belonged to ST22 and spa-type t747 which suggests the fitness of these genetic lineages in hospital effluents.
Collapse
Affiliation(s)
- Vanessa Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (V.S.); (J.R.); (A.S.); (J.E.P.); (L.M.)
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 1099-085 Lisboa, Caparica, Portugal
| | - Jessica Ribeiro
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (V.S.); (J.R.); (A.S.); (J.E.P.); (L.M.)
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Jaqueline Rocha
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (J.R.); (C.M.M.)
| | - Célia M. Manaia
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (J.R.); (C.M.M.)
| | - Adriana Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (V.S.); (J.R.); (A.S.); (J.E.P.); (L.M.)
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 1099-085 Lisboa, Caparica, Portugal
| | - José Eduardo Pereira
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (V.S.); (J.R.); (A.S.); (J.E.P.); (L.M.)
- Veterinary and Animal Research Centre, Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Luís Maltez
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (V.S.); (J.R.); (A.S.); (J.E.P.); (L.M.)
- Veterinary and Animal Research Centre, Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - José Luis Capelo
- BIOSCOPE Group, LAQV@REQUIMTE, Chemistry Department, Faculty of Science and Technology, NOVA University of Lisbon, 2825-466 Almada, Portugal;
- Proteomass Scientific Society, Costa de Caparica, 2825-466 Setubal, Portugal
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 1099-085 Lisboa, Caparica, Portugal
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (V.S.); (J.R.); (A.S.); (J.E.P.); (L.M.)
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 1099-085 Lisboa, Caparica, Portugal
| |
Collapse
|
24
|
Rolbiecki D, Harnisz M, Korzeniewska E, Buta M, Hubeny J, Zieliński W. Detection of carbapenemase-producing, hypervirulent Klebsiella spp. in wastewater and their potential transmission to river water and WWTP employees. Int J Hyg Environ Health 2021; 237:113831. [PMID: 34455199 DOI: 10.1016/j.ijheh.2021.113831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/28/2021] [Accepted: 08/21/2021] [Indexed: 10/20/2022]
Abstract
Wastewater treatment plants (WWTPs) release drug-resistant microorganisms to water bodies (with effluents), and WWTP employees are exposed to bioaerosol emissions from the processed wastewater. Bacteria of the genus Klebsiella, in particular carbapenemase-producing (CP), hyper-virulent (Hvr) strains of Klebsiella pneumoniae, play a special role in this process. Klebsiella spp. strains isolated from wastewater, river water and the upper respiratory tract of WWTP employees were analyzed in this study. The isolated strains were identified as K. pneumoniae (K. pn) or K. non-pneumoniae (K. npn). The prevalence of nine types of genes encoding resistance to beta-lactams, nine genes encoding virulence factors and K1/K2 capsular serotypes, three genes encoding multi drug effluent pump systems, and the class 1 integron-integrase gene was determined by PCR. A total of 284 Klebsiella spp. isolates were obtained in the study: 270 environmental strains and 14 strains from the upper respiratory tract. Among environmental isolates 90.7% (245/270) harbored beta-lactam resistance genes, 17.4% (47/270) were classified as CP strains, 11.1% (30/270) were classified as Hvr strains, and 1.9% (5/270) were classified as CP-Hvr strains. CP-Hvr strains were also isolated from WWTP employees. Genes encoding β-lactamases (including carbapenemases), complete efflux pump systems and the K1 serotype were identified more frequently in K. pn strains. In turn, K. npn strains were characterized by a higher prevalence of blaSHV and intI1 genes and K2 serotype gene. The strains isolated from wastewater and river water also differed in the abundance of drug resistance and virulence genes. The results of the study indicate that CP-Hvr K. pn strains are possibly transmitted from wastewater via bioareosol to the upper respiratory tract of WWTP employees. blaGES-type carbapenemases significantly contributed to the spread of drug resistance in the environment.
Collapse
Affiliation(s)
- Damian Rolbiecki
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego St. 1, 10-719, Olsztyn, Poland
| | - Monika Harnisz
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego St. 1, 10-719, Olsztyn, Poland.
| | - Ewa Korzeniewska
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego St. 1, 10-719, Olsztyn, Poland
| | - Martyna Buta
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego St. 1, 10-719, Olsztyn, Poland
| | - Jakub Hubeny
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego St. 1, 10-719, Olsztyn, Poland
| | - Wiktor Zieliński
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego St. 1, 10-719, Olsztyn, Poland
| |
Collapse
|