1
|
Tkaczenko H, Hetmański T, Kamiński P, Kurhaluk N. Can blood morphology, oxidative stress, and cholinesterase activity determine health status of pigeon Columba livia f. urbana? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:19927-19945. [PMID: 38367111 DOI: 10.1007/s11356-024-32296-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/28/2024] [Indexed: 02/19/2024]
Abstract
Environmental studies in Northern Poland are example of the functioning of ecophysiological relationships under anthropogenic impact. The aim of our studies was to investigate sex-dependent effects on the alterations in the concentration of chemical elements in soil samples collected from habitats of feral pigeon Columba livia f. urbana from Northern Poland, as well as feathers, biomarkers of oxidative stress, antioxidant defense, and total cholinesterase activity in tissues (liver, kidney, brain). Concentration of Si, Zn, and Pb in feathers of pigeons was significant. The levels of Si and Zn were higher in feathers of females from non-polluted, while higher Pb levels were found only in females from polluted areas (p = 0.000). This was confirmed by MANOVA of biomarkers of antioxidant defense, elements concentration, and revealing the order of effects: tissue type > environment > sex. Erythrocytes of males living in polluted areas were more fragile to hemolytic agents resulting in a higher percentage of hemolyzed erythrocytes. The effects of polluted environment on the level of carbonyl derivatives of oxidatively modified proteins compared to the effects of sex were more pronounced in the case of kidney (p = 0.000) and hepatic tissues (p = 0.000). Polluted areas were associated with significant increase in SOD activity in the brain and hepatic tissues of pigeons (p = 0.000). Health status of feral pigeons is significantly different in conditions of environmental destabilization.
Collapse
Affiliation(s)
- Halina Tkaczenko
- Institute of Biology, Pomeranian University in Słupsk, Arciszewski St. 22 B, 76-200, Słupsk, PL, Poland
| | - Tomasz Hetmański
- Institute of Biology, Pomeranian University in Słupsk, Arciszewski St. 22 B, 76-200, Słupsk, PL, Poland
| | - Piotr Kamiński
- Department of Medical Biology and Biochemistry, Department of Ecology and Environmental Protection, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Skłodowska-Curie St. 9, 85-094, Bydgoszcz, PL, Poland
- Department of Biotechnology, Faculty of Biological Sciences, Institute of Biological Sciences, University of Zielona Góra, Prof. Z. Szafran St. 1, 65-516, Zielona Góra, PL, Poland
| | - Natalia Kurhaluk
- Institute of Biology, Pomeranian University in Słupsk, Arciszewski St. 22 B, 76-200, Słupsk, PL, Poland.
| |
Collapse
|
2
|
Iemmi T, Basini G, Ramoni R, Bussolati S, Heredero AMC, Grasselli F, Grolli S, Serventi P, Bertini S. Research Note: Oxidative stress and immune response following the administration of live attenuated Mycoplasma gallisepticum vaccination in backyard chicken. Poult Sci 2022; 102:102400. [PMID: 36565636 PMCID: PMC9801202 DOI: 10.1016/j.psj.2022.102400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/03/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
In the present study, we investigated a possible relationship between the immune response and the oxidative stress (OS) state trend in a group of 12 chickens after intraocular administration of an attenuated Mycoplasma gallisepticum (MG) vaccine. Blood samples were collected at the vaccination time (T0), after 14 (T1) and 21 d (T2). White blood cell count (WBC), differential leucocyte count, and anti-MG antibodies titer (S/P) were studied as immune response indexes. As plasmatic OS biomarkers levels, we considered malondialdehyde (MDA), nitric oxide (NO), superoxide dismutase (SOD), reactive oxygen metabolites derived compounds (d-ROMs), the ferric reducing ability of plasma (FRAP), and superoxide anion (O2-). After antigenic stimulation, it was observed a significant decrease in monocythemia and a significant increase in thrombocythemia, S/P, MDA, and SOD. Furthermore, subjects with high d-ROMs levels at T0 tended to develop higher cellular mobilization with increases in WBC and lymphocytes accompanied by lower antibody release. It was also observed that the antioxidant components FRAP and SOD were moderately positively correlated to the entity of antibody response.
Collapse
Affiliation(s)
- T Iemmi
- Department of Veterinary Science, University of Parma, Parma, 43126, Italy
| | - G Basini
- Department of Veterinary Science, University of Parma, Parma, 43126, Italy
| | - R Ramoni
- Department of Veterinary Science, University of Parma, Parma, 43126, Italy.
| | - S Bussolati
- Department of Veterinary Science, University of Parma, Parma, 43126, Italy
| | | | - F Grasselli
- Department of Veterinary Science, University of Parma, Parma, 43126, Italy
| | - S Grolli
- Department of Veterinary Science, University of Parma, Parma, 43126, Italy
| | - P Serventi
- Department of Veterinary Science, University of Parma, Parma, 43126, Italy
| | - S Bertini
- Department of Veterinary Science, University of Parma, Parma, 43126, Italy
| |
Collapse
|
3
|
Basini G, Bussolati S, Andriani L, Grolli S, Bertini S, Iemmi T, Menozzi A, Quintavalla F, Ramoni R, Serventi P, Grasselli F. The effects of nanoplastics on adipose stromal cells from swine tissues. Domest Anim Endocrinol 2022; 81:106747. [PMID: 35728298 DOI: 10.1016/j.domaniend.2022.106747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 11/03/2022]
Abstract
Plastic is one of the main sources of marine and terrestrial pollution. This material can fragment into micro- (<-5 mm) and nanoplastics (NPs) (<100 nm) following degradation. Animals are exposed to these particles by ingesting contaminated food, respiration or filtration, and transdermally. In organisms, NPs can cross biological membranes, and cause oxidative stress, cell damage, apoptosis, and endocrine interference. We previously demonstrated that polystyrene - NPs interfered with ovarian cell functions. Since reproduction involves a high energy expenditure and a crucial role is played by adipose tissue, the aim of the present study was to evaluate the effects of NPs on primary adipose stromal cells (ASCs) isolated from swine adipose tissues. In particular, the effects on cell viability, proliferation, metabolic activity, inflammatory process mediators and oxidative stress markers were assessed. The obtained results did not reveal a significant variation in cell proliferation, metabolic activity was increased (P < 0.01) but only at the lowest concentration, while viability showed a significant decrease after prolonged exposure to NPs (P < 0.01). TNF-α was increased (P < 0.05), while PAI-1 was inhibited (P < 0.001). Redox status was significantly modified; in particular, the production of O2-, H2O2 and NO was stimulated (P < 0.05), the non-enzymatic antioxidant power was reduced (P < 0.05) while catalase activity was significantly (P < 0.01) increased.
Collapse
Affiliation(s)
- G Basini
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy.
| | - S Bussolati
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy
| | - L Andriani
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy
| | - S Grolli
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy
| | - S Bertini
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy
| | - T Iemmi
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy
| | - A Menozzi
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy
| | - F Quintavalla
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy
| | - R Ramoni
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy
| | - P Serventi
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy
| | - F Grasselli
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy
| |
Collapse
|